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Abstract

Handling complex data types with spatial structures, temporal dependencies, or discrete values, is generally

a challenge in statistics and machine learning. In the recent years, there has been an increasing need of

methodological and theoretical work to analyse non-standard data types, for instance, data collected on

protein structures, genes interactions, social networks or physical sensors. In this thesis, I will propose a

methodology and provide theoretical guarantees for analysing two general types of discrete data emerging

from interactive phenomena, namely temporal point processes and graphs.

On the one hand, temporal point processes are stochastic processes used to model event data, i.e., data that

comes as discrete points in time or space where some phenomenon occurs. Some of the most successful

applications of these discrete processes include online messages, financial transactions, earthquake

strikes, and neuronal spikes. The popularity of these processes notably comes from their ability to model

unobserved interactions and dependencies between temporally and spatially distant events. However,

statistical methods for point processes generally rely on estimating a latent, unobserved, stochastic

intensity process. In this context, designing flexible models and consistent estimation methods is often a

challenging task.

On the other hand, graphs are structures made of nodes (or agents) and edges (or links), where an

edge represents an interaction or relationship between two nodes. Graphs are ubiquitous to model

real-world social, transport, and mobility networks, where edges can correspond to virtual exchanges,

physical connections between places, or migrations across geographical areas. Besides, graphs are used

to represent correlations and lead-lag relationships between time series, and local dependence between

random objects. Graphs are typical examples of non-Euclidean data, where adequate distance measures,

similarity functions, and generative models need to be formalised. In the deep learning community, graphs

have become particularly popular within the field of geometric deep learning.

Structure and dependence can both be modelled by temporal point processes and graphs, although

predominantly, the former act on the temporal domain while the latter conceptualise spatial interactions.

Nonetheless, some statistical models combine graphs and point processes in order to account for both

spatial and temporal dependencies. For instance, temporal point processes have been used to model the

birth times of edges and nodes in temporal graphs. Moreover, some multivariate point processes models

have a latent graph parameter governing the pairwise causal relationships between the components of
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the process. In this thesis, I will notably study such a model, called the Hawkes model, as well as graphs

evolving in time.

This thesis aims at designing inference methods that provide flexibility in the contexts of temporal point

processes and graphs. This manuscript is presented in an integrated format, with four main chapters and

two appendices. Chapters 2 and 3 are dedicated to the study of Bayesian nonparametric inference methods

in the generalised Hawkes point process model. While Chapter 2 provides theoretical guarantees for

existing methods, Chapter 3 also proposes, analyses, and evaluates a novel variational Bayes methodology.

The other main chapters introduce and study model-free inference approaches for two estimation problems

on graphs, namely spectral methods for the signed graph clustering problem in Chapter 4, and a deep

learning algorithm for the network change point detection task on temporal graphs in Chapter 5.

Additionally, Chapter 1 provides an introduction and background preliminaries on point processes and

graphs. Chapter 6 concludes this thesis with a summary and critical thinking on the works in this

manuscript, and proposals for future research. Finally, the appendices contain two supplementary papers.

The first one, in Appendix A, initiated after the COVID-19 outbreak in March 2020, is an application

of a discrete-time Hawkes model to COVID-related deaths counts during the first wave of the pandemic.

The second work, in Appendix B, was conducted during an internship at Amazon Research in 2021, and

proposes an explainability method for anomaly detection models acting on multivariate time series.
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1 | Introduction

In the first section of this chapter, I introduce the general context unifying the works comprised in

this thesis. Then, in Section 1.2, I present a selective review of existing works that motivate the

statistical questions listed in Section 1.3.1. Next, I describe the contributions in each of the main

chapters in Section 1.3. Finally, Section 1.4 provides the background material for the subsequent

chapters.

1.1 Models for discrete data: point processes and graphs

“Of quantities some are discrete, others continuous"

Aristotle, Categories, I.6, trans. J. L. Ackrill.

“Matter therefore is discrete being, not continuous."

G.W. Leibniz, Sämtliche Schriften und Briefe, 6.3, trans. A. Harmer.

Discrete data refers to a type of data that takes a countable number of values, or contains a countable

number of sub-parts. Point processes (PPs) and graphs are two mathematical concepts that are

used to model discrete data. A point process is a stochastic process whose realisations are random

points in space, e.g., the Euclidean space Rd, d ∈ Z⩾0, called spatial PP, or in time, e.g., on the

real line R, called temporal PP (TPP). Point processes can therefore be applied to model event data,

i.e., lists of events with covariates such as locations, dates, and characteristics of their occurrences.

Graphs are geometric structures comprising a finite number of nodes and edges, connecting pairs or

more generally, subsets of nodes. A typical example of graphs is spatial grids (or lattices), where

nodes are regularly spaced and edges connect adjacent nodes.

Many statistical problems on event data are studied with temporal point processes. A TPP can

be formally defined as an arrival process of events at random times (T1, T2, . . . ), T1 < T2 < . . . ,

Ti ∈ R, i = 1, 2, . . . . However, it is equivalently, and more frequently, defined as a counting

process of the occurrences of events N = (Nt)t∈R, where Nt represents the number of event

occurrences up to time t ∈ R. In practice, data sets of events often contain additional information

on the events, such as their location or magnitude on a associated scale, alongside their times

of occurrence. These event covariates can be integrated as marks associated to each event in

the TPP. In particular, when the marks correspond to a finite number K ⩾ 1 of locations or

agents, a multivariate temporal point process can be defined as N = (Nt)t∈R, where for each t,

1



Figure 1.1: Extract of the earthquake strikes data analysed by Ogata (1988). The columns NO,
YEAR, MO, DY, HR, MN MAG indicate respectively the number, year, month, hour, minute, and
magnitude of the earthquakes. In column C, a 0,1, and 2 represent respectively a main shock, a
foreshock and an aftershock.

Nt = (N1
t , . . . , N

K
t ) and each component Nk

t counts the number of events that have occurred until

time at location k ∈ {1, . . . ,K}.

Temporal point processes have historically been applied by Hawkes (1971) and Ogata (1978) to

model the occurrences of earthquakes and aftershocks. In a seminal paper, Ogata (1988) analyses

the temporal and spatial patterns of seismic events in Japan during the years 1885-1980 and

estimates the rate of events using a self-exciting or epidemic-type point process model. An extract

from this data and the estimated temporal rate with Ogata’s method are reported respectively in

Figure 1.1 and Figure 1.2. In the last decade, temporal point processes have successfully been

applied in financial contexts, for modelling buy and sell transactions, and on online social media, for

analysing and predicting clicks and messages, two main applications that are reviewed by Hawkes

(2018) and Rizoiu et al. (2017).

A natural inference problem on event data is to predict when, where or how many events will happen

in the future. These questions are central in the recent biological and social applications of TPPs.

For instance, TPPs are leveraged in neuroscience, for predicting neuronal spike patterns (Gerhard

et al., 2017), in genomics, for inferring the locations of DNA motifs (Gusto and Schbath, 2005),

2



Figure 1.2: Estimated conditional intensity rate of earthquake strikes in the Tohoku area from
1885 to 1980, estimated by Ogata (1988). The rate is plotted in logarithmic scale, along time. The
downwards arrows at the top of the plot indicate the occurrence times of the shocks.

in epidemiology, for anticipating the spread of diseases (Meyer et al., 2011), in psychology, for

analysing human interactions (Halpin and De Boeck, 2013), and in criminology, for preventing

terrorist attacks (Mohler et al., 2011). In each of these applications, experts generally believe

that some dependence exists between event occurrences, and that this dependence structure is

determined by the underlying phenomenon. For instance, sociologists study the mutual influence of

users of online social platforms, and may want to infer if there is a causal relationship between two

users’ activities.

Temporal point processes models and statistical estimation methods can provide partial answers to

those questions. The core object of inference in a TPP model is the probability rate of events over

time, called the conditional intensity function. In general, the conditional intensity function is a

latent, stochastic process, expressed as a function of the time conditionally on the history of the

point process, i.e., past event occurrences. It can notably be used to determine the expected number

of events happening in a future horizon, and the expected time of the next future event.

While TPPs are better suited to model temporal dependencies, relationships between agents are

more directly modelled by graphs, or using the equivalent denomination, networks. Graphs are

ubiquitous representations for spatially structured data and interactive phenomena, as nodes and

edges can conceptualise a diversity of real-world entities and concepts. For instance, nodes are

used to represent atoms, individuals, computers, cities, genes, proteins, and edges can model

chemical bounds, phone calls, data exchanges, migration flows, gene co-expressions or regulatory

relationships. Modelling biological, geographical, or social systems using graphs and extracting the

relevant information from the structure using a statistical method allows to answer questions such

as: What are the most important agents? Which dis-functioning gene should a drug target? What

3



Figure 1.3: Schizophrenia interactome from Ganapathiraju et al. (2016). The interactome is a graph
in which nodes are genes, and edges symbolise protein-to-protein interactions, for the proteins
associated to each gene. Schizophrenia-associated genes are shown as dark blue nodes, while the
newly interacting genes are red nodes. The shape of nodes indicates the source of the schizophrenia
genes: triangles relates to genome-wide association studies, and squares to historic associations.
The blue and edges correspond respectively to known interactions and to interactions inferred in
Ganapathiraju et al. (2016).

physical properties does this molecule have?

One of the first graph-related problems pertains to road networks. It is known as Konigsberg’s

bridges problem and was solved by Euler (1741). Interestingly, graphs gained a major role in

sociology in the 1930’s for analysing social interactions, and more recently, for mining online social

platforms such as Facebook, Reddit, or Youtube. Network analysis has also been successfully

applied to study neurological disorders (Ganapathiraju et al., 2016), protein-to-protein interactions

(Koh et al., 2012), financial networks (Ha et al., 2015), political co-voting patterns (Arinik et al.,

2019), transportation systems (Sugishita and Masuda, 2021), and migration flows (Fagiolo and

Mastrorillo, 2013). For instance, Figure 1.3 is a visualisation of a protein-to-protein interaction

graph between Schizophrenia-associated genes, where some of the unseen or missing interactions

have been inferred - a semi-supervised learning task called link prediction.

In fact, there is a diversity of graph models and tasks that can be performed on these structures. The

4



simplest graph model is the static, unweighted, and undirected graph, where the node set is V =

{1, 2, . . . , n}, n ∈ Z⩾0, and the edge set contains pairs of nodes, i.e., E = {e = {u, v}; u, v ∈ V }.

In this restrictive representation, an edge generally encodes a similarity property or a positive

interaction between the nodes. This is also called the homophily assumption on the edges, defined

for instance in Özgür Şimşek and Jensen (2008). Relaxing this assumption can be done with

the signed graph model, originating from social psychology, notably the work of Harary (1953).

In signed graphs, edges are given a sign, +1 or −1, which can represent either a similarity or

dissimilarity measure, a friendship or enmity relationship, or a positive or negative correlation.

Another important generalisation of simple graphs are dynamic or temporal networks. The latter

incorporate a temporal dimension in the graph model and is therefore more suitable to time-varying

systems, as noted by Skarding et al. (2021a).

In summary, temporal point processes and graphs a-priori model different types of discrete data

with interactions, e.g., temporal dependencies between events for TPPs, and relationships between

individuals in a social space. Nonetheless, in the subsequent sections, I will show how these

concepts are related, and how the works in the main chapters provide complementary perspectives

on the high-level problem of interaction modelling.

1.2 Literature overview

In this section, I aim at providing a selected overview of problems, methods, and theoretical results

related to temporal point processes, signed graphs, and finally dynamic networks. These existing

works have fostered the statistical questions and contributions of this thesis, listed in Section 1.3.1.

1.2.1 Modelling event data with temporal point processes

“The event is always that which has just happened and that which is about to happen,

but never that which is happening."

Gilles Deleuze, The Logic of Sense.

After a presentation of the main goals of event data modelling, I will review existing works on

Poisson point processes, which lay the foundations of statistical methods for the Hawkes point

process model, studied in Chapters 2 and 3, and other related temporal point process models.

5
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Figure 1.4: Illustration of a univariate temporal point process N = (N(t))t with a sequence
of event times (T1, T2, T3, . . . ), conditional intensity function λ(t) = λ(t|Gt), and history Gt =
σ(Ns; s < t) for t ∈ R.

Event rate prediction and interaction modelling. Temporal point processes are used to model

and predict the rate of events of a phenomenon observed over time, called the conditional intensity

function. The latter is in general a function of the time t and of the history of the point process Gt,

containing the information of all events before t, possibly infinitely extending backward in time.

Informally, the conditional intensity function, denoted by λ(t|Gt), is the infinitesimal probability rate

of event, i.e., λ(t|Gt)dt = P [event in [t, t+ dt]|Gt] . These concepts are schematically represented

in Figure 1.4 for a univariate temporal point process. Additionally, Figure 1.5 illustrates how

temporal point processes can be used to model neuronal spike train data.

In a TPP model, one can specify a form of the intensity function that depends on a parameter f ,

possibly infinite-dimensional. This is then the parameter of interest for estimating λ(t|Gt) and

making predictions about future events. In addition to intensity estimation, common statistical

questions on event data are related to the causality structure of the temporal process such as: Which

events have been caused by an ancestor event? Which components have a causal effect on other

components? (Eichler et al., 2017) Which processes are conditionally independent of each other?

(Christgau et al., 2022) What are the types of interactions between a set of processes, e.g, inhibitory

or excitatory? (Bonnet et al., 2022) Which events contribute to the prediction of target quantities?

(Zhang et al., 2021).

In the past few decades, most TPP models have aimed at explaining the bursting or clustering

behaviour of events. The latter corresponds to empirical observation that events often appear at

6
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Figure 1.5: Schematic representation of spike train data modelling based with a temporal point
process. Each spike train in the neuron’s electrical potential time series corresponds to a biological
activation, and is modelled as an event of the counting process (N(t))t.

points close in time, separated by periods of inactivity where no event happens. This behaviour is

frequently observed in natural phenomena such as earthquake strikes with subsequent aftershocks

(Ogata, 1988), and in human communication patterns such as email exchanges (Miscouridou et al.,

2018). The clustering behaviour is also sometimes called contagion or excitation effect, and is

notably replicated by TPP models such as the log-Gaussian Cox process, studied for instance by

Møller et al. (1998); Teh and Rao (2011), the self-exciting Hawkes process from Hawkes (1971),

and the Poisson cluster process, reviewed in the book of Daley and Vere-Jones (2007).

More recently, some TPP models have focused on accounting for the inhibition phenomenon, which

explains the fact that the probability of occurrence of new events can be decreased by previous

events, or by another process. This phenomenon is of particular importance for modelling spiking

neurons data, where self- and mutual- regulation mechanisms between neurons are central, as noted

by Gerhard et al. (2017) and Duval et al. (2022). The nonlinear Hawkes model, considered by Chen

et al. (2017); Cai et al. (2022); Deutsch and Ross (2022), the mutually-regressive point processes

proposed by Apostolopoulou et al. (2019); Liu and Hauskrecht (2019), and the neural temporal

point processes, introduced by Mei and Eisner (2017) and reviewed by Shchur et al. (2021), are now

popular models that can account for both excitatory and inhibitory dependencies between events.

Poisson process intensity estimation. The Poisson point process is probably the most studied

TPP model from the point of view of intensity estimation. In this model, the conditional intensity

7



is deterministic and only depends on the time variable, or equivalently, is independent of the

history of the process. To estimate Poisson intensity functions, penalised maximum likelihood

estimation (MLE) methods have been applied, using kernel smoothing in Bartoszynski et al. (1981);

Ramlau-Hansen (1983), and reproducing kernel Hilbert spaces in Flaxman et al. (2017). In the

Bayesian framework, Adams et al. (2009) proposes an approach based on Gaussian processes

priors called Log-Gaussian processes. An efficient block Gibbs sampler for these processes is then

introduced by Teh and Rao (2011). Several approximating schemes have also been developed, for

instance a Laplace approximation in Cunningham et al. (2008), and a variational inference method

in Lloyd et al. (2015).

On the theoretical side, Kirichenko and Van Zanten (2015) notably prove the optimality of Log-

Gaussian processes. Additionally, Belitser et al. (2015) establish optimal contraction rates for

Bayesian nonparametric smoothing methods based on spline priors. Besides, Reynaud-Bouret

(2003) proposes projection estimators optimising a criterion called contrast, with optimality and

adaptivity proved in Reynaud-Bouret and Rivoirard (2008). Moreover, an extension of Poisson

processes, that can account for covariates dependence, are Aalen counting processes. Inference in

the latter model is also performed via penalised projection estimators in Reynaud-Bouret (2006);

Hansen et al. (2015), and Bayesian nonparametric methods based on Dirichlet process mixtures

and log-splines priors in Donnet et al. (2017).

Inference methods for Hawkes process In contrast to the Poisson point process, the conditional

intensity function of Hawkes processes is a stochastic process. For a general multivariate Hawkes

process (Nt)t = ((Nk
t )k=1,...,K)t, the intensity of the k-th component is of the form

λk(t|Gt) = ϕk

(
νk +

K∑

l=1

ˆ t

−∞
hlk(t− s)dN l

s

)
, (1.1)

where ϕk is a link or activation function and hlk is the interaction from N l to Nk (see Section

1.4.1 for more details). Linear Hawkes processes correspond to the case where ϕk(x) = x, ∀x
and hlk ⩾ 0, ∀l, k. In the univariate setting, where K = 1 and h11 = h, the linear Hawkes

model is called the self-exciting process (Hawkes, 1971), and is closely related to the epidemic-type

aftershock sequence model of Ogata (1999). For the latter model, the functional parameter h, also

called triggering kernel, is often given a parametric form, such as an exponential h(x) = αe−βt or

a power law h(x) = α/(t+ β)γ . Early inference methods for this parametric model are based on

8



the MLE, for instance in the works of Hawkes (1971); Hawkes and Oakes (1974); Ogata (1978,9).

The triggering kernel is also estimated via a nonparametric maximum likelihood estimator using

B-spline decomposition by Gusto and Schbath (2005), and implemented by Zhou et al. (2013) in a

majorisation-minimisation algorithm.

However, Veen and Schoenberg (2008) show that the MLE can only be efficiently computed for

small data sets and propose a more efficient expectation maximisation (EM) algorithm where

the latent variables represent the branching, or causality, structure of the observed events. Also

for linear Hawkes processes, Da Fonseca and Zaatour (2014) leverage the analytical tractability

of the process moments to design a moment-matching method, which is computationally more

efficient than the MLE, although statistically not necessarily so. Penalised projection estimators

are also considered by Reynaud-Bouret and Schbath (2010) and Hansen et al. (2015), who derive

oracle inequalities, respectively for univariate and multivariate linear Hawkes process. Yet another

estimation method proposed by Bacry and Muzy (2014) consists in finding the causal solution of

a system of Wiener-Hopf equations relating the process’ covariance structure and the interaction

functions. Besides, Bacry and Muzy (2014) show that this method is equivalent to minimising

the contrast criterion. Finally, Reynaud-Bouret and Schbath (2010) establish the minimax rate of

estimation in the self-exciting Hawkes model.

Amongst Bayesian methods for Hawkes processes, Rasmussen (2013) develops a Metropolis-inside-

Gibbs algorithm in a model with exponential interaction functions. Several other Monte-Carlo

Markov Chain (MCMC) methods have been designed for parametric and nonparametric linear

Hawkes models, for instance a method incorporating slice sampling by Blundell et al. (2012), a

block Gibbs sampler in Zhang et al. (2018b), a reversible-jump MCMC in Donnet et al. (2020),

and a Sequential Monte-Carlo algorithm in Linderman et al. (2017). Besides, Zhang et al. (2018b)

proposed an efficient EM algorithm for computing the maximum-a-posteriori estimator. To achieve

better computational efficiency, approximate Bayesian methods have been introduced, such as

variational inference algorithms (Zhou et al., 2021b) and Integrated Nested Laplace Approximation

techniques (Serafini et al., 2022). Finally, in the context of missing data, Deutsch and Ross (2020)

propose an ABC algorithm. While the aforementioned Bayesian works are methodological, a

general theoretical perspective is provided by Donnet et al. (2020), who establish general conditions

for finding posterior concentration rates and study various families of prior distributions.

Nonlinear Hawkes processes correspond to the case where the links ϕk’s are nonlinear functions.

9



They are often used when the interaction functions hlk can be negative, which is of interest in

applied contexts with inhibitory interactions (Reynaud-Bouret et al., 2014). However, relatively

much less work has been dedicated to these processes. The setting where the links are the ReLU

functions, i.e., ϕk(x) = (x)+, is often chosen. For instance, Bonnet et al. (2022) propose an

algorithm for computing the MLE, for a parametric model with exponential interaction functions.

In the same model, Deutsch and Ross (2022) applies a sparsity-inducing prior in an MCMC method.

Additionally, the projection estimator (Hansen et al., 2015) and a Reproducing Kernel Hilbert Space

estimator (Lemonnier and Vayatis, 2014) have been empirically tested in the ReLU Hawkes model.

On the theoretical side, Chen et al. (2017) obtain guarantees for smoothing kernel estimators of

the cross-covariances, i.e., second-order statistics of the process that fully characterise the latter

in the linear Hawkes model (Bacry and Muzy, 2014). Recently, Cai et al. (2022) have proved

concentration inequalities for estimating the intensity via the contrast criterion. 1

A practical difficulty of likelihood-based methods for nonlinear Hawkes processes lies in the

complexity of the likelihood function (see Section 1.4.1). However, in the case of sigmoid link

functions, for which ϕk(x) = θk(1 + e−x), θk > 0, an elegant data augmentation scheme is

proposed by Adams et al. (2009). This technique allows to derive Gibbs samplers and mean-field

variational inference algorithms, when using certain families of Gaussian priors, for instance in the

models of Zhou et al. (2021a); Malem-Shinitski et al. (2022); Zhou et al. (2022). Finally, Wang

et al. (2016) consider the problem of estimating the link function of a parametric nonlinear Hawkes

model, via a piecewise-constant estimator and a moment-matching method.

Related temporal point process models. In the recent years, several TPP models related to

Hawkes processes have been proposed to account for more complex interaction patterns. For

instance, the mutually-regressive point process of Apostolopoulou et al. (2019) and the self-limiting

Hawkes process by Olinde and Short (2020) model the inhibition phenomenon via a multiplicative

term of the linear Hawkes intensity. Moreover, Liu and Hauskrecht (2019) design a Gaussian

process regressive point process, where the dependence on the last event at each component is

modelled via Gaussian processes.

Additionally, Mei and Eisner (2017) have introduced a deep learning framework for temporal point

processes called neural point process. This type of models aims at increasing the expressive power
1However, the results in this paper rely on strong assumptions on the predictability properties of the involved

quantities.
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(a) From Etesami et al. (2016) (b) From Reynaud-Bouret et al. (2013)

Figure 1.6: Examples of connectivity graph parameter δ in two Hawkes models. The nodes of the
graphs are the components of the point process Nk, k = 1, . . . ,K, with (a) K = 5, and (b) K = 3.
The arrows symbolise the directed Granger-causal links between two components. A causal link
from N l to Nk is equivalent to a non-null interaction function hlk in the conditional intensity
function (1.1). We note that the model (b) has a complete graph parameter, i.e., δlk = 1, ∀l, k.

of TPPs by estimating the intensity function without specifying a functional form. In fact, neural

point processes achieve state-of-the-art performance on tasks such as customer recommendation

(Kumar et al., 2019) and clinical event prediction (Enguehard et al., 2020). Different architectures

for these deep learning models have been designed, including recurrent neural networks in Du

et al. (2016); Omi and Aihara (2019), generative adversarial networks in Xiao et al. (2017),

and reinforcement learning techniques in Li et al. (2018). For better modelling long and short-

term dependencies, Zuo et al. (2020) propose a Transformer Hawkes model with self-attention

mechanisms. Besides, Dubey et al. (2021a) construct a Bayesian Neural Hawkes process to add

uncertainty quantification on the predictions.

Estimating the causality structure of events. In practice, event data is also analysed from the

perspective of its causality structure, a notion formally defined and studied by Didelez (2008). For

instance, Gunawardana et al. (2011) capture general event dependencies in a decision tree and

piecewise-constant conditional intensity model, estimated using a conjugate posterior. However,

one specificity of the multivariate Hawkes model is to directly encode the causality structure in an

associated parameter, denoted by δ = (δlk)l,k ∈ {0, 1}K×K and called the connectivity graph - or

Granger-causal graph - which characterises the local dependence structure. In the Hawkes model,

the graph δ is a redundant parameter, defined for each ordered pair (l, k) as δlk = 1 if hlk ̸= 0 and

δlk = 0 otherwise, with hlk an interaction function defined in the conditional intensity function

(1.1). Therefore, nodes in this graph represent the components of the process, and a directed edge
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from a “source" component to a “target" component is equivalent to the “target" being locally

dependent on the “source". Figure 1.6 show two examples of connectivity graph in the Hawkes

model.

In high-dimensional Hawkes processes, i.e., when the number of components K is large, a standard

approach consists in estimating a sparse connectivity graph. This task is notably applied to estimate

the functional connectivity of neurons in Lambert et al. (2018), and disease spread networks in

Xu et al. (2016). Several sparse estimation methods for the Hawkes connectivity graph have been

proposed, including a likelihood ratio testing procedure (Kim et al., 2011), penalised projection

estimators (Eichler et al., 2017; Hansen et al., 2015; Lambert et al., 2018; Cai et al., 2022), ℓ1-

regularised MLE (Xu et al., 2016; Zhou et al., 2013), an ℓ0-penalised minorisation-maximisation

algorithm (Idé et al., 2021), and a thresholding procedure on the cross-covariance estimator (Chen

et al., 2017).

Interestingly, Achab et al. (2017) show that in the linear Hawkes model, the first and second

integrated cumulants of the process are not sufficient to characterise the L1-norms of the interaction

functions, and therefore the Granger-causality structure. Consequently, Achab et al. (2017) propose

a consistent least-square estimator based on the first three integrated cumulants, and related to the

Generalised Method of Moments by Hall (2005). In the nonlinear Hawkes model, Cai et al. (2022)

prove that the penalised projection estimator is consistent on the connectivity graph, however under

strong predictability assumptions on the process. Besides, Bayesian estimation of the connectivity

graph parameter has only been empirically tested in Donnet et al. (2020).

1.2.2 Modelling positive and negative relationships using signed graphs

“Social networks are an inevitable part of modern life."

Shahriari and Jalili (2014)

In this section, I first introduce the origins of signed graphs in statistical analysis, then describe a

set of problems that have been studied on this extended graph model. Next, I focus on the signed

graph clustering task and provide an overview of the state-of-the-art literature.

Signed graphs for modelling human relationships, and more. In social network analysis,

an interaction or relationship between two individuals can often have a positive or a negative

connotation, e.g., friendly or antagonist messages, agreement or disagreement, collaboration or
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Figure 1.7: Balanced and unbalanced triads, or triangles, in the social balance theory of Cartwright
and Harary (1956).

conflict, similarity or dissimilarity, and trust or distrust (Easley and Kleinberg, 2010). This binary

alternative appears in human sentiments (Harary, 1953), international relations (Moore, 1978),

online ratings (Kunegis et al., 2009), Parliament co-voting patterns (Cucuringu, 2015), and can be

modelled using a sign graph, where every edge is given a sign, i.e., a label +1 or −1.

Seminal work using signed graphs emerges in social psychology, on the basis of social balance

theory (Heider, 1958; Cartwright and Harary, 1956). In this paradigm, human relationship patterns

follow the rules “a friend of my friend is my friend" and “an enemy of my enemy is my friend",

which lead to the notion of structural balance. In signed graph theory, a cycle of edges is balanced

if the product of the signs of its edges is positive, or equivalently, if it contains an even number of

negative edges. For triangles (or triads), the four possible combinations of balanced and unbalanced

triangles are listed in Figure 1.7. The balance theorem by Harary (1953) states that if a signed

graph is balanced, the node set can be divided into two subsets such as the positive edges only link

nodes within each subset, and the negative edges link nodes in different subsets.

To model real-world social networks, Davis (1967) introduced a notion of weak balance, which

allows triads with all negative edges. Additionally, different measures of partial balance have been

proposed to analyse signed networks and reviewed by Aref and Wilson (2017). One such measure

is the frustration index, defined by Harary (1953) as the minimum number of edges that need to be

deleted to make a signed graph balanced. Computing this index is an NP-hard problem, but several

approximate algorithms have been proposed, for instance by Hüffner et al. (2007). Alternatively, the

walk-based spectral measure of balance suggested by Estrada and Benzi (2014) can be computed

via the eigendecomposition of the signed adjacency matrix.

Other applications of signed graphs are gene regulatory networks with activatory and inhibitory

relationships (Karaaslanli et al., 2022), brain networks (Rubinov and Sporns, 2011), and more
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broadly, time series correlation networks (Costantini and Perugini, 2014). Correlation networks

are built from pairwise correlation coefficients between time series, and are often analysed in the

form of a complete, weighted, and signed graph. They are ubiquitous in time series analysis, e.g.,

in finance (Pavlidis et al., 2006), genomics (Fujita et al., 2012), neuroscience (Smith et al., 2011;

Saberi et al., 2021), and climate science (Hlinka et al., 2017).

Most statistical methods on graphs are not designed to handle edges with negative signs and

straightforwardly adaptable. In fact, a signed graph G = (V,E) can be defined as the union of two

unsigned graphs with the same node set V . The positive graph, denoted G+, contains the positive

edges E+ = {e+ = {u, v}; u, v ∈ V, {u, v,+1} ∈ E} and the negative graph, denoted G−, has

the edge set E− = {e− = {u, v}; u, v ∈ V, {u, v,−1} ∈ E}. However, there is no a-priori

systematic rationale on how these two unsigned graphs should be treated in an inference method

for G. For instance, Wang et al. (2022) propose a regularised likelihood-based method for signed

graph clustering giving different weights to the positive and negative graphs.

In the last decade, inference methods on signed graphs have been introduced to address the problems

of signed graph clustering (Kunegis et al., 2010), link (sign) prediction (Leskovec et al., 2010;

Kumar et al., 2016; Chiang et al., 2011), node ranking (Shahriari and Jalili, 2014), synchronisation

over the group Z2 (Cucuringu, 2015), graph anomaly detection (Kumar et al., 2014), and data

mining (Tang et al., 2016). Another application of signed graphs is proposed by Goldberg et al.

(2007) in a semi-supervised node classification task, which consists in labelling every node of a

graph using a few pre-labelled nodes. In this context, adding negative edges in the graph between

the labelled nodes that belong to different classes leads to better classification performance.

Signed graph clustering Graph clustering or community detection is probably the most studied

unsupervised learning problem on signed graphs, for Tomasso et al. (2022) also provides a recent

and extensive review. This task corresponds to finding a partition of the node set such that there are

as many as possible positive edges between nodes in the same subset, called cluster or community,

and negative edges between nodes in different subsets. A related problem is polarisation discovery,

studied for instance by Bonchi et al. (2019) and Tzeng et al. (2020), where the goal is to uncover

two or multiple pairs of polarised communities, linked by mostly negative edges (Bonchi et al.,

2019; Tzeng et al., 2020). Signed graph clustering techniques are applied for instance by Karataş

and Şahin (2018) to identify criminal or terrorist groups on online social networks and detect fraud
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events on telecommunication, and by Bansal et al. (2004) and Aghabozorgi et al. (2015) to cluster

time series via correlation networks

For solving the signed graph clustering problem, Yang et al. (2007) and Gómez et al. (2009) propose

modularity-based methods, a type of algorithms that maximise a measure of cluster quality in order

to find the nodes’ partition. Spectral methods have also been designed, for instance by Chiang et al.

(2012), Gallier (2016) and Mercado et al. (2019). These algorithms are derived from an eigenvalue

problem, and apply a clustering algorithm such as k-means (Hartigan and Wong, 1979) on the

spectral node embeddings. In Gallier (2016), the node embeddings correspond to the eigenvectors

of the signed Laplacian, while in Mercado et al. (2019), the latter is replaced by the Power Mean

Laplacian. Besides, He et al. (2018) and Huang et al. (2019) develop deep learning methods based

on graph neural networks to cluster signed graphs.

Similarly to the unsigned graph setting, theoretical guarantees for signed graph clustering algorithms

can be obtained in suitable signed stochastic block models, as is performed for instance in Cucuringu

et al. (2019); Mercado et al. (2019); Wang et al. (2022). These random graph models for signed

graphs with an underlying community structure are related to extensions of the stochastic block

model (SBM) where the edges are given labels, such as the censored and labeled stochastic block

models (see for instance the review of Abbe et al. (2014) for an overview of the SBM). However,

existing results on the performance of spectral methods often hold in restricted settings. For

instance, the properties of the signed Laplacian are studied with k = 2 equal-size communities by

Cucuringu et al. (2019), and for general k by Mercado et al. (2019), but in a particular model with

possibly edges with both positive and negative signs. Recently, Wang et al. (2022) also obtains an

information-theoretic limit of the signed clustering problem.

Finally, another difficulty when solving a task on graphs is the network sparsity, a property of most

social networks (Tomasso et al., 2022). Informally, a sparse graph is a graph that has very few edges,

compared to the number of possible edges. The graph sparsity is often quantified by the average

density of edges, defined as p = 2|E|
|V |(|V |−1) ∈ [0, 1]. In the asymptotic limit of large graphs (i.e.,

n = |V | ≫ 1), the number of edges grows as a function of the number of nodes. The dense graph

regime corresponds to p ≳ logn
n , while in the sparse regime, p = O( 1n). The intermediate regime

1
n ≲ p ≲ logn

n is often called the relatively dense regime. In both the unsigned and signed graph

setting, the edge sparsity is known to decrease the performance of graph clustering algorithms, in

particular spectral methods (Tomasso et al., 2022). In unsigned graphs, this phenomenon has been
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explained by Dall’Amico et al. (2021), who study the effect of the power-law degree distribution,

and addressed in spectral methods by adding a regularisation step, for instance in Amini et al.

(2013); Joseph and Yu (2016); Le et al. (2015). Nonetheless, there is not yet a methodology for

signed graph clustering algorithms.

1.2.3 Modelling time-varying structures with dynamic networks

“To exist is to change, to change is to mature, to mature is to go on creating oneself endlessly.”

Henri Bergson, Creative Evolution, 1907.

In this section, I aim at providing a summary of dynamic network models and inference approaches.

Then, I introduce the change point detection task for dynamic networks and review existing methods.

Models of graphs with a temporal dimension. Temporal, dynamic, time-varying, evolutionary,

or evolving networks refer to network models that incorporate a time covariate in the nodes, edges,

or their attributes. Real-world data modelled by graphs often comes from evolving systems, for

instance online communication platforms (Kumar et al., 2019), co-voting networks (Wilson et al.,

2019), fMRI data (Cribben and Yu, 2017), or results from interactions of short duration such as

phone calls (Holme and Saramaki, 2012). In consequence, the ability to analyse and control a

real-world network can be improved by dynamic network models (Li et al., 2017).

In a dynamic network, nodes and edges appear, and disappear, over time. This temporal process is

often described as a sequence of graph snapshots at discrete timestamps, i.e., a temporally ordered

sequence of static graphs. However, it can also be described as a continuous process, where each

node and edge is given a birth and death times (see Section 1.4.4 for more details). Many learning

tasks on static graphs have their equivalent dynamic formulation, for instance, dynamic node

classification (Pei et al., 2016), link prediction (Rossi et al., 2020), and graph clustering (Rossetti

and Cazabet, 2018). Moreover, dynamic network models are used by Holme and Saramaki (2012)

to describe the formation of a static graph and a disease contagion process in an interaction structure.

Besides, temporal graph models can be used to detect network events such as distribution change

points in Yu et al. (2021).

First approaches for dynamic network models aimed at explaining the change in global networks

properties, such as the degree distribution and the network diameter. For instance, Leskovec et al.

(2005) propose an epidemic-type attachment model accounting for the densification power law and
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diameter shrinking phenomena. Then, a variety of models have been introduced to account for

more diverse edge and time dependencies, such as temporal exponential random graphs (Robins

et al., 2007), dynamic reference models (Holme et al., 2004), dynamic compartmental models

(Newman, 2002) and TPP based models such as multivariate Cox processes (Perry and Wolfe, 2013;

Vu et al., 2011), Aalen processes (Hunter et al., 2011), and Hawkes processes (Fox et al., 2016;

Sanna Passino and Heard, 2022).

Yet one of the most popular model is the dynamic latent space model. The latter is related to the

dynamic stochastic block model, which accounts for community structures in temporal graphs,

for instance in Kim et al. (2018). In a dynamic latent space model, each node is associated to a

trajectory in a latent space, and the edges are conditionally independent given these latent variables.

This type of model is applied to study conference papers co-authorship networks (Sarkar and Moore,

2006), bill co-sponsorship networks in the US Congress (Sewell and Chen, 2015), and bilateral trade

data (Ward et al., 2013). For these models, maximum likelihood estimation is applied by Sarkar and

Moore (2006), while Sewell and Chen (2015) and Yang et al. (2011) propose Monte-Carlo Markov

Chain methods. A nonparametric estimation method via Gaussian processes is also designed in

Durante and Dunson (2014). Additionally, several variational EM algorithms have been developed,

for instance by Yang et al. (2011), Matias and Miele (2017), and Ho et al. (2011).

Relatively few work has been done on designing model-free algorithms, in spite of their interest in

some real-world applications. For the dynamic network clustering task, spectral methods have been

developed by Pensky and Zhang (2019) and Keriven and Vaiter (2022). In addition, deep learning

algorithms have been proposed, such as neural spatio-temporal point processes (Trivedi et al., 2019;

Jin et al., 2019), dynamic and spatio-temporal graph neural networks (Skarding et al., 2021b), and

dynamic network representation learning (Kazemi et al., 2020). Most of these neural networks

architectures combine static graph neural networks architectures with a temporal mechanism, such

as recurrent layers (Seo et al., 2018; Pareja et al., 2020) and attention mechanisms (Sankar et al.,

2020). Moreover, these data-driven methods often achieve state-of-the-art performance in the

dynamic network clustering and link prediction tasks, as is shown for instance by Rossi et al.

(2020).

Network change point detection Dynamic networks are sometimes used to model non-stationary

real-world processes which dynamics undergo abrupt switches or breaks. For instance, in social
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network analysis, interaction patterns can be modified after a “shock“ (Rossi et al., 2020). One task

of interest in several applications consists in detecting such structural breaks (or change points), for

instance to segment brain connectivity fMRI data (Ondrus et al., 2021), and to discover phases in

financial correlation networks (Barnett and Onnela, 2016) or transport networks (Yu et al., 2021).

For multivariate time series, detecting change points is a task that has been widely studied for

several decades, while for dynamic networks, the equivalent task, often termed network change

point detection, has recently become more popular. In this task, a statistical method is defined as

offline if the detection and localisation of change points is performed retrospectively, and online, if

it is concomitant with the observation time of the network. Figure 1.8 illustrates the change point

detection problem in a discrete-time dynamic network, comprising a sequence of graph snapshots

with a single change point.

Most existing methods for this task rely on some model assumptions. For instance, Peel and

Clauset (2015) first estimate the time-varying parameters of a generalised hierarchical random

graph, then apply a standard time series change point detection method on the inferred sequence.

Penalised maximum likelihood approaches have also been considered in a non-homogeneous

Poisson point process model by Corneli et al. (2018), and in dynamic stochastic block models by

Wilson et al. (2019) and Bhattacharjee et al. (2020). A model-free method is applied by Miller

and Mokryn (2020), who monitor the temporal sequence of the degree distribution of the graph. A

similar approach is conducted by Wang et al. (2017) on the edge distribution. Other model-free

algorithms leverage pairwise graph comparison to detect change points, for instance a graph kernel

in Gretton et al. (2006), a graph similarity function in Koutra et al. (2016), and a graph distance in

Hewapathirana et al. (2020).

Yet another popular type of methods is based on the network cumulative sums (CUSUM) statistic,

an extensively applied statistic in change point detection problems for sequential data. In the context

of temporal sequences of graphs, CUSUM statistics are often based on weighted averages of the

adjacency matrices. For instance, Wang et al. (2021) design an offline CUSUM-based algorithm,

with consistency and optimality guarantees under a dynamic inhomogeneous Bernoulli graph model.

This method and its analysis have been extended to the online inference setting by Yu et al. (2021).

Besides, Padilla et al. (2019) propose a refined CUSUM algorithm for sequences of dependent

graphs. Moreover, Dubey et al. (2021b) and Enikeeva and Klopp (2021) concomitantly propose

CUSUM methods for dynamic networks with missing data. Nonetheless, since existing CUSUM
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Figure 1.8: Discrete-time dynamic network with five graph snapshots (Gti)i=1,...,5 and one distri-
bution change point. The binary matrices above the time axis correspond to the adjacency matrices
of each graph (a yellow and purple square represent respectively a 1 and 0 entry), and the orange
flash symbolises an event, causing an abrupt change. The latter affects the structure of the last two
snapshots, which visibly contain a denser subset of nodes.

methods only use the adjacency matrices of dynamic networks, they are limited to unattributed

networks, i.e., networks without additional attributes such as node or edge features.

1.3 Objective and contributions of this thesis

This thesis is motivated by the expressive power and complementarity of temporal point processes

and graphs for modelling interactive phenomena. In this section, I first summarise some motivating

questions, then present a comprehensive overview of results, methods, and outputs, provided in

each of the main chapters.

1.3.1 Motivating questions and outline

As described in Section 1.2.1, the nonlinear multivariate Hawkes model is a flexible temporal point

process model that extends the original linear, or self-exciting, model of Hawkes (1971). This

generalised model is popular amongst practitioners, thanks to its ability to account for excitating

and inhibiting interactions between entities, in particular biological neurons (Gerhard et al., 2017).

Moreover, this model enjoys a nice causality interpretation through its associated connectivity

graph parameter. However, in comparison to the linear Hawkes model, the nonlinear model has

been much less studied.

Firstly, it is not yet known how Bayesian nonparametric methods theoretically and empirically
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perform in this model. One preliminary question is to determine which assumptions on the link

functions and the parameter are required to define an identifiable model. Then, one would wonder

what general conditions on the prior distribution and the model are needed to guarantee consistency

and concentration of the posterior distribution. Additionally, if the nonlinear link functions also

include a parameter, a natural problem is to jointly infer the latter with the original parameter of the

Hawkes model.

Secondly, the consistency of Bayesian methods on the connectivity graph has not yet been stud-

ied, even in the linear model. Nonetheless, there is empirical evidence in Donnet et al. (2020)

that the posterior distribution is consistent. Thirdly, the computational complexity of Bayesian

nonparametric methods in the Hawkes model is a main challenge, limiting its extensive use in

practice. Therefore, a widely open problem is the design of efficient algorithms in the nonlinear

setting, such as approximate Bayesian methods. It would therefore be interesting to first, analyse

the variational Bayes algorithms of Zhou et al. (2021a) and Malem-Shinitski et al. (2022), which

apply in restricted settings, then, to extend the theory to general approximate Bayes methods.

In Section 1.2.2, I presented the signed graph clustering problem, its numerous applications, and the

practical advantages of spectral algorithms. These model-free approaches essentially perform an

eigenvector computation, which can scale up to large and moderately sparse graphs. The preliminary

theoretical analysis by Cucuringu et al. (2019) of the signed Laplacian and the SPONGE spectral

algorithms, in a simple signed stochastic block model, suggests that these results could be extended

in several ways.

First, one natural problem is to analyse the normalised versions of these algorithms, namely

the symmetric signed Laplacian and SPONGEsym algorithms, which empirically perform better

than the un-normalised versions. Secondly, it would be of interest to study these methods in

a general signed stochastic block model, with arbitrary number of clusters, and general cluster

sizes. Another question is to adapt these algorithms for the sparse graph setting, for which

their empirical performance is likely to decrease without an appropriate modification. Some

regularisation strategies for sparse unsigned graphs could then be tested, and similarly analysed.

Finally, previous work cited in Section 1.2.3 shows that the temporal graph setting can better model

real-world evolving networks, and the latter sometimes undergo abrupt distribution changes. The

detection and localisation of these changes are important in several applications, such as brain
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connectivity state segmentation. However, there are relatively few approaches to solve this task

when there is no prior knowledge on the network generative distribution, and the type of change

points that may occur. Moreover, most existing approaches cannot accommodate for network

covariates, such as node and edge attributes.

Therefore, one problem is to design more flexible methods for detecting change points in dynamic

networks. For other graph estimation problems, deep learning algorithms can generally learn from

covariates, and achieve state-of-the-art performance, without relying on any model assumption.

It would thus be interesting to leverage a learning procedure, such as a graph neural network, for

solving the network change point detection task. In this line of research, some central questions

would lie around the choice of architecture, training and validation procedures, and the computa-

tional efficiency, relatively to standard model-based methods. Moreover, it would be interesting to

compare the performance of learning-based algorithms and model-based methods in settings where

the model assumptions are verified, and where the networks are attributed.

The subsequent main chapters aim at tackling these relevant questions, in four independent works.

Chapters 2 and 3 address open questions in the nonlinear Hawkes model and Bayesian nonparamet-

ric framework. Chapter 4 provides insights on spectral methods for the signed clustering problem.

Finally, Chapter 5 proposes a deep-learning method for solving the network change point detection

task. Chapter 4 has been published in the Journal of Machine Learning Research, Chapters 2 and

5 have been submitted respectively to the Bernoulli journal and to the Machine Learning journal.

Chapter 3 has not yet been submitted. The general context of this manuscript is illustrated in Figure

1.9. In the next sections, I summarise the contributions in each chapter.

1.3.2 On Bayesian nonparametric estimation for nonlinear Hawkes processes

Chapter 2 is joint work with J. Rousseau and V. Rivoirard. In this paper, we analyse the asymptotic

properties of Bayesian nonparametric methods in the nonlinear multivariate Hawkes model. We

consider K-dimensional Hawkes processes N = (Nt)t with conditional intensity function (1.1),

and general nonlinear link functions (ϕk)k=1,...,K . We aim at estimating the parameter f = (ν, h, δ)

of the process, containing the background rates ν = (νk)k=1,...,K , the K2 interaction functions

h = (hlk)l,k=1,...,K , and the connectivity graph δ = (δlk)l,k=1,...,K where for each l, k, δlk =

0 ⇐⇒ hlk = 0.

We first assume that the link functions (ϕk)k=1,...,K are known. Then, we also consider a shifted
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Figure 1.9: Description of the context and content of this thesis.

ReLU model where ϕk(x) = θk+(x)+, θk ⩾ 0, k ∈ [K], with an unknown baseline rate parameter

θ = (θk)k=1,...,K , which we also aim to estimate. This model includes the ReLU function, brings

more flexibility to the latter, and leads to a positive intensity whenever θ > 0. The shifted ReLU

model is also motivated by the unboundedness of the likelihood ratio when using the ReLU function,

and it can be seen as an alternative to the exponential model by Gerhard et al. (2017).

In the Bayesian framework, we consider a generic nonparametric prior distribution, denoted Π,

on the parameter space, and, given an observation N of the process on a window [0, T ], study the

concentration rates of the posterior distribution Π(.|N), when T → ∞. More precisely, we look

for the smallest possible sequence ϵT = o(1), and general but easy-to-verify conditions on the prior

and the model, such that we can prove that

Ef0 [Π(d(f, f0) < ϵT |N)] −−−−→
T→∞

1, (1.2)

where f0 denotes the true parameter of the observed process, d(., .) is a loss function, and Ef0 is

the expectation under the true distribution of the process. The latter result is formally described in

Theorem 3.2. In the shifted ReLU model, the posterior concentration rate on f and the baseline

parameter θ (Proposition 3.5) can be similarly written as

Ef0 [Π(d(f, f0) + d̃(θ, θ0) < ϵT |N)] −−−−→
T→∞

1,
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where d̃(., .) is another loss function. From our results, we also deduce the convergence rate of the

posterior mean estimator f̂ = EΠ[f |N ]. We verify our main assumptions on several commonly

used nonlinear models, and three nonparametric prior families, namely splines, random histograms

and mixtures of Beta distributions, for which we also provide explicit concentration rates for Hölder

classes of functions,

Additionally, we establish posterior consistency results on the connectivity graph parameter δ

(Theorem 3.9), i.e., we prove that under certain assumption on the prior, it holds that

Ef0 [Π(δ = δ0|N)] −−−−→
T→∞

1,

where δ0 denotes the true connectivity graph parameter. We note that the previous consistency result

is not directly implied by the concentration (1.2) when there exist (l, k) such that h0lk = 0. Moreover,

we propose a risk-minimising estimator of the graph based on adequate loss functions. The use of

such estimator decouples the design of the prior from the inference on the graph parameter, and

therefore leads to a consistent method under weaker conditions on the prior distribution (Theorem

3.11).

Preliminary to our main results, we provide identifiability conditions for nonlinear Hawkes models

(Proposition 2.3 and 2.5). For the posterior concentration rates, the argument relies on the general

theory of Ghosal and van der Vaart (2007), similarly to the work of Donnet et al. (2020) in the

linear Hawkes model. This theory consists in proving a prior condition, a testing condition, and a

Kullback-Leibler condition, and the core of our work lies in obtaining each piece.

We prove those general conditions with a novel technique, based on the regenerative properties

of Hawkes processes and the concept of excursion. Extending and leveraging the probabilistic

results of Costa et al. (2020), we design specific tests and control the log-likelihood ratio using

a decomposition of the observations into independent and identically distributed sub-parts. This

elegant tool allows us to derive the posterior concentration rates, under mild assumptions on the

prior distribution and the model.

1.3.3 On scalable variational Bayes methods for Hawkes processes

Chapter 3 is joint work with J. Rousseau and V. Rivoirard. In this work, we unify, extend, and

analyse variational Bayes inference methods in the general Hawkes model. This type of methods

23



aim at approximating the posterior distribution Π(.|N) by a variational posterior distribution,

denoted Q̂, belonging to a class of “convenient" distributions, called the variational class and

denoted V . More precisely, the approximate posterior distribution is defined as

Q̂ := argmin
Q∈V

KL (Q||Π(.|N)) ,

where KL(.||.) denotes the Kullback-Leibler divergence.

We first provide general theoretical guarantees on the variational posterior distribution. We notably

study the concentration rates in Theorem 3.2, equivalently to (1.2) for the posterior distribution,

under general conditions on the prior distribution, the model, and the variational class. For this, we

leverage the results of Chapter 2 and the general theory of Zhang and Gao (2020). We apply our

main result to the mean-field variational class and a newly introduced spike-and-slab class. The

latter is of interest to infer a sparse graph parameter in high-dimensional Hawkes processes. We

also apply our results to the random histogram and Gaussian process prior families.

We also propose a novel adaptive and sparsity-inducing method, related to the general model-

selection frameworks of Zhang and Gao (2020) and Ohn and Lin (2021), to select the dimensionality

of the estimation problem. This approach enjoys provable guarantees and allows us to design

efficient algorithms in the sigmoid Hawkes model, with link functions ϕk(x) = θk(1 + e−x)−1

with θk > 0, k ∈ [K]. Building on existing data augmentation strategies and using Gaussian

priors, we construct two adaptive mean-field variational algorithms. Our most efficient algorithm

(Algorithm 3) first selects the graph parameter, which allows to reduce the computational cost for

high-dimensional processes. We empirically demonstrate the effectivess of our approach in an

extensive set of simulations. In particular, we show that our variational algorithms are faster than

MCMC methods and can correctly infer the graph parameter. Moreover, Algorithm 3 can scale up

to large K.

1.3.4 On spectral clustering algorithms and regularisation in signed graphs

Chapter 4 is joint work with M. Cucuringu, A. Singh, and H. Tyagi. This paper contains an analysis

of four spectral clustering algorithms for signed graphs. Two of these algorithms come from

previous works; the first one is the SPONGEsym method introduced by Cucuringu et al. (2019),

and the second one is the symmetric signed Laplacian algorithm, partly analysed in the works of
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Kunegis et al. (2010); Gallier (2016); Mercado et al. (2019). The two other ones are regularised

algorithms newly designed for the sparse graph regime, and derive from the two first methods and

the regularisation scheme of (Amini et al., 2013) for unsigned graphs.

For these four algorithms, we bound their misclustering rates (Theorems 7 and 16). More precisely,

we prove that with probability going to 1, and in the large graph limit n → ∞, for a controlled

approximate solution of the spectral clustering algorithm, the fraction of misclustered nodes is

small. To obtain these guarantees, we study the spectral properties of the SPONGEsym operator

and the symmetric signed Laplacian matrix, denoted Lsym, in a suitably defined signed stochastic

block model (SSBM), with a general number of clusters and non-equal cluster sizes.

For instance, we first prove that, with high probability, the eigenspace of Lsym, derived from a

randomly sampled graph, is close to the corresponding Laplacian matrix in the expected graph,

denoted Lsym, under the SSBM. For this, we apply a general technique that upper bounds the error
∥∥Lsym − Lsym

∥∥, then lower bounds the eigengap of Lsym, and applies the Davis-Kahan theorem

(Davis and Kahan, 1970). Moreover, we add a perturbation argument to analyse clusters with

non-equal-sizes. Finally, the control on the misclustering error is derived using the now standard

tool of Lei and Rinaldo (2015).

For the SPONGEsym and symmetric signed Laplacian algorithms, we obtain our results in the

relatively dense regime, i.e., when the edge density of the SSBM is such that p ≳ logn
n . In

the sparse regime p = O
(
1
n

)
, we propose to regularise these methods using the technique of

Amini et al. (2013). In the unsigned graph setting, the latter method consists in adding a positive

weight τ/n, τ > 0 to every entry of the adjacency matrix A. We therefore introduce two

regularisation parameters γ+, γ− > 0, and define a regularised signed adjacency matrix as Aγ =

A+ (γ+ − γ−)/n11T . We then apply our two first spectral algorithms in this regularised signed

graph.

One advantage of such regularisation technique is to solve the problem of non concentration of the

adjacency matrix in the sparse regime, noted for instance by Le et al. (2015) under the (unsigned)

stochastic block model. Using their techniques, which rely on a decomposition of the graph into a

core component and a remaining subset of nodes, we prove that our regularised signed Laplacian

and SPONGEsym operators concentrate, when the regularisation parameters are adequately chosen,

i.e., when γ+ + γ− scale respectively as (np)7/8 and (np)6/7 (Theorems 6 and 11).
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Finally, we provide an extensive numerical analysis of these four algorithms, on simulated data from

the SSBM with a small and large numbers of clusters, and three real-world social network data sets.

In comparison to existing spectral clustering methods, we demonstrate the superior performance of

the SPONGEsym algorithm, followed by the symmetric signed Laplacian, in the dense regime. In

the sparse regime, we study the variation of performance with respect to the choice of regularisation

parameters, and show that the regularised methods outperform non-regularised ones on real data.

1.3.5 On the change point detection task in dynamic networks

Chapter 5 is joint work with H. Kenlay, M. Cucuringu, and X. Dong. In this paper, we propose

a novel learning-based method for detecting change points in discrete-time dynamic networks.

Our method is based on a data-driven graph similarity function learnt by a graph deep learning

algorithm. The similarity function allows to quantify the discrepancy between the current graph

snapshot and the past ones, in an online setting of a streaming network. Our approach is change

point agnostic, does not require any tuning of the detection threshold, and is suitable for different

types of dynamic networks, in particular those with node attributes.

Our graph similarity learning method is based on a novel siamese graph neural network (GNN)

architecture. The latter is quite shallow and includes a generic siamese graph encoder followed by

a parsimonious similarity module. In particular, we leverage Sort-k pooling, introduced by Zhang

et al. (2018a), to detect both local and global displacements in the graph structure or attributes.

Moreover, for unattributed dynamic networks with a constant node set, we propose to use identity

positional encodings to increase the expressive power of the graph encoder.

One difficulty in our deep learning approach to the network change point detection problem is to

design the training procedure. To the best of our knowledge, this problem has not yet been addressed

in previous work. We propose to sample pairs of graphs in the dynamic network training sequence

in order to train our graph similarity learning algorithm like a binary classifier task. Nonetheless,

after the training procedure, our method is very fast at test time and avoids any detection delay.

We evaluate and compare our method on simulated data from dynamic stochastic block models

(DSBM), similarly to the works of Wilson et al. (2019); Wang et al. (2013); Padilla et al. (2019); Yu

et al. (2021), and two real-world dynamic correlation networks. In DSBMs, we show the superiority

of our method over non-deep learning approaches in several change point scenarios. In real-world

correlation networks from physical sensor data, our method shows better performance at detecting
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unseen types of change points and extrapolating to unseen networks, in comparison to baseline

methods. On the correlation network of S&P stock returns, we qualitatively show that our detected

change points better correlate with major financial events.

Remark 1.3.1. The two works in the appendices were not included as main chapters of this

manuscript, although they are connected to the aforementioned works, for the following reasons.

I contributed as a second author to the first one, in Appendix A, which contains a case-study

of discrete-time Hawkes processes in COVID-19 data. It is now part of the thesis of Dr. Raiha

Browning. The second work in Appendix B, is more loosely connected to discrete data and

interaction modelling, since it focuses on the anomaly detection problem in time series.

1.4 Background

In this section, I formally define Hawkes processes, signed graphs and dynamic networks. I also

introduce spectral clustering and graph convolutional networks.

Notations For a function h : R → R, I denote ∥h∥1 =
´
R |h(x)|dx and ∥h∥2 =

√´
R h

2(x)dx

its L1 and L2 norms, and h+(x) = max(x, 0) = (x)+ and h−(x) = max(−x, 0) its positive and

negative parts. For an integer K ⩾ 1, I denote the set [K] = {1, . . . ,K}. For a matrix M ∈ Rm×n,

∥M∥ denoted its spectral norm, i.e., its largest singular value, and ∥M∥F denotes its Frobenius

norm. I also denote tr(M) =
∑

iMii the trace of M , Mi its i-th row, and M j its j-th column. I

use the notation 1 = (1, . . . , 1) for the all ones column vector and I for the identity matrix, which

sizes depend on the context. For a temporal point process N and for any a, b ∈ R, a < b, N [a, b]

denotes the number of points in [a, b].

1.4.1 Hawkes processes

In this section, I define linear and nonlinear Hawkes processes, first, in the univariate setting,

then, in the multivariate setting. I consider a probability space (Ω,G,P), and recall that for a

K-dimensional temporal point process N = (Nt)t∈R, Nt = (N1
t , . . . , N

K
t ) counts the number of

events at each component until time t, for each t ∈ R. Let {Gt}t∈R with Gt = σ(Ns, s ⩽ t) ⊂ G,

be the filtration or history of the point process. The conditional intensity function (λt)t∈R associated

27



to N is a Gt-predictable and K-dimensional process verifying

E[N [s, t]|Gs] = E
[ˆ t

s
λudu

∣∣∣Gs

]
, ∀s, t ∈ R, s < t. (1.3)

Moreover, if the intensity function depends on a parameter f and is denoted (λt(f))t∈R, the

log-likelihood function of the point process N observed over a window [0, T ], T > 0 is defined as

LT (f) :=
K∑

k=1

[ˆ T

0
log(λkt (f))dN

k
t −
ˆ T

0
λkt (f)dt

]
.

I now define the self-exciting temporal point process, which corresponds to the linear univariate

Hawkes model introduced by Hawkes (1971). In the following definition, K = 1.

Definition 1.4.1 (Self-exciting process (Hawkes, 1971)). A simple point process N = (Nt)t∈R

with history {Gt}t∈R is a self-exciting linear Hawkes process if its conditional intensity function

(λt)t∈R can be written as

λt = ν +

ˆ t−

−∞
h(t− s)dNs, ∀t ∈ R, (1.4)

where ν ∈ R+\{0} and h : R+ → R+ is a non-negative function.

Note that integrals with respect to the point process measure N such as in (1.4) can also be written

as sums over the times of events. Let (T1, T2, . . . ) be the times of events in N . Then, for any

function g : R+ → R, it holds that

ˆ t−

−∞
g(t− s)dNs =

∑

Ti<t

g(t− Ti).

Definition 1.4.1 introduces the two parameters of the self-exciting Hawkes process: the spontaneous

or background rate ν > 0, and the self-exciting function h : R+ → R+, also called triggering

kernel. The background rate models exogenous effects while the self-exciting function accounts for

the endogenous dependence on past events. Due to the latter temporal dependence, the self-exciting

process is in general non-Markovian - unless h is of exponential form, i.e., h(x) = αe−βt, α, β > 0.

Since the self-exciting function h is non-negative, each event in the history Gt contributes as a

non-negative term in the intensity λt; this reproduces the so-called self-exciting property or self-
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excitation phenomenon. Therefore, the inter-event times of a Hawkes process are dependent, and

the sequences of events display a bursting or clustering behaviour. Moreover, this process is linear

in the sense that its conditional intensity function λt is linear in the parameter f = (ν, h).

For TPPs, the stationarity property corresponds to the intensity function being a stationary process,

i.e., E [λt] = λ0, λ0 ∈ R+, or equivalently, for any s < t, E [N [s, t]] only depends on (t− s). For

the self-exciting process, and also more general Hawkes processes, the existence of a stationary

version is equivalent to the non-explosiveness property, i.e., E [N [s, t]] < +∞, for any s < t.

Moreover, the dynamics of a Hawkes process are said to be stable with respect to an initial condition

G0 ⊂ G if the process with history G0 at t = 0 converges in distribution towards the stationary

version when t→ ∞ (Brémaud and Massoulié, 1996).

In the self-exciting model, there exists a stationary version of the point process if ∥h∥1 < 1. If

∥h∥1 > 1, the process is explosive, and, in the critical case ∥h∥1 = 1, stationarity conditions have

been studied by Brémaud and Massoulié (2001). When the dynamics of the process are stable, an

alternative definition of Hawkes processes consists in constructing the process as the solution of a

system of stochastic equations.

Definition 1.4.2. LetQ be a Gt-Poisson point process on (0,+∞)×(0,+∞) with unit intensity and

let N0 be an initial condition, i.e., a point process measure on (−∞, 0]. Assume that h : R+ → R+

is such that ∥h∥1 < 1 and let




N = N0 +

´
(0,+∞)×(0,+∞) δ(u)1θ⩽λuQ(du, dθ)

λu = ν +
´ u−
−∞ h(u− s)dNs, u > 0

, (1.5)

where δ(.) is the Dirac function and ν > 0. Then the unique strong solution of (1.5) is a self-exciting

Hawkes process with background rate ν and self-exciting function h.

A straightforward extension of the self-exciting Hawkes process is a multivariate process, called

the mutually-exciting process, or multivariate linear Hawkes model.

Definition 1.4.3 (Mutually-exciting Hawkes process). Let K ∈ N\{0}. A multivariate point

process N = (Nt)t = (N1
t , . . . , N

K
t )t∈R is a linear Hawkes process if for any l, k ∈ [K],

(Nk
t )t and (N l

t)t cannot have common points and the conditional intensity function (λt)t∈R =
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(λ1t , . . . , λ
K
t )t can be written as

λkt = νk +
K∑

l=1

ˆ t−

−∞
hlk(t− s)dN l

s, t ∈ R, k ∈ [K],

where for each l, k ∈ [K], νk > 0, and hlk : R+ → R+.

In Definition 1.4.3, the functions (hlk)l,k are generally called interaction functions. These functions

model the dependence on past events at each component, and also define a Granger-causality

structure between the components of the process. The definition of this notion, or rather its negative,

is formulated by Eichler et al. (2017).

Definition 1.4.4 (Granger non-causality). Let N be a stationary multivariate point process with

filtration {Gt}t and for a component i, let {G−i
t }t, G−i

t := σ
(
N j

s , s < t, j ∈ [K]\{i}
)

be the

sub-filtration excluding the i-th component. Then the i-th component does not Granger-cause the

j-th component with respect to {Gt}t if the intensity function λjt is G−i
t -measurable.

In multivariate Hawkes processes, the previous definition translates into a nullity condition on the

interaction functions. A component (N i
t )t does not Granger-cause (N j

t )t with respect to {Gt}t
if and only if hij = 0 (Proposition 3.2 in Eichler et al. (2017)). Therefore, a Hawkes process is

associated to a Granger-causality or connectivity graph parameter δ = (δlk)l,k=1,...,K ∈ {0, 1}K×K

where for each l, k ∈ [K], δlk = 0 ⇐⇒ hlk = 0. The intensity function can also be re-written as

λkt = νk +

K∑

l=1

δlk

ˆ t−

−∞
hlk(t− s)dN l

s, t ∈ R, k ∈ [K],

and the parameter f of the process is defined either as f = (ν, h) where ν = (νk)k∈[K] and

h = (hlk)l,k∈[K] or as f = (ν, h, δ).

The linear Hawkes model can be generalised to a nonlinear model, where in particular, the non-

negativity condition on the interaction functions can be relaxed.

Definition 1.4.5. (Nonlinear Hawkes process) Let K ∈ N\{0}. A multivariate point process

N = (Nt)t = (N1
t , . . . , N

K
t )t∈R is a Hawkes process if its conditional intensity function (λt)t∈R =
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(λ1t , . . . , λ
K
t )t can be written as

λkt = ϕk

(
νk +

K∑

l=1

ˆ t−

−∞
hlk(t− s)dN l

s

)
, t ∈ R, k ∈ [K],

where for each k ∈ [K], ϕk : R → R+, νk > 0, and for each l ∈ [K], hlk : R+ → R.

In Definition 1.4.5, the functions (ϕk)k∈[K] are called the link or activation functions. Although they

do not have to, the link functions are often chosen to be monotone non-decreasing and continuous.

In this definition, the functions (hlk)l.k can have a non-null negative part (h−lk)l,k, therefore past

events can contribute as negative terms in the intensity function at t. This characterises the so-called

mutual-inhibition phenomenon.

In practice, the nonlinear functions (ϕk)k are often parametrised in the forms




ϕk(x) = θk + ψ(x)

or ϕk(x) = θkψ(x)

, θk ⩾ 0, k ∈ [K],

where ψ : R → R+ is a nonlinear function such as the ReLU function ψ(x) = max(x, 0) = (x)+

(Hansen et al., 2015; Costa et al., 2020; Deutsch and Ross, 2022) , the sigmoid function ψ(x) = (1+

e−x)−1 (Zhou et al., 2020,0; Malem-Shinitski et al., 2022), the softplus function ψ(x) = log(1+ex)

(Mei and Eisner, 2017), or a clipped exponential function ψ(x) = min(ex,Λ),Λ > 0 (Gerhard

et al., 2017; Carstensen et al., 2010). The additional parameter θ = (θk)k∈[K] corresponds to

a baseline event rate in the additive model, for instance in the shifted ReLU studied in Chapter

2 where ϕk(x) = θk + (x)+, k ∈ [K], and is typically small. In the sigmoid model, where

ϕk(x) = θk(1 + ex)−1, k ∈ [K], θ corresponds to the upper limit of the intensity and can

potentially be large.

The stability properties of nonlinear Hawkes processes have been studied by Brémaud and Massoulié

(1996) under different sets of assumptions on the link functions and the parameter. Moreover, central

limit theorems in nonlinear and linear Hawkes processes are derived in Zhu (2013); Bacry et al.

(2013). Interestingly, renewal or regenerative properties in Hawkes processes have been studied

by Costa et al. (2020); Graham (2021); Raad (2019). Gaussian and Poisson approximations of

functionals of Hawkes processes are also shown by Torrisi (2016,0), while Berry-Essen type bounds

have recently been obtained by Hillairet et al. (2021). Mean-field limits in the high-dimensional
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setting K ≫ 1 of Hawkes processes and age-dependent extensions have been studied by Delattre

et al. (2014); Chevallier (2017); Raad et al. (2020); Pfaffelhuber et al. (2022); Erny et al. (2022).

1.4.2 Signed graphs, Laplacians and cut functions

In this section, I define signed graphs in the context of simple, unweighted, undirected and

unattributed graphs, i.e., graphs with simple edges and without nodes and edges covariates. Then I

present common Laplacian operators for signed graphs and their relations to cut functions.

I define a signed graph as G = (V,E), where V = {1, . . . , n} is the node set and E is the edge

set where each edge e ∈ E is a triplet {u, v, s} with s ∈ {−1, 1} and u, v ∈ V . A signed graph

can be decomposed into two unsigned subgraphs, the positive subgraph G+ = (V,E+) and the

negative subgraph G− = (V,E−)), where E+ = {e = {u, v}; e ∩ {+1} ∈ E} (resp. E−) is the

set of positive (resp. negative) edges. Note that for a simple signed graph, the two subgraphs G+

and G− have disjoint edge support, i.e., E+ ∩E−= ∅, and E+ ∪E−= E. Let m be the size of E,

i.e., the number of edges in the graph.

The signed adjacency matrix of G is the matrix A ∈ {0, 1,−1} such that for any i, j ∈ [n],

Aij =





1 if {i, j,+1} ∈ E

−1 if {i, j,−1} ∈ E

0 otherwise .

It can also be defined as A := A+−A−, where A± ∈ {0,±1}n×n are the adjacency matrices of

the positive and negative subgraphs. The signed adjacency is a symmetric matrix, therefore all its

eigenvalues are real numbers. Some open problems and conjectures on the spectral property of the

signed adjacency matrix have been listed by Belardo et al. (2019). Moreover, the signed degree

matrix is the diagonal matrix D ∈ Nn×n such that Dii =
∑n

j=1 |Aij | and Dij = 0 if j ̸= i for any

i, j ∈ [n]. It is also equal to D = D+ +D−, where D± = Diag(A±1) ∈ Nn×n.

I also define the notions of connectedness and balance in signed graphs. An example of balanced

signed graphs is drawn in Figure 1.10.

Definition 1.4.6. Let G be a signed graph with positive and negative subgraphs G+ = (V,E+)

and G− = (V,E−).
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Figure 1.10: Example of balanced signed graph from Gallier (2016).

• G is said to be connected if for any pair of nodes {u, v} ∈ V 2, there exists a path from u

to v, i.e., there exists a sequence of nodes (v0, v1, . . . , vp), p ∈ N, such that v0 = u, vp = v

and {vi, vi+1} ∈ E, i = 0, . . . , p− 1.

• G is said to be balanced if there exists is a partition of V into two blocks V1 and V2 such that

all the positive edges connect pairs of nodes {u, v} with u, v ∈ V1 or u, v ∈ V2, and all the

negative edges connect pair of nodes {u, v} with u ∈ V1 and v ∈ V2. If G is connected, it

is balanced if and only if every cycle (i.e., a path from u to u for u ∈ V ) contains an even

number of negative edges.

Graph operators (or matrices) for signed graphs include different variants of graph Laplacians. The

unnormalised (or combinatorial) signed Laplacian is defined by Kunegis et al. (2010) as

L = D −A.

Two normalized versions of the signed Laplacian exist, the random-walk signed Laplacian Lrw =

I − D
−1
A, and the symmetric signed Laplacian Lsym = I − D

−1/2
AD

−1/2. Note that these

normalised Laplacians are well-defined for signed graphs without isolated vertices, i.e., for which

D̄ii > 0, ∀i ∈ [n]. The signed Laplacians are symmetric positive semi-definite matrices, as shown

in Proposition 5.1 and Proposition 5.2 of Gallier (2016), therefore their eigenvalues are real and

non-negative. From Theorem 5.6 of the same reference, for a connected signed graph, the signed
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Laplacian is positive definite (therefore its eigenvalues are positive) if and only if it is not balanced.

Graph Laplacians are related to cut functions. Before defining the latter, I define the volume of a

subset C ⊂ V in a signed graph G as

VolG(C) :=
∑

i∈C,j∈V
|Aij | =

∑

i∈C
D̄ii.

The volume of C in the positive and negative subgraphs are similarly defined as VolG±(C) :=
∑

i∈C,j∈V A
±
ij =

∑
i∈U D

±
ii . The (signed) cut function between C and its complement C = V \C

is then defined as

CutG(C,C) :=
∑

i∈C,j∈C̄
|Aij |.

Similarly, in the positive and negative subgraphs, the cut function is defined as CutG±(C,C) :=
∑

i∈C,j∈C̄ A
±
ij , and therefore,

CutG(C,C) = CutG+(C,C) + CutG−(C,C).

Let also links±(C,B) :=
∑

i∈C,j∈B A
±
ij , for any subsets B,C ⊂ V . The connection between

quadratic forms of the unnormalised signed Laplacian and the signed cut function is formalised in

the following proposition from Gallier (2016).

Proposition 1.4.7 (Proposition 5.3 in Gallier (2016)). Let C1, . . . , CK be a partition of V into

K ⩾ 1 clusters, i.e., a set of disjoint subsets of V such that ∪K
j=1Cj = V . For any j ∈ [K], let

Xj ∈ Rn be a vector representing Cj such that, with xj > 0,

Xj
i =




xj if i ∈ Cj ,

0 if i /∈ Cj ,

, ∀i ∈ [n].

Then,

(Xj)T L̄Xj = x2j (CutG(Cj , Cj) + 2links−(Cj , Cj)). (1.6)

Moreover, there is a connection between quadratic forms of the signed degree matrix and the
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volume function. For a vector Xj as defined in Proposition 1.4.7, it holds that

(Xj)T D̄Xj = x2jVolG(Cj).

Therefore, one can link the signed Laplacian and degree matrix to a normalised signed cut function.

Definition 1.4.8 (Definition 5.2 in Gallier (2016)). Let C1, . . . , CK be a partition of V into K ⩾ 1

clusters. The signed normalised cut is defined as

sNcut(C1, . . . , CK) =
K∑

j=1

CutG(Cj , Cj)

VolG(Cj)
+ 2

K∑

j=1

links−(Cj , Cj)

VolG(Cj)
.

Therefore, for a matrix X ∈ R\{0}n×K where each column Xj represents a cluster Cj , it also

holds that

sNcut(C1, . . . , CK) =
K∑

j=1

(Xj)T L̄Xj

(Xj)T D̄Xj
.

Signed cut functions are also related to the level of unbalancedness of the graph and the spectrum

of graph Laplacians. The following result provides bounds on the smallest eigenvalue of the

unnormalised signed Laplacian.

Proposition 1.4.9. Proposition 3.3 and Theorem 3.4 in Hou (2005) Let G with a signed graph and

λ1 the smallest eigenvalue of its signed Laplacian. Then it holds that

∆−
√

∆− ω(G)2 ⩽ λ1 ⩽ 4ω(G),

where ∆ = maxi∈[n] D̄ii is the largest degree in G, and

ω(G) = min
C⊂V,C ̸=∅

emin(C) + CutG(C,C)
|C| ,

with emin(C) the minimum number of edges that need to be removed from the subgraph induced by

C to make it balanced.

From Proposition 1.4.9, if a graph G is balanced, then ω(G) = λ1 = 0 and its signed Laplacian is

singular. In the context of clustering and link prediction tasks, additional signed Laplacian-type
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operators have been defined. The unsigned Laplacian Lu = D̄ − |A| and the physics Laplacian

Lp = D − A with D = Diag(A1) have been considered by Knyazev (2018). Chiang et al.

(2012) define the Balance Ratio Cut and the Balanced Normalized Cut operators as respectively

LBRC = D+−A and LBNC = D̄−1/2(D+−A)D̄−1/2. The former can be related to cut functions:

for any partition C1, . . . , CK of V with representation matrix X , and any j ∈ [K], it holds that

(Xj)TLBRCX
j = x2j (CutG+(Cj , Cj) + links−(Cj , Cj)). (1.7)

Note that in comparison to (1.6), the first term on the RHS of (1.7) is the cut function over the

positive subgraph. Mercado et al. (2019) introduce a family of signed graph operators called

Matrix Power Mean of Laplacians defined as Lp = 1
21/p

((L+
sym)p + (L−

sym)p)
1
p , p ∈ R, where

L±
sym = I − (D±)−1/2A±(D±)−1/2 are the symmetric Laplacians of the positive and negative

subgraphs. Concomitantly, Cucuringu et al. (2019) propose the SPONGE and SPONGEsym

operators, defined as

T = (L− + τ+I)−1/2(L+ + τ−I)(L− + τ+I)−1/2,

Tsym = (L−
sym + τ+I)−1/2(L+

sym + τ−I)(L−
sym + τ+I)−1/2,

where τ± > 0 are trade-off parameters and L± = D±−A± are the graph Laplacians of the positive

and negative subgraphs. The definition of these operators also originate from an appropriately

defined signed cut objective in Cucuringu et al. (2019).

1.4.3 Spectral graph clustering

Spectral graph clustering methods are algorithms for partitioning the node set into a predefined

number of clusters K ⩾ 1. They have a common pipeline where the main step is to solve an

eigenvalue, or generalised eigenvalue, problem. The latter is generally the main computational bot-

tleneck, however there are now efficient solvers such as the Locally Optimal Block Preconditioned

Conjugate Gradient method (Knyazev, 2001). The graph operator in the eigenvalue problem comes

from the relaxation of an optimisation problem based on cut functions (see Section 1.4.2). Before I

describe this derivation, I recall the steps of spectral clustering algorithms. Given a graph G and a

choice of operator O(G), e.g., the graph Laplacian, a spectral algorithm has the three following

steps:
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1. Compute the operator O(G).

2. Compute its K extremal eigenvectors U1, . . . , UK , i.e., the eigenvectors associated to the K

smallest (or largest) eigenvalues of O(G).

3. Stack the eigenvectors colomn-wise into a matrix U = [U1, . . . , UK ] ∈ Rn×K and cluster its

rows using the k-means or k-means++ algorithm (Vassilvitskii and Arthur, 2006). The latter

gives the final partition of V .

I now illustrate the derivation of the graph operator for a signed graph G from an objective function,

using one possible formulation of the signed clustering problem. To find clusters in G, one

possibility is to search a partition of the node set such that most of the positive edges connect

nodes in the same cluster, or equivalently, few positive edges connect nodes in different clusters.

Intuitively, this formulation of the signed clustering problem implies that the clusters should contain

nodes that are similar to each other, or have positive relationships, e.g., friendly interactions in a

social network. In this case, one aims at minimising the cut function in the positive subgraph, i.e.,

solving

min
C1,...,CK

CutG+(Ci, Ci),

where the minimum is computed over the partitions C1, . . . , CK of V . However, the solution of

the latter objective often contains one “giant" cluster spanning most of the nodes, while the other

clusters are “small". In practice, this is often not a useful partition. Therefore, it is common to

modify the objective function to take into account the size of the clusters, i.e., to solve

min
C1,...,Ck

K∑

i=1

CutG+(Ci, Ci)

|Ci|
,

which corresponds to a ratio cut objective. Moreover, noting that for a vector Xi representing the

cluster i ∈ [K], as defined in Section 1.4.2, it holds that

x2i CutG+(Ci, Ci) = (Xi)TL+Xi,
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where L+ = D+ −A+, therefore, the previous objective can be also written as

min
X

K∑

i=1

(Xi)TL+Xi

(Xi)TXi
, (1.8)

where X is the matrix representing the partition C1, . . . , CK . Note that the minimum in (1.8) is

computed over the following set of matrices:

X =
{
X = [X1, . . . , XK ]; Xi ∈ {0, 1}n, Xi ̸= 0, (Xi)T (Xj) = 0, ∀i, j ∈ [K]

}
.

Moreover, (1.8) is equivalent to the following optimisation problem

min
X∈X ,XTX=I

tr(XTL+X).

Given the form of X , (1.8) is a NP-hard problem, therefore a common relaxation consists in

replacing the constraint X ∈ X by X ∈ Rn×K . Then, the previous trace minimisation problem

is equivalent to an eigenvalue problem and the solution is given by X∗ = [U1, . . . , UK ], where

U1, . . . , UK are the eigenvectors associated to the K smallest eigenvalues of L+.

A variant of this approach consists in normalise the cut function by the volume of the subsets Ci’s

instead of their size, and thus to solve the alternative problem

min
C1,...,Ck

K∑

i=1

CutG+(Ci, Ci)

VolG+(Ci)
= min

C1,...,CK

K∑

i=1

(Xi)⊤L+Xi

(Xi)⊤D+Xi
,

which corresponds to a normalised cut objective. If for each i ∈ [K],Xi = 1√
VolG+ (Ci)

(D+)1/21Ci ,

then the latter problem is equivalent to

min
C1,...,CK

K∑

i=1

(Xi)⊤L+
symX

i. (1.9)

Relaxing the discreteness constraint on X in (1.9) also leads to an eigenvalue problem, now

formulated as

min
X⊤X=I

tr
(
X⊤L+

symX
)
.

Normalised signed Laplacians spectral clustering algorithms generally have better prediction

accuracy, as empirically shown for instance by Chiang et al. (2012); Cucuringu et al. (2019);
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Mercado et al. (2019). In unsigned graphs, Sarkar and Bickel (2015) theoretically prove that this

type of normalisation decreases the “spread" of clusters in stochastic block models.

Finally, because of their connection with eigenvalue problems, spectral signed clustering algorithms

can be theoretically analysed under suitably defined random graph models such as signed stochastic

block models in Mercado et al. (2019); Cucuringu et al. (2019). In unsigned graphs, upper bounds on

the mis-clustering rates are obtained after an analysis of the spectral properties, i.e., the eigenvalues

and eigenvectors, of the Laplacian matrix in Rohe et al. (2011).

1.4.4 Dynamic networks

In this section, I define dynamic networks in the continuous and discrete-time frameworks. In the

latter setting, which is further studied in Chapter 5, I also introduce the notion of node attributes

and directed edges. I then review events or change points related to the community life cycle. In the

continuous framework, a dynamic network is defined as a continuous process where each node and

edge is given a continuous birth and death timestamps. The following definition is adapted from

Definition 1 in Rossetti and Cazabet (2018).

Definition 1.4.10. (Continuous dynamic network) A continuous dynamic network, denoted G =

(V,E), is defined by a set of temporal nodes V and a set of temporal edges E. Each element of V

is a triplet (v, ts, te) where te, ts ∈ R, te ⩽ ts are the birth and death timestamps of the node v.

Each element of E is a quadruplet (u, v, ts, te) where u, v ∈ V nodes and te, ts ∈ R, te ⩽ ts are

the birth and death timestamps of the edge between u and v.

In the discrete framework, often called snapshot network or graph snapshots, a dynamic network is

defined as a temporally ordered sequence of graphs at discrete timestamps. In the next definition,

adapted from Definition 2 in (Rossetti and Cazabet, 2018), I consider attributed networks, where

each node in each snapshot is associated to a vector of attributes or covariates.

Definition 1.4.11. (Snapshot network) A discrete-time dynamic network or snapshot network is a

sequence of graphs G = (Gt)t∈N. For each t ∈ N, Gt = (Vt, Et, Xt) is a static graph with node

set Vt, edge set Et, and node attributes matrix X ∈ Rnt×dt , where nt = |Vt| and dt ∈ Z⩾0 is the

dimension of the node attributes at time t.

In practice, the dimensions of nodes attributes is often constant, i.e., dt = d. A snapshot network is

related to a multi-layer graph, however, in the former object, the set of graphs is temporally ordered
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and edges only connect nodes within the same snapshot. While the continuous-time framework is

more closely related to temporal processes, the discrete-time framework is an easier representation

to handle for its similarity to multi-layer graphs. Therefore, it is more frequently used in practice,

and can well represent aggregated network data, e.g., number of phone calls or emails over a day or

week. It is also the framework adopted in most dynamic random graph models such as dynamic

latent space models (Durante and Dunson, 2014), dynamic stochastic block models (Matias and

Miele, 2017; Padilla et al., 2019; Bhattacharjee et al., 2020; Yu et al., 2021), low-rank models (Bao

and Michailidis, 2018) and the dynamic graphon model (Zhao et al., 2019).

In the dynamic setting, a network can exhibit a dynamic or evolving community structure, where

the number of clusters and the memberships can change over time. The transformations that

a community can undergo are called events of the community life cycle (Rossetti and Cazabet,

2018). Examples of such transformations include “birth" and “death", corresponding to the

time stamps at which a community appears and disappears from the network, “growth" and

“contraction", i.e., an increase and decrease of the community size, and the “split", the phenomenon

by which a community is divided into two components. The reverse of the “split" is the “merge"

transformation, where two communities unite into a single one. While the birth, death, split, and

merge transformations generally happen at a single time stamp, the growth and contraction events

can span several time stamps.

Events modifying the community structure and occurring within a single timestamp can correspond

to change points for a dynamic network. More broadly, a change point, or a phase transition, is

a timestamp at which an abrupt change occurs, in the topological structure of the network, or in

the covariates distribution. In the discrete-time framework, a dynamic network observed over a

period of time T > 0, denoted G = (G1, . . . , GT ), is said to have a single change point if there

exists τ ∈ [T ] such that

Gt ∼ P1, 1 ⩽ t < τ,

Gt ∼ P2, τ ⩽ t ⩽ T,

where P1,P2 are two graph distributions, or graph generative mechanisms. This definition can be

generalised to multiple change points (τ1, . . . , τK), which partition the set of timestamps [T ] into

(K + 1) segments called epochs (Bao and Michailidis, 2018).
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1.4.5 Graph convolutional networks

Graph convolutional networks (GCN) are deep-learning algorithms operating on graphs and belong

to the broader of graph-based neural networks. Many variants of GCNs have been defined, notably

the spatial GCNs (Niepert et al., 2016) and spectral GCNs (Bruna et al., 2013). In this section, I

will describe the simplified spectral version by Welling and Kipf (2016), introduced in the context

of semi-supervised classification.

Let G be a (static) graph with adjacency matrix A and possibly some node attributes X ∈ Rn×d0 .

A GCN is a model f(G) defined as a composition of maps (or layers), which propagate a hidden

representation, or embedding, of the graph. Let L ⩾ 1 be the number of layers, i.e., the depth of the

GCN. For each layer l ∈ [L], let dl ⩾ 1 be the number of units (i.e., the width). The embedding of

G at layer l, denoted H(l), is defined as

H(l) = σ
(
ÃH(l−1)W (l) +B(l)

)
, (1.10)

where σ is a pointwise activation function such as ReLU, W (l) ∈ Rdl−1×dl is a weight matrix,

B(l) ∈ Rdl is a bias vector, and Ã = D̃−1/2(A+ I)D̃−1/2 is the normalised augmented adjacency

matrix with degree matrix D̃ = diag((A+ I)1). The propagation rule (1.10) proposed by Welling

and Kipf (2016) comes from a first-order approximation of a graph convolution operation.

The initial representation H(0), i.e., the input of the first layer, is either the node attributes matrix X

or a positional encoding matrix, such as D̃, if G is unattributed. The top layer of a GCN depends

on the final task and objective function. For a node classification task, the activation function at

layer L is generally the softmax function s(x)i = exi∑K
j=1 e

xj
, i ∈ [K], x ∈ RK , with K the number

of classes. For a graph-level task, the final embedding matrix H(L) ∈ Rn×dL is first pooled into a

graph embedding vector H̃(L) ∈ RdL , before applying the activation function. A pooling operation

can be a sum H̃
(L)
j =

∑n
i=1H

(L)
ij or a max operation H̃(L)

j = maxi∈[n]H
(L)
ij , ∀j ∈ [dL].

The weight and bias parameters W (l) and B(l) at each layer l ∈ [L] are trainable, i.e., they are

optimised to minimise a loss function, using a back-propagation algorithm. For instance, in a

binary graph classification task, the goal is to learn a model f such that for any test graph G∗,

f(G∗) ∈ [0, 1] is the probability of G∗ to belong to one of the two classes. In a supervised learning

context, the loss function is often the binary cross entropy (BCE) loss. Given a training data set
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D = {(Gi, yi)}i∈[N ], with yi ∈ {0, 1} the class label of the graph Gi, for each i, the BCE loss

function is defined as

LBCE(D) =
1

N

N∑

i=1

[yi log f(Gi) + (1− yi) log(1− f(Gi))] .

In practice, graph convolutional networks are often shallow, i.e., 2 ⩽ L ⩽ 5, to limit the over-

smoothing phenomenon in deep GCNs (Cai and Wang, 2020).
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1. Introduction

1.1. Nonlinear Hawkes processes

The Hawkes model is a popular temporal point process (PP) for modelling the occurrences of event-
type phenomena. Extending the Poisson cluster process [45], this model allows the probability of oc-
currence of a new event to depend on the history of the process. The first construction by Hawkes
[33] aimed at modelling the self-excitatory behaviour of earthquakes’ strikes with aftershocks, and is
called the linear Hawkes process. Since then, it has been extensively used, partly due to its interpretable
parameters and branching structure representation [51]. This notably leads to tractable inference and
simulation methods [3, 9, 32].

Hawkes processes have been largely and successfully applied in various contexts of correlated event-
data, including online social popularity [23], stock prices moves [21], topic modelling [19], DNA
motifs occurrences [7, 31, 52], and neuronal activity modelling [10, 38, 50]. They are used to infer
both diffusion phenomena on networks and the structure of time-dependent networks [44]. Related
and extended models include the mutually-regressive PP [1], the age-dependent [48] and marked [37]
Hawkes processes, the dynamic contagion process [12], the reactive PP [22], the self-correcting PP [35]
and the Dirichlet-Hawkes process [19]. More recently, neural point processes inspired by the Hawkes
model have also been proposed [18, 42].

In a multivariate temporal PP, each dimension represents an entity, a location or a type of event - it
is equivalent to a marked point process with finite mark space. For K ∈�\{0}, the PP can be described
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as a counting process N = (Nt)t = (N1
t , . . . ,N

K
t )t⩾0, where Nk

t denotes the number of events that have
occurred until time t at location k. Its dynamics are characterised by a conditional intensity function
(λt)t = (λ1

t , . . . , λ
K
t )t⩾0, which is informally the infinitesimal rate of event conditionally on the past of

the process, i.e, for k = 1, . . . ,K, λk
t dt = �

[
Nk

t has a jump in [t, t + dt]|Gt
]
, where Gt is the history of

the process up to time t. In the nonlinear Hawkes model, only one dimension Nk of the process can
jump at each time t and the intensity process has the following form

λk
t = ϕk

νk +

K∑

l=1

∫ t−

−∞
hlk(t − s)dNl

s

 , k = 1, . . . ,K. (1)

In (1), the parameter νk > 0 denotes the background - or spontaneous - rate of events, and models ex-
ogeneous influences. The endogenous effects on the process are parametrised by interaction functions
(hlk)K

l,k=1 - or triggering kernels. More precisely, for (l, k) ∈ [K]2, the function hlk :�→� models the
influence of component Nl onto component Nk. It can be decomposed into an excitating contribution
(h+lk = max(hlk,0)) and an inhibiting contribution (h−lk = max(−hlk,0)). Finally, the link or activation
function ϕk :�→�+ ensures that the intensity is a non-negative process, and is generally chosen to be
monotone non-decreasing. If all the interaction functions hlk are non-negative and all the link functions
equal the identity functions, (1) corresponds to the linear Hawkes model.

The dependence on past events in the intensity (1) leads to a notion of causality. For Hawkes pro-
cesses, a Granger-causal relationship between two components of the process corresponds to a non-null
interaction function [20]. We can define the connectivity graph parameter δ ∈ {0,1}K2

such that for each
(l, k), δlk = 1 if the function hlk in (1) is non null and δlk = 0 otherwise. We note that this parameter is
redundant with (hlk)K

l,k=1.
To the best of our knowledge, the estimation of the parameters of nonlinear Hawkes processes

ν = (νk)k, h = (hlk)K
l,k=1, δ = (δlk)K

l,k=1 - as well as additional parameters of the link functions (ϕk)k
has not been theoretically analysed, neither in the frequentist nor in the Bayesian frameworks. In the
nonparametric setting, the existing results apply to linear Hawkes processes for the estimation of (ν,h)
[17] and for the estimation of the connectivity graph δ [32, 9]. In the nonlinear model, [8] study the
estimation of the cross-covariances of the process, and [62] estimate a piecewise-constant link function
assuming a parametric form on the interaction functions.

In this work, we analyse the theoretical properties of Bayesian methods for estimating ν, h, δ and
additional parameters of the nonlinear functions (ϕk)k. We consider a prior distribution on the param-
eters, say Π, and our aim is to study posterior concentration rates in such models. More precisely, we
wish to determine ϵT = o(1) and conditions on the model and on Π such that

� f0 [Π(d( f , f0) > ϵT |N)] −−−−−→
T→∞

1,

where f = (ν,h), d(., .) is some loss function on the parameter space, and Π(.|N) denotes the posterior
distribution given an observation of the process on [0,T ]. In the last equation, we assume that the data N
is generated by a Hawkes process with true parameter f0, and we denote � f0 its generating distribution
and � f0 the associated expectation. In particular, a consequence of such result is the construction of
estimators on ν,h which converge in the frequentist sense at the rate ϵT . We also obtain posterior
consistency results on the graph parameter δ, and construct a consistent risk-minimising estimator.

1.2. Related works

There is a rich literature on Hawkes processes in probability, statistics, and more recently in machine
learning and deep learning. The stability properties of the nonlinear Hawkes model have been studied



Bayesian estimation of nonlinear Hawkes processes 3

under several assumptions [5, 36], together with the rate of convergence to the stationary solution
[6] and the Bartlett spectrum [41]. Regenerative properties of Hawkes processes were investigated
for the models with finite [11] and infinite [29, 47] memory. Recently [4, 24, 25] derived functional
central limit theorems and large deviations principles for ergodic processes. Malliavin-Stein calculus
was applied by [56, 57] to establish Gaussian and Poisson approximations of functionals of the linear
Hawkes process, and later by [34] to obtain Berry-Esséen bounds. Stationary distributions of high
dimensional Hawkes processes were also studied, notably in the mean-field limit [13, 14, 48].

Many statistical works have been dedicated to designing robust and efficient estimation procedures in
the linear Hawkes model. In the seminal work of [46], the interaction functions are given in a paramet-
ric form and estimated by maximising the likelihood function. In parametric models, an Expectation-
Maximisation algorithm was proposed in [61] to compute the maximum likelihood estimator while
MCMC methods were designed for sampling from the posterior distribution [49]. The EM algorithm
was extended by [39] to nonparametric Hawkes models using a penalised likelihood objective. Another
nonparametric approach was introduced by [52] for the linear univariate model by using a model selec-
tion strategy. In the multivariate Hawkes model, Lasso-type estimates were designed by [32]. Still for
linear models, Bayesian approaches have also been implemented for nonparametric Hawkes models,
see for instance [19]. In [17] the authors study asymptotic properties of the posterior distribution in the
linear model.

Causality graphs for discrete-time events were introduced by [30] and extended to marked point
processes by [16], with an explicit definition in the case of multivariate Hawkes processes by [20].
In linear parametric models, some approaches optimise a least-square objective based on the intensity
process [3, 4]. For nonparametric Hawkes processes, [63] apply an EM algorithm based on a penal-
ized likelihood objective leading to temporal and group sparsity. Still in the linear model, Lasso-type
estimates proposed by [32] for nonparametric Hawkes processes naturally lead to sparse connectivity
graphs. This procedure has been generalised to high-dimensional processes by [9] by adding an edge
screening step.

1.3. Our contributions

This paper considers a general multivariate Hawkes model with a nonlinear and nonparametric form of
the intensity function, and provides theoretical guarantees on Bayesian estimation methods. We cover
a large range of link functions ϕk, which covers most of the nonlinear Hawkes models considered in the
literature [11, 32, 26, 7, 8, 43, 42, 15, 58], such as the ReLU ϕk(x) = (x)+ =max(x,0), clipped expo-
nentials ϕk(x) =min(ex,Λ), the sigmoid ϕk(x) = (1+ e−x)−1, and the softplus ϕk(x) = log(1+ ex). These
models have been notably introduced for neuronal spike-train data modelling, where intense-activity
periods alternate with resting states called refractory periods1. The ReLU function directly extends
the original linear Hawkes model to handle negative interaction functions. In [32, 11] it is called the
standard nonlinear Hawkes model, as it is the closest to the linear Hawkes process. Exponential and
sigmoidal functions appear in several applied works [26, 7], where smoothness, saturation and thresh-
olding effects are desirable properties. The softplus function is often preferred in machine learning
algorithms as a soft approximation of ReLU [42].

The first question to answer is the identifiability of f = (ν,h), which is treated in Section 2.2. Building
on these results, we study posterior concentration rates in terms of the L1-norm on f in Section 3.1.
Our aim is to describe the posterior concentration rates in terms of conditions on the prior Π and on
the true parameter f0 = (ν0 = (νk)k,h0 = (h0

lk)l,k) which are simple to verify and under rather weak

1A refractory period is a time interval during which a neuron is unlikely to emit a spike train.
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assumptions on the link functions. Interestingly, we eventually reduce the problem to conditions on the
prior and the f0 similar to those found in the literature on density and nonlinear regression estimation
(see Theorem 3.2), which makes them easy to verify in a wide range of prior models. From this we
derive convergence rates of Bayesian estimators of f0 (Corollary 3.8) and posterior consistency on δ0
(Theorem 3.9), with δ0 the true graph parameter associated to h0.

We also extend our results to the case where the link functions are partially unknown, in the special
case of shifted ReLU link functions. More precisely we consider models in the form ϕk(x) = θk + (x)+,
with θk > 0 unknown. For such models we show identifiability of the parameters ( f , θ), θ = (θk)1⩽k⩽K
and derive a general posterior concentration rate result similar to Theorem 3.2 on both f and θ.

To the best of our knowledge, these results are the first theoretical properties on the nonparametric
estimation of both f0 and δ0 in the frequentist and Bayesian literature of nonlinear Hawkes processes.
Besides, for partially known link functions, in the particular setting of the shifted ReLU model, we
also provide the first result on the estimation of the additional parameter θ. We note that recently,
computational methods for a related setting have been developed in [65, 66, 40, 64]. In the latter works,
a sigmoidal nonlinear Hawkes model is defined with ϕk(x) = θk(1 + e−x)−1 and unknown parameter
θ = (θk)k. However, although the theoretical analysis of the latter model is beyond the scope of this
paper, it is similar in spirit to our models. In fact, our techniques could potentially be applied to this
multiplicative parametrisation, which we leave for future work.

Our results are related to those of [17], obtained in the case of linear Hawkes processes. However,
the analysis of the process and our proofs for estimating the parameter rely on renewal properties,
newly introduced by [11] in the univariate ReLU nonlinear Hawkes model. One key novelty of our
work is to leverage the concept of excursions in the context of statistical analysis. This concept allows
to decompose the trajectory of the process into independent, observable subintervals, and also to anal-
yse the process on specific events where the parameter estimation is simplified. Developing these tools
for nonlinear processes is fundamental since classical technical arguments used for linear Hawkes pro-
cesses and based on Poisson branching structures cannot be applied in this case. We believe that these
new proof techniques have an interest in themselves, in addition to weakening some of the assumptions
on the prior distribution considered in [17].

The rest of the paper is organised as follows. In Section 2, we define the multivariate stationary
nonlinear Hawkes process, present the identifiability results and describe the Bayesian framework.
Section 3 presents the posterior concentration results on f and θ and consistency on δ results. Section 4
is dedicated to the construction of prior distributions that satisfy the assumptions of the theorems.
The most novel aspects of the proofs are reported in Section 5. Appendix A contains some technical
lemmas. Finally, supplementary proofs and results can be found in the supplementary material [55].

Notations. For a function h, we denote ∥h∥1 =
∫
�
|h(x)|dx the L1-norm, ∥h∥2 =

√∫
�

h2(x)dx the
L2-norm, ∥h∥∞ = sup

x∈�
|h(x)| the supremum norm, and h+ = max(h,0), h− = max(−h,0) its positive and

negative parts. For a K ×K matrix A, we denote r(A) its spectral radius and ∥A∥ its spectral norm. For a
vector u ∈�K , ∥u∥1 =

∑K
k=1 |uk |. The notation k ∈ [K] is used for k ∈ {1, · · · ,K}. For a set B and k ∈ [K],

we denote Nk(B) the number of events of Nk in B and Nk |B the point process measure restricted to

the set B. For random processes, the notation L= corresponds to equality in distribution. We also denote
N(u,H0,d) the covering number of a set H0 by balls of radius u w.r.t. a metric d. For any k ∈ [K], let
µ0

k =�0[λk
t ( f0)] be the mean of λk

t ( f0) under the stationary distribution �0. For a set Ω, its complement
is denoted Ωc. We also use the notations uT ≲ vT if |uT /vT | is bounded when T →∞, uT ≳ vT if |vT /uT |
is bounded and uT ≍ vT if |uT /vT | and |vT /uT | are bounded.
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2. Problem setup

2.1. Definition and stationary distribution

In this section, we first recall the formal definition of a multivariate Hawkes process. We consider a
probability space (X,G,�) and a MPP N = (Nt)t∈� = (N1

t , . . . ,N
K
t )t∈�. Let {Gt}t∈� be the filtration such

that Gt = σ(Ns, s ⩽ t) and for T > 0, we assume that GT ⊂ G. We say that (Nt)t is a multivariate Hawkes
process with parameter f = ((νk)K

k=1, (hlk)K
l,k=1, (θk)K

k=1) adapted to G if

i) almost surely, ∀k, l ∈ [K], (Nk
t )t and (Nl

t )t never jump simultaneously;
ii) for all k ∈ [K], the Gt-predictable intensity process of Nk at t ∈� is given by

λk
t ( f ) = ϕk

νk +

K∑

l=1

∫ t−

−∞
hlk(t − s)dNl

s

 , k = 1, . . . ,K.

We consider finite-memory Hawkes processes for which interaction functions have a bounded support
included in [0,A] with A > 0 known - chosen arbitrarily large in practice. We recall that in (1), if for all
k, ϕk is the identity function and for all l, hlk is non-negative, this PP model corresponds to the classical
linear Hawkes process with parameter ν = (νk)K

k=1 and h = (hlk)K
k,l=1 and intensity process:

λ̃k
t (ν,h) := νk +

K∑

l=1

∫ t−

t−A
hlk(t − s)dNl

s. (2)

With this notation, the nonlinear intensity can be written as λk
t ( f ) = ϕk(λ̃k

t (ν,h)). For a nonlinear
Hawkes process, the existence and uniqueness of a stationary distribution is proved under some as-
sumptions on the parameters f and the link functions ϕ = (ϕk)k. In the following lemma, we provide
two sufficient conditions, which are variants of existing work. We recall that a function ϕ is L-Lipschitz,
if for any (x, x′) ∈�2, |ϕ(x) − ϕ(x′)| ⩽ L|x − x′|.

Lemma 2.1. Let N be a Hawkes process with parameter f and link functions (ϕk)k such that for any
k ∈ [K], ϕk :�→�+ is monotone non-decreasing and L-Lipschitz, with L > 0. If one of the following
conditions is satisfied:

(C1) The matrix S + with entries S +lk = L
∥∥∥h+lk

∥∥∥
1 satisfies r(S +) < 1;

(C2) For any k ∈ [K], ϕk is bounded, i.e., ∃Λk > 0,∀x ∈�, ϕk(x) ⩽Λk.

then there exists a unique stationary version of the process N with finite average.

In the previous lemma, the second stationarity condition (C2) directly comes from Theorem 7 by
[5] and is applied to our (less general) context of Lipschitz and non-decreasing link functions. The first
condition (C1) is obtained in Theorem 1 of [15], in a more restricted Hawkes model where ϕk(x) =
(x)+ and the interaction functions are of the form hlk = Klkg(t) with g ⩾ 0 and Klk ∈ �, but the same
arguments can be applied to prove the stationarity of the process in our more general nonlinear model.
However, in the context of inference, we will consider a slightly stronger condition:

(C1bis) The matrix S + with entries S +lk = L
∥∥∥h+lk

∥∥∥
1 satisfies

∥∥∥S +
∥∥∥ < 1.

From now on, we will assume that we observe on a window [−A,T ] a stationary Hawkes process
with link functions (ϕk)k and true parameters f0 = ((ν0

k)K
k=1, (h

0
lk)K

l,k=1). We denote �0 the stationary
distribution of N and �0(.|G0) its conditional distribution given G0. We note that �0 is a well-defined
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transformation of the probability distribution � (through its alternative definition in Lemma S9.2 [55]).
For f = ((νk)K

k=1, (hlk)K
l,k=1) satisfying the assumptions of Lemma 2.1, the log-likelihood of the processs

on [0,T ] conditionally on G0 (i.e., conditionally on N|[−A,0)) is given by

LT ( f ) :=
K∑

k=1

[∫ T

0
log(λk

t ( f ))dNk
t −

∫ T

0
λk

t ( f )dt
]
.

Then, for any parameter f , we define the conditional distribution � f from the likelihood function

d� f (.|G0) = eLT ( f )−LT ( f0)d�0(.|G0). (3)

We denote �0 (resp. � f ) the expectation associated with �0 (resp. � f ).

2.2. Identifiability of the parameters

In this section, we provide some conditions on the model which ensure that the parameters of the
nonlinear Hawkes model defined in (1) are identifiable. To do so we consider the following weak
assumption.

Assumption 2.2. For f = (ν,h), there exists ε > 0 such that for any k ∈ [K], ϕk restricted to Ik =

(νk −max
l∈[K]

∥∥∥h−lk
∥∥∥∞ − ε, νk +max

l∈[K]

∥∥∥h+lk
∥∥∥∞ + ε) is injective.

Proposition 2.3. Let N be a nonlinear Hawkes process as defined in (1) with link functions (ϕk)k and
parameter f = (ν,h) satisfying the conditions of Lemma 2.1 and Assumption 2.2. If N′ is a Hawkes
processes with the same link functions (ϕk)k and parameter f ′ = (ν′,h′), then if N and N′ have the

same distribution, i.e., N L= N′, then ν = ν′ and h = h′.

Note that if the ϕk’s are injective on �, which holds in particular for the sigmoid and the softplus
functions, then Assumption 2.2 is verified for all f . However our result is more general and also covers
link functions which are only injective on a sub-interval of � such as ReLU or shifted ReLU (ϕk(x) =
θk + max(x,0)) and clipped exponentials (ϕk(x) = min(ex,Λk) ). In this case, Assumption 2.2 holds
over a restricted parameter space for f . More precisely, ϕk needs to be injective over an interval which
includes all the possible values of νk + hlk(s), for any l ∈ [K] and s ∈ [0,A].

Remark 2.4. One consequence of Assumption 2.2 is that for any t > 0 such that N[t − A, t) ⩽ 1, then
λk

t ( f ) > 0 (since ϕk is non-negative and monotone non-decreasing) for all k ∈ [K]. However, Assump-
tion 2.2 still allows to model the refractory periods of biological neurons, i.e., when the neurons cannot
or are very unlikely to fire again during a period after firing. Indeed, one can have λk

t ( f ) very small for
t such that Nk[t − A, t) = 1, depending on f and ϕk.

Proposition 2.3 supports the feasibility of the parameter estimation when the nonlinear functions
ϕk’s are fully known. It can however be extended to the setup where the link functions are partially
known. In the next proposition, we consider the case of ϕk(x) = θk + ψk(x) where ψk is a function such
that lim

x→−∞ψk(x) = 0 and θk ⩾ 0 is an unknown parameter, for each k ∈ [K]. In this case, we denote
λt( f , θ) the intensity process.
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Proposition 2.5. Let N be a Hawkes process with parameter f = (ν,h) and link function ϕk(x; θk) =
θk + ψk(x) with θk ⩾ 0 for any k ∈ [K] satisfying the conditions of Lemma 2.1 and Assumption 2.2. We
also assume that for all k ∈ [K], lim

x→−∞ψk(x) = 0 and

∃l ∈ [K], x1 < x2, such that h−lk(x) > 0, ∀x ∈ [x1, x2]. (4)

Then if N′ is a Hawkes processes with link functions ϕk(x; θ′k) = θ′k + ψk(x), θ′k ⩾ 0 and parameter
f ′ = (ν′,h′),

N L= N′ =⇒ ν = ν′, h = h′, and θ = θ′, θ = (θk)K
k=1, θ′ = (θ′k)K

k=1.

Besides, in this case we have � f [inf
t⩾0

λk
t ( f , θ) = θk] = 1.

The proofs of Propositions 2.3 and 2.5 are reported in Section S7.1 in the supplementary material
[55]. In Proposition 2.5, the condition (4) implies that each component k receives some inhibition (i.e.,
∃l, h−lk , 0). In particular, we will use this condition in the shifted ReLU model where ψk(x) = (x)+.
We note that θk is not identifiable when no inhibition is received by Nk (i.e., when ∀l, h−lk = 0). More
precisely, the following lemma - proved in Section S7.1 in the supplementary material [55] - states that
in a mutually-exciting ReLU model, the parametrisation of the process is not unique. Informally, our
models present a singularity at the parameter “h− = 0”.

Lemma 2.6. Let N be a Hawkes process with parameter f = (ν,h) and link functions ϕk(x; θk) =
θk + (x)+, θk ⩾ 0, k ∈ [K] satisfying Assumption 2.2, and let k ∈ [K]. If ∀l ∈ [K],hlk ⩾ 0, then for any
θ′k ⩾ 0 such that θk + νk − θ′k > 0, let N′ be the Hawkes process driven by the same underlying Poisson
process Q as N (see Lemma S9.2 [55]) with parameter f ′ = (ν′,h′) and link functions ϕk(x; θ′k) =
θ′k + (x)+, k ∈ [K] with ν′ = (ν1, . . . , νk + θk − θ′k, . . . , νK) , ν, h′ = h, and θ′ = (θ1, . . . , θ

′
k, . . . , θK) , θ.

Then for any t ⩾ 0,λk
t ( f , θ) = λk

t ( f ′, θ′), and therefore N L= N′.

2.3. Bayesian inference

We can now present our Bayesian estimation framework. We assume that the observed Hawkes process
N satisfies the conditions of Lemma 2.1, i.e., the link functions ϕk’s are monotone non-decreasing, L-
Lipschitz with L > 0 and either we consider a bounded model ϕk(x) ⩽Λ,∀k,Λ > 0 (condition (C2)) or
we assume

∥∥∥S +0
∥∥∥ < 1 (condition (C1bis)) with S +0 = (L

∥∥∥h0+
lk

∥∥∥
1)l,k∈[K]2 . We define the parameter space

for f = ((νk)K
k=1, (hlk)K

l,k=1) and the functional space as follows. Let

H ′ = {h : [0,A]→�; ∥h∥∞ <∞} , H =
{
h = (hlk)K

l,k=1 ∈H ′K
2
; (h, ϕ) satisfy (C1bis) or (C2)

}
,

F =
{
f = (ν,h) ∈ (�+\{0})K ×H ; f satisfies Assumption 2.2

}
.

We recall that for an unbounded link function, condition (C1bis) corresponds to
∥∥∥S +

∥∥∥ < 1 with S + =
(L

∥∥∥h+lk
∥∥∥

1)l,k∈[K]2 . We also recall that A > 0 is fixed. In the graph estimation problem (see Section 3.2),

the parameter of interest is δ0 ∈ {0,1}K2
where h0

lk = 0 ⇐⇒ δ0
lk = 0. With a slight abuse of notations,

we sometimes write f = ((νk)k, (hlk)l,k)k, (δlk)l,k) with δ ∈ {0,1}K2
.
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Remark 2.7. With ReLU-type link functions, we have H = {h = (hl,k) ∈ (H ′)K2
;
∥∥∥S +

∥∥∥ < 1} and F =
{ f ∈ (�+\{0})K ×H ;

∥∥∥h−lk
∥∥∥∞ < νk, (l, k) ∈ [K]2}. With clipped exponential links ϕk(x) =min(ex,Λk), we

haveH =H ′K2
and F =

{
f ∈�+\{0}K ×H ′K2

; νk +
∥∥∥h+lk

∥∥∥∞ < logΛk, (l, k) ∈ [K]2
}
.

We now define our metric on the parameter space F . For any f = (ν,h), f ′ = (ν′,h′) ∈ F , we define
the following L1-distances:

∥∥∥ν − ν′
∥∥∥

1 =

K∑

k=1

|νk − ν′k |,
∥∥∥h − h′

∥∥∥
1 =

K∑

l=1

K∑

k=1

∥hlk − h′lk∥1, ∥ f − f ′∥1 =
∥∥∥ν − ν′

∥∥∥
1 +

∥∥∥h − h′
∥∥∥

1 .

Finally, we consider a prior distribution Π on F and define the posterior distribution on B ⊂ F as

Π(B|N) =

∫
B exp(LT ( f ))dΠ( f )

∫
F exp(LT ( f ))dΠ( f )

=

∫
B exp(LT ( f ) − LT ( f0))dΠ( f )

∫
F exp(LT ( f ) − LT ( f0))dΠ( f )

=:
NT (B)

DT
, (5)

denoting NT (B) and DT our numerator and denominator of the posterior with the form above.

3. Main results

In this section, we state our most important results on the posterior distribution on the parameter f and
the restriction on the connectivity graph δ, leading respectively to convergence rates and consistency
of some Bayesian nonparametric estimators.

3.1. Posterior concentration rates

We first prove that under mild assumptions on the link functions and the true parameter, we can describe
the posterior concentration rate ϵT with respect to the L1-distance on F defined in Section 2.3, in terms
of standard conditions on the prior. We then consider the case where the link functions ϕk depend
on an unknown parameter, in the special case of shifted ReLU: ϕk(x; θ0

k ) = θ0
k + (x)+, for which we

prove posterior concentration on both f0 and θ0. To do so, we use the following assumption on the true
parameter, which is a strengthening of the identifiability condition in Assumption 2.2.

Assumption 3.1. For f0 = (ν0,h0), we assume that there exists ε > 0 such that for any k ∈ [K], ϕk
restricted to Ik = (ν0

k −max
l∈[K]

∥∥∥h0−
lk

∥∥∥∞ − ε, ν0
k +max

l∈[K]

∥∥∥h0+
lk

∥∥∥∞ + ε) is bijective from Ik to Jk = ϕk(Ik) and its

inverse is L′- Lipschitz on Jk, with L′ > 0. We also assume that one of the two following conditions is
satisfied:

i) For any k ∈ [K], inf
x∈�

ϕk(x) > 0.

ii) For any k ∈ [K], ϕk > 0 and
√
ϕk and logϕk are L1-Lipschitz with L1 > 0 .

The first part of Assumption 3.1, which is a slight strengthening of Assumption 2.2, holds in all
cases described previously. The second part considers two cases: (i) the ϕk’s are lower bounded by a
positive constant, which holds for instance when ϕk(x; θk) = θk + ψk(x) with θk > 0 and ψk ⩾ 0 and (ii)
the ϕk’s can approach 0 but satisfy an additional smoothness condition which holds in particular if the
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derivatives ϕ′k are bounded and the functions logϕk’s are Lipschitz. It is notably the case for the com-
monly used Hawkes models [11, 32, 26, 7, 8, 43, 42], see Example 1 below. Note that this assumption
excludes the standard ReLU function ϕk(x) = (x)+, which we will treat separately in Proposition 3.5.

Example 1. The following nonlinear models verify Assumption 3.1. Let s, t,Λ > 0.

• Positive or shifted ReLU-type functions: ϕ1(x) = max(sx, t) ⩾ t > 0, which is injective on
[t/s,+∞), s-Lipschitz and its inverse on [t,+∞), ϕ−1

1 (x) = s−1x is s−1-Lipschitz.
• Clipped exponential functions: ϕ2(x) = min(esx,Λ), which is injective on (−∞, s−1 logΛ] and

sΛ-Lispchitz. Its inverse on (0,Λ], ϕ−1
2 (x) = s−1 log x is Lipschitz on any compact of (0,Λ]

and
√
ϕ2(x) =

√
min(esx,Λ) = min(esx/2,

√
Λ) and logϕ2 = min(sx, logΛ) are respectively sΛ–

Lispchitz and s-Lipchitz;
• Sigmoid functions: ϕ3(x) = (1 + e−s(x−t))−1, which is injective on � and s-Lipschitz. Its inverse

ϕ−1
3 (x) = t+ 1

s log x
1−x is Lipschitz on any compact of (0,1),

√
ϕ3 is s-Lipschitz and

ϕ′3(x)
ϕ3(x) ⩽ s thus

logϕ3 is s-Lipschitz;
• Softplus functions: ϕ4(x) = log(1 + es(x−t)), which is injective on �, s-Lipschitz and its inverse
ϕ−1

4 (x) = 1
s log(ex − 1) + t is Lipschitz on any compact of �∗+ . Finally

√
ϕ4 and logϕ4 are s-

Lipschitz.

To state our first result, we also define the following neighbourhoods in f0 in supremum and L2-
norms respectively, for B > 0:

B∞(ϵT ) = { f ∈ F ; ν0
k ⩽ νk ⩽ ν

0
k + ϵT , h0

lk ⩽ hlk ⩽ h0
lk + ϵT , (l, k) ∈ [K]2}.

B2(ϵT ,B) = { f ∈ F ; max
k
|νk − ν0

k | ⩽ ϵT , max
l,k
∥hlk − h0

lk∥2 ⩽ ϵT , max
l,k
∥hlk∥∞ < B}.

In particular, B∞(ϵT ) is chosen so that for any f ∈ B∞(ϵT ), k ∈ [K] and t ⩾ 0, the intensities verify
λk

t (ν,h) ⩾ λk
t (ν0,h0). Finally we define

κT = 10(log T )r (6)

with r = 0 if (ϕk)k satisfies Assumption 3.1 (i), r = 1 if (ϕk)k satisfies Assumption 3.1 (ii).

Theorem 3.2. Let N be a Hawkes process with known link functions ϕ = (ϕk)k and parameter f0 =
(ν0,h0) such that (ϕ, f0) satisfy Assumption 3.1. Let ϵT = o(1/

√
κT ) be a positive sequence verifying

log3 T = O(T ϵ2
T ) and Π be a prior distribution on F . We assume that the following conditions are

satisfied for T large enough.
(A0) There exists c1 > 0 such that Π(B∞(ϵT )) ⩾ e−c1T ϵ2

T .

(A1) There exist subsets HT ⊂ H and c2 > 0 such that, with ΥT = {ν = (νk)k, 0 < νk ⩽ ec2T ϵ2
T , ∀k},

Π(Hc
T ) +Π(Υc

T ) = o(e−(κT+c1)T ϵ2
T ).

(A2) There exist ζ0 > 0 and x0 > 0 such that logN (ζ0ϵT ,HT , ||.||1) ⩽ x0T ϵ2
T .

Then, for M > 0 large enough, we have

�0
[
Π
(∥ f − f0∥1 > M

√
κT ϵT

∣∣∣N)]
= o(1). (7)

The proof of Theorem 3.2 is provided in Section 5.2.

Remark 3.3. In Theorem 3.2, if we replace B∞(ϵT ) by B2(ϵT ,B) for some B > 0 in (A0), then the
concentration rate in (7) is

√
log log TκT ϵT instead of

√
κT ϵT . Replacing B∞(ϵT ) by B2(ϵT ,B) can be
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useful for some families of priors, as seen in the case of mixtures of Beta distributions in Section S4.1
in the supplementary material [55].

Remark 3.4. Our concentration rate in (7) holds under the stationary distribution �0, implying in
this case that the “initial condition” N |[−A,0] ⊂ G0 also comes from the stationary law. However, in
practice, one might observe a process on [−A,T ] with an arbitrary distribution on [−A,0]. Under the
conditions of Lemma 2.1, the dynamics of the resulting process are stable (in the sense of Definition
1 of [5]), using the results in [5]. In particular, its distribution �0(.|G0) converges exponentially fast to
the stationary distribution �0. Therefore, we expect that (7) would still hold under �0(.|G0), i.e., under
a more general initial distribution on [−A,0].

An interesting aspect of Theorem 3.2 is that the assumptions on the prior (A0), (A1) and (A2), are
similar to those of simpler estimation problems like density estimation, regression or linear Hawkes
processes. This allows to directly derive explicit forms of the posterior concentration rates in the non-
linear Hawkes model under common families of priors, such as Gaussian processes, hierarchical Gaus-
sian processes, basis expansions or mixture models (see [59, 60, 2, 53] or Section 2.3.2 of [17] ). In
Section 4, we illustrate this using splines and mixture models. Additionally, our Theorem 3.2 avoids
the unpleasant assumption on the prior in Theorem 3 of [17] which requires that for some u0 > 0,
Π(∥S ∥ > 1 − u0(log T )1/6ϵ1/3

T ) ⩽ e−2c1T ϵ2
T . This is thanks to our novel proof techniques using regenera-

tion times under the true model �0 (see Section 5.1).
Theorem 3.2 provides posterior concentration rates for a large class of link functions, as discussed

earlier. In particular, it covers the case of shifted ReLU link functions, i.e, ϕk(x) = θk + (x)+ where
θk > 0 is a baseline rate, which can be arbitrarily small. This link function can be seen as an alternative
to the exponential function with positive baseline rate in [26] In [26], neurons firing rates are modelled
using nonlinear Hawkes processes with a positive link function, which still allows to account for the
refractory periods of neurons (for which the firing rate is small). Moreover, while in the case of the
shifted ReLU model, Theorem 3.2 assumes that the baseline rates θ = (θk)k are known, we show in the
next proposition that we can also estimate θ. Besides, we additionally provide a posterior concentration
result when using the standard ReLU function ϕk(x) = (x)+, under a stronger assumption on the model.
We note that for this latter choice of link function, the intensity function is only non-negative and the
likelihood function is equal to 0 in parts of neighbourhoods of h0, which causes several issues in the
control of the Kullback-Leibler divergence.

Before stating our results, we define neighbourhoods in θ0, also in supremum and L2-norms, respec-
tively BΘ∞(ϵT ) = {θ ∈ Θ; ∥θ − θ0∥∞ ⩽ ϵT } and BΘ2 (ϵT ,B) = {θ ∈ Θ; ∥θ − θ0∥2 ⩽ ϵT }, and in this case we
define κT = 10(log T )r with r = 0 in the shifted ReLU model (Case 2 of the following proposition) and
r = 2 in the standard ReLU model (Case 1).

Proposition 3.5. Let N be a nonlinear Hawkes process with link functions (ϕk)k and parameter f0 =
(ν0,h0) satisfying Assumption 2.2. Let ϵT = o(1/

√
κT ) be a positive sequence verifying log3 T =O(T ϵ2

T )
and Π be a prior distribution on F .

• Case 1 (Standard ReLU): ϕk(x) = (x)+, for all k ∈ [K]. Under the Assumptions (A0), (A1) and
(A2) of Theorem 3.2, if f0 verifies the following additional assumption

lim sup
T→∞

1
T
�0


∫ T

0

1λk
t ( f0)>0

λk
t ( f0)

dt
 < +∞, k ∈ [K], (8)

then for M > 0 large enough, (7) holds.
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• Case 2 (Shifted ReLU with θ0 unknown): ϕk(x; θ0
k ) = θ0

k + (x)+, θ0
k > 0, for all k ∈ [K]. Let Πθ

be a prior distribution on Θ = {θ = (θk)k; θk > 0}. If the Assumptions (A0), (A1) and (A2) of
Theorem 3.2 are satisfied when replacing B∞(ϵT ) by B∞(ϵT ) ∩ BΘ∞(ϵT ) for T large enough, and
if (4) is verified, then for M > 0 large enough,

�0

[
Π
( ∥ f − f0∥1 + ∥θ − θ0∥1 > M

√
κ′T ϵT

∣∣∣N)]
= o(1).

Remark 3.6. In Case 1 of Proposition 3.5 only, B∞(ϵT ) cannot be replaced by B2(ϵT ) in assumption
(A0). This is due to the fact that we need to consider parameters f such that the likelihood at f is
positive (i.e., exp(LT ( f )) > 0) in order to control the Kullback-Leibler divergence (see Lemmas S6.1,
S6.3 and A.2). In this argument, we also need the additional assumption (8). The latter is a non trivial
condition on the intensity of the true model, which we do not expect to hold in many situations. For
instance it does not hold if λ̃t( f0) is Lipschitz in a neighbourhood of t such that λ̃t( f0) = 0. We expect
that this can happen with significant probability as soon as one interaction functions h0

lk is Lipschitz and
h0−

lk is non-null. It is however not clear if this condition is sharp, i.e., if Bayesian or other likelihood-
based methods would be suboptimal without this assumption (from our construction of tests, it is easy
to construct frequentist estimates of f which converge at the rate

√
ϵT defined by the testing condition

in [28]). This also motivates the study of the shifted ReLU model, as an alternative of interest for
modelling positive intensity functions. Nonetheless, in Lemma 4.3, we provide sufficient conditions in
a finite-histogram model so that (8) holds. Finally, we note that using Theorem 1.2 of [11] and notation

τ1, τ2 for the regeneration times defined in Lemma 5.1, (8) is equivalent to �0

(∫ τ2
τ1

1
λk

t ( f0)>0

λk
t ( f0)

dt
)
< +∞.

Remark 3.7. In Theorem 3.2, we in fact obtain the posterior concentration rate on ((ϕk(νk))k,h), i.e.,

�0

Π

∑

k

|ϕk(νk) − ϕk(ν0
k)| + ∥h − h0∥1 > M

√
κT ϵT

∣∣∣N


 = o(1),

for M a large enough constant. Moreover, if the ϕk’s are partially known of the form ϕk(x; θk) =
θk + ψ(x) where θk ⩾ 0 and ψ is given, then we obtain

�0

Π
( ∥h − h0∥1 +

∑

k

|θk + ψ(νk) − θ0
k − ψ(ν0

k)| > M
√
κT ϵT

∣∣∣N)
 = o(1).

In the next corollary, we deduce from the previous results the convergence rate of the posterior means

(ν̂, ĥ) =�Π[ f |N] =
∫

F
f dΠ( f |N), and θ̂ =�Π[(θ)|N] when θ0 is unknown (in the shifted ReLU model).

Corollary 3.8. Under the assumptions of Theorem 3.2 or Case 1 of Proposition 3.5, if
∫
F ∥ f ∥1 dΠ( f ) <

+∞, then for M > 0 large enough, it holds that

�0
[
∥ν̂ − ν0∥1 + ∥ĥ − h0∥1 > M

√
κT ϵT

]
= o(1).

Under the assumptions of Case 2 of Proposition 3.5, we have

�0
[
∥ν̂ − ν0∥1 + ∥ĥ − h0∥1 + ∥θ̂ − θ0∥1 > M

√
κT ϵT

]
= o(1).

The proofs of Theorem 3.2 and Proposition 3.5 are given in Sections 5.2 and 5.3, and the proof of
Corollary 3.8 is reported in Section S3 in the supplementary material [55].
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3.2. Consistency on the connectivity graph

In this section, we state our consistency results on the connectivity or Granger causality graph δ ∈
{0,1}K2

, which characterises the fact that interaction functions between pairs of dimensions are null
or not, i.e., δlk = 0 ⇐⇒ hlk = 0, (l, k) ∈ [K]2. We note that the definition of Granger causality graph
for the linear Hawkes model (see for instance Definition 3.3 in [20]) also holds for the nonlinear
model. This leads us to consider the following hierarchical spike-and-slab prior structure. Writing
hlk = δlkhlk = δlkS lkh̄lk, with S lk = ∥hlk∥1 and h̄lk such that

∥∥∥h̄lk
∥∥∥

1 = 1, we define a family of priors:

δ ∼ πδ, I(δ) = {(l, k) ∈ [K]2; δlk = 1},
(hlk, (l, k) ∈ I(δ))|δ ∼Πh|δ(·|δ) and ∀(l, k) < I(δ), hlk = 0, (9)

with πδ a probability distribution on {0,1}K2
. We can either determineΠh|δ as a distribution on the set of

(hlk, (l, k) ∈ I(δ)) and obtain the marginal distribution of S = (S lk)lk, or construct it as in [17] - see also
the prior construction in Section 4. Adapting (A0) to the above structure, we recall that δ0 corresponds
to the true connectivity parameter and we consider the following assumption

(A0’) Π(B∞(ϵT )|δ = δ0) ⩾ e−c1T ϵ2
T /2, πδ(δ = δ0) ⩾ e−c1T ϵ2

T /2.

For instance, one can choose πδ = B(p)K2
with 0 < p < 1, implying that the δlk’s are i.i.d. Bernoulli

random variables. Then for any fixed p, (A0’) is verified as soon as Πh|δ(B∞(ϵT )|δ = δ0) ⩾ e−c1T ϵ2
T /2

holds. This formalism allows us to consider the posterior distribution of δ which is a key object to infer
the connectivity graph. The next theorem is our posterior consistency result, which is a consequence of
Theorem 3.2 and Proposition 3.5 and holds for all previously considered link functions ϕ.

Theorem 3.9. Let N be a Hawkes process with function ϕ = (ϕk)k and parameter f0 = (ν0,h0), ϵT =
o(1/

√
κT ) be a positive sequence and Π be a prior distribution on F satisfying the conditions of

Theorem 3.2 or Proposition 3.5 (replacing (A0) by (A0’)). Then,

�0
[
Π(δlk , δ0

lk, ∀(l, k) ∈ I(δ0)|N)
]
= o(1), I(δ0) = {(l, k) ∈ [K]2; δ0

lk = 1}. (10)

If in addition the following holds

∀δ ∈ {0,1}K2
, ∀C > 0, ∀(l, k) ∈ I(δ)∩I(δ0)c, Πh|δ (S lk ⩽CϵT |δ ) = o

(
e−(κT+c1)T ϵ2

T

)
, (11)

with c1 > 0 defined in (A0’), then �0 [Π(δ , δ0|N)] = o(1).

The first part of Theorem 3.9 in (10) is directly obtained from Theorem 3.2 or Proposition 3.5 (Cases
1 and 2) and says that the posterior probability of δlk = 1 converges to 1, if the edge l→ k is in I(δ0),
i.e., δ0

lk = 1. The second and more difficult part of Theorem 3.9 is to infer a non-edge δ0
lk = 0. The

condition (11) forces the conditional prior distribution Πh|δ to be exponentially small around 0 for all
hlk such that δlk = 1. We note that it also implies that if h0

lk , 0 and is small, then it may not be detected
nor estimated properly. In Section 4, we present two common families of priors on the S lk’s that verify
(11).

Interestingly, if the model is more constrained, a much weaker condition on the prior distribution on
S lk is required which avoids this issue on the estimation of small “signals” h0

lk. We now consider two
restricted Hawkes models, where the interaction functions are either all the same, or only depend on
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the “receiver” node. For simplicity of exposition, we consider the case of fully known link functions
satisfying the assumptions of Theorem 3.2, however our next proposition remains valid for the ReLU
and shifted ReLU models under the assumptions of Proposition 3.5.

• All-equal model: we assume that ∀(l, k) ∈ [K]2, hlk = δlkh̃, with h̃ ∈ H ′ so that F = { f =
(ν, δ, h̃) ∈ �+\{0}K × {0,1}K2 × H ′; ( f , ϕ) satisfy (C1bis) or (C2) and Assumption 3.1}. When
δ , 0, then h̃ ∼Πh̃ is a probability distribution onH ′ ∩ {h̃ , 0}.
• Receiver node dependent model: we assume that ∀(l, k) ∈ [K]2,hlk = δlkhk with hk ∈ H ′, so

that F = { f = (ν, δ, (hk)k); hk ∈ H ′, ∀k, ( f , ϕ) satisfy (C1bis) or (C2) and Assumption 3.1}. We
also assume that the prior distribution Π can be written as a product of priors (Πk)k where for
each k, Πk is a distribution on (νk,hk, δlk, l ∈ [K]), restricted to F . We denote δ·k = (δlk, l ∈ [K]).

Proposition 3.10. We consider a restricted Hawkes model either defined above as the All-equal
model or as the Receiver node dependent model. Let N be a Hawkes process with function ϕ = (ϕk)k
and parameter f0 = (ν0,h0) and let Π be a prior distribution on F such that the prior on ν has positive
and continuous density wrt the Lebesgue measure. We also assume that there exists 0 < p1 < 1/2 such
that for any (l, k) ∈ [K]2, p1 ⩽Π(δlk = 1) ⩽ 1 − p1.

• In the All-equal model:

1. If there exists (l, k) ∈ [K]2 such that δ0
lk , 0, then if Πh̃(h0 ⩽ h̃ ⩽ h0 + ϵT ) ⩾ e−c1T ϵ2

T /2 and if
(A1), (A2) hold, then �0 [Π(δ , δ0|N)] = o(1).

2. If δ0 = 0, then if there existsHT ⊂H such that for all δ , 0, Πh|δ(Hc
T |δ) = o(T−K/2), if (A2)

holds with ϵT =
√

log T/T, and if

∀C > 0, Πh̃

(
0 < ∥h̃∥1 ⩽C

√
log T/T

)
= o((log T )−K/2), (12)

then �0 [Π(δ , 0|N)] = o(1).

• In the Receiver node dependent model: under (A0’), (A1), (A2), for any k ∈ [K],

1. If there exists l ∈ [K] such that δ0
lk , 0, then �0

[
Π(δk1k , δ0

k1k |N)
]
= o(1), ∀k1 ∈ [K].

2. If δ0
·k = 0, if there exists H̃T ⊂ H1 such that Πk(H̃T

c
) = o(T−K/2), and if for M > 0 large

enough and x0 > 0, ζ0 > 0,

N
(
ζ0M

√
log T/T , H̃T , ||.||1

)
⩽ T x0 M ,

and if (12) holds with hk instead of h̃, then �0
[
Π(δ·k , δ0

·k |N)
]
= o(1).

Consequently, in those restricted Hawkes models, the above proposition states that the posterior
distribution is consistent at δ0 under the much weaker assumption(12) on the prior compared to (11)
of Theorem 3.9. In fact, in the All-equal model (resp. the Receiver node dependent model), if the
true graph has no edge (resp. no edge arriving on node k), then the posterior distribution on h (resp. hk)
concentrates at the paranetric rate

√
log T/T . This gives a sharp lower bound on the marginal density

of N, i.e., on the denominator DT in (5). We note that (12) is a mild condition which is verified in
particular when the prior distribution on S̃ = ∥h̃∥1 (resp. S k = ∥hk∥1) conditionally on S̃ , 0 (resp.
S k , 0) has a density wrt the Lebesgue measure bounded by S̃ −a (resp. S −a

k ) with a > 0 near 0.
We now study the consistency of Bayesian estimators of the connectivity graph. From Theorem 3.9

or Proposition 3.10, we can directly obtain that the graph estimator based on the 0 − 1 loss function
defined as δ̂Πlk(N) = 1 ⇐⇒ Π(δlk = 1|N) > Π(δlk = 0|N), is consistent, i.e., �0

[
δ̂Π(N) , δ0

]
= o(1).
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This result is obtained with the prior condition (11) in the non-restricted model, which as previously
explained can deteriorate the inference of small and non-null interaction functions. We thus propose an
alternative graph estimator based on a loss function penalising small signals, which therefore allows us
to use prior distributions which do not verify (11). For any graph estimator δ̂ = (δ̂lk)l,k ∈ {0,1}K2

and
parameter f = (ν,h, δ) ∈ F , we define

L(δ̂, f ) =
K∑

l,k=1

1δ̂lk=01δlk=1 + 1δ̂lk=1
(
1δlk=0 + 1δlk=1F(∥hlk∥1)

)
,

with F :�+→ [0,1] a monotone non-increasing function, with F(0) = 1. For a prior Π, the risk of the
estimator δ̂ is defined as

r(δ̂,Π|N) =
∫

F
L(δ̂, f )dΠ( f |N) =

∑

l,k

1δ̂lk=0Π(δlk = 1|N) + 1δ̂lk=1

[
Π(δlk = 0|N) +�Π(1δlk=1F(∥hlk∥1)|N)

]
.

Then the associated risk-minimising estimator, δ̂Π,L(N) = arg min
δ∈{0,1}K2

r(δ,Π|N), verifies

δ̂Π,Llk (N) = 1 ⇐⇒ �Π[(1 − F(∥hlk∥1))1δlk=1|N] ⩾Π(δlk = 0|N). (13)

In the next theorem, we prove that our estimator δ̂Π,L(N) is consistent under the true model �0 if the
penalisation function F satisfies an exponential condition.

Theorem 3.11. Let N be a Hawkes process with function ϕ = (ϕk)k and parameter f0 = (ν0,h0),
ϵT = o(1/

√
κT ) be a positive sequence and Π be a prior distribution on F satisfying the conditions of

Theorem 3.2 or Proposition 3.5 (replacing (A0) by (A0’)). Then, if there exists a > 0 such that

0 ⩽ 1 − F(M
√
κT ϵT ) ⩽ e−(c1+a+κT )T ϵ2

T , (14)

for T large enough and with M > 0 defined in Theorem 3.2, then for any (l, k) ∈ I(δ0) such that 1 −
F(

∥∥∥h0
lk

∥∥∥
1) ⩾ 2e−(κT+c1)T ϵ2

T , we have �0
[
δ̂Π,L(N) , δ0

]
= o(1).

Remark 3.12. The assumption on the penalisation function (14) is verified in particular if (i) F is
truncated, i.e., F(x) = 1[0,ϵ](x) for some (arbitrarily small) ϵ > 0, or if (ii) F is exponentially decreasing
around 0, i.e., F(x) = 1− exp{− 1

xp } with p > 1/β if ϵT = T−β/2β+1(log T )q for some q ⩾ 0 (see Corollary
4.2 for instance). We note that the choice of penalisation function F determines the detection level of
our risk-minimising graph estimator for “small signals”. With (i), we will detect “signals” ∥h0

lk∥1 > ϵ
and with (ii), we can detect ∥h0

lk∥1 > T−(p(2β+1))−1
. We also note that this assumption is related to (11),

however, since it applies on the penalisation function F and not on the prior distribution, it does not
alter the posterior distribution, thus the estimation of ν0 and h0.

The proofs of Theorem 3.9, Proposition 3.10 and Theorem 3.11 can be found respectively in Section
5.4, Section S2.2 in the supplementary material [55] and Section 5.5.

4. Prior models

In this section, we construct prior distributions Π that satisfy the assumptions of our main results stated
in Section 3 and obtain explicit posterior concentration rates for Hölder-smooth classes of interaction
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functions. For ease of exposition, we consider link functions ϕk’s injective on (mk,Mk), with mk,Mk ∈
�∪ {−∞,+∞}.

First, we consider a prior on ν = (νk)k of the form: νk
i.i.d.∼ πν(νk |(hlk)l∈[K])) ∝ πν(νk)1(mk ,Mk)(νk) with

πν a positive and continuous probability density on (0,+∞). To verify (A1), we can for instance choose
πν such that πν(νk > x) ⩽ x−a with a > 1. Then it is enough to choose c2 such that c2 > (κT + c1)/a.
Moreover in Case 2 of Proposition 3.5 (i.e., shifted ReLU with unknown shift θ0), we consider a prior
on θ such that θk

i.i.d.∼ πθ with πθ a density wrt the Lebesgue measure on (0,+∞).
For the prior on h, we consider the hierarchical structure (9) introduced in Section 3.2 and for the sake

of simplicity we assume that δlk
i.i.d.∼ B(p), ∀(l, k) ∈ [K]2, p ∈ (0,1), although as previously mentioned,

more general priors on δ could be considered. We recall that I(δ) = {(l, k) ∈ [K]2; δlk = 1}. We then
consider two parametrisation setups. In the first one, h = (hlk, (l, k) ∈ I(δ)) is drawn from a truncated
distribution of the form

dΠh(h|δ) ∝ dΠ⊗|I(δ)|
h (h)1∥S +∥<1(h), (15)

or simply dΠh(h|δ) ∝ dΠ⊗|I(δ)|
h (h) in the case of a bounded link function (condition (C2)), where Πh is

a prior distribution on one function. In the second parametrisation setup,

hlk = S lkh̄lk,
∥∥∥h̄lk

∥∥∥
1 = 1, [h̄lk |(l, k) ∈ I(δ)] i.i.d.∼ Πh̄, S |δ ∼ΠS |δ, (16)

withΠh̄ is a prior distribution on one L1-normalised function andΠS |δ is a prior distribution on matrices
with non-zero entries δ and, under (C1bis), satisfying

∥∥∥S +
∥∥∥ < 1.

Examples of the parametrisation setup (15) are Gaussian processes (or hierarchical Gaussian pro-
cesses) priors, and prior distributions based on an expansion on some basis, such as Legendre, Fourier,
wavelets, splines, etc. As mentioned earlier, the prior assumptions (A0)-(A2) are very common in the
literature, which allows to directly apply existing results, as we illustrate on spline priors in Section
4.1. In [17], a similar construction is provided using a mixture of Betas distributions in the linear
Hawkes model, which leads to the minimax rate of assumption up to a logarithmic factor. We report
this construction in the nonlinear model in Section S4.1 in the supplementary material [55] and obtain
the same estimation rate up to logarithmic terms. The difficulty in this parametrisation might be to
prove condition (11) in Theorem 3.9 for estimating the connectivity graph. In Section 4.2, we illustrate
the second parametrisation setup (16) with random histogram priors, which is a setup where condition
(11) can be more easily verified. We also consider a prior based on mixtures of Beta distributions in
the supplementary material [55]. We denoteH(β,L0) the class of β-smooth functions with radius L0.

4.1. Spline priors for Πh

A nonparametric prior Πh satisfying the assumptions of Theorem 3.2 can be constructed using the
family of splines or free knot splines. Without loss of generality, we assume that A = 1. For J ⩾ 1, let
t0 = 0 < t1 < · · · < tJ = 1 define a partition of [0,1] and I j = (t j−1, t j), j ∈ [J]. We consider splines of
order q ⩾ 0, i.e., piecewise polynomial functions (on the partition) of degree q and for q ⩾ 2, q−2 times
continuously differentiable. For a given partition, this defines a vector space of dimension V = q+ J−1
(see for instance [54, 27]).

For the sake of simplicity, we present the construction of regular partitions, where t j = j/J, however
random partitions can be dealt with following the computations of Section 2.3.1 of [17]. Let B =
(B1, · · · ,BV ) be the B-spline basis of order q, as defined in [27]. Recall that for any j ∈ [V], B j has
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support included in an interval of length q/J, B j ⩾ 0 and
∑

j B j(x) = 1 for all x ∈ [0,1]. We can then
define

hw,J(x) = wT B(x), w ∈�V , J ∼ P(λ),

where P(λ) is the Poisson distribution with mean λ, and consider the following hierarchical construc-
tion of Πh

w j
i.i.d.∼ πw, 1 ⩽ j ⩽ V = q + J − 1, (17)

with πw a positive and continuous density on � satisfying πw(x) ≲ e−a1 |x|a2 for some a1,a2, λ > 0.
Using Lemma 4.1 of [27], if h0 is H(β,L0) for some β ⩽ q and L0 > 0, then setting JT =

J0(T/ log T )1/(2β+1), ϵT = (T/ log T )−β/(2β+1), there exist w0 ∈ �VT , VT = q + JT − 1 and C > 0 such
that ∥h0 − hw0,JT ∥∞ ⩽CϵT . Moreover using Lemma 4.2 and Lemma 4.3 of [27], we have ∥w0∥∞ ⩽C0,
for some C0, and obtain that {w ∈�VT , ∥w−w0∥∞ ⩽ ϵT } ⊂ B∞(ϵT ), which leads to (A0). Similarly, from
Lemma 4.2 of [27], ∥hw,J − hw′,J∥1 ≲ ∥w−w′∥∞ and withHT = {hw,J ; ∥w∥∞ ⩽ T B0 , J ⩽ J1JT } for some
B0 > 0 and J1 > 0, (A1) and (A2) are also verified. We finally obtain the following result.

Corollary 4.1. Let N be a Hawkes process with link functions ϕ = (ϕk)k and parameter f0 = (ν0,h0)
such that (ϕ, f0) verify the conditions of Lemma 2.1, and Assumption 3.1. Under the above spline prior,
if for any (l, k) ∈ [K]2,h0

lk ∈ H(β,L0) with β ∈ (0,q + 1] and L0 > 0, then for M > 0 large enough, we
have

�0
[
Π
(∥ f − f0∥1 > M

(
T/ log T

)−β/(2β+1) (log T )q0
∣∣∣N)]
= o(1),

where q0 = 0 if ϕ verifies Assumption 3.1(i) and q0 = 1/2 if ϕ verifies Assumption 3.1(ii).

To estimate the connectivity graph δ0, one can either use the penalised estimator (13), which from
the above computations and Corollary 3.11 is consistent, or use the estimator based on the 0-1 loss
function if (11) can be verified. In the next section, we consider a prior based on random histograms
and illustrate how the latter condition (11) can be satisfied.

4.2. Random histograms prior

Random histograms are a special case of splines with q = 0. These piecewise constant functions are of
particular interest in the modelling of spike trains emitted by biological neurons, which only interact on
certain time periods. We use a similar construction as in Section 2.3.1. of [17], however here the inter-
action functions are no longer restricted to be non-negative. Using parametrisation (16), the interaction
function hlk for (l, k) ∈ I(δ) has the form hlk = S lkh̄lk and the h̄lk’s are independent and distributed as a
random histogram h̄w,t defined as follows. Given a partition t : 0 = t0 < t1 < · · · < tJ = 1, we define

h̄w,t(x) =
J−1∑

j=0

w j

t j+1 − t j
1(t j−1,t j],

J−1∑

j=0

|w j| = 1, J ∼ P(λ), λ > 0.

Similarly to [17], the prior on (|w1|, · · · , |wJ |) is constructed by first selecting the non-zero coefficients
w j’s, then defining a Dirichlet prior on the vector of non-zero |w j|’s, and finally sampling the sign of
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the w j’s. Hence,

∀ j ∈ [J], w j = Z ju j, Z j ∈ {−1,0,1}, u j ⩾ 0,
J∑

j=1

u j = 1,

and u j = 0 if Z j = 0. We can consider Z j
i.i.d.∼ Multinomial(p−1, p0, p1), with p−1 + p0 + p1 = 1, and

given (Z1, · · · ,ZJ), (ui1 , · · · ,uisz ) ∼ D(asz , · · · ,asz ), sz =
∑

j |Z j|, where i1, · · · , isz are the indices of
the non zero Z j’s and α−1, α0, α1,asz > 0. Finally if the partition t is random, we consider a Dirichlet
prior D(α, · · · , α) on (t1, t2 − t1, · · · ,1 − tJ−1). We note that this construction is very similar to Section
2.3.1 of [17], and we therefore obtain the same results as in Corollaries 2 and 3 of [17].

Besides, to estimate the connectivity graph using the 0-1 loss (and to establish our posterior consis-
tency result), we can now verify (11). This condition holds if, with dΠS |δ =

∏
(l,k)∈I(δ) dΠS (S lk)1∥S +∥<1

(under (C1bis)), ΠS has a positive and continuous density πS on either [ϵ,1] if S 0
lk > ϵ, or if the density

near 0 verifies

πS (sp) ∝ s−p(α−1) exp(−a/sp)1[0,1](s), p > β, a > 0.

We now present a corollary of Theorem 3.2 in the case of random histograms with random partitions,
which is proved as in [17].

Corollary 4.2. Let N be a Hawkes process with link functions ϕ = (ϕk)k and parameter f0 = (ν0,h0)
such that (ϕ, f0) verify Assumption 3.1. Under the above random histogram prior, if for any (l, k) ∈
[K]2,h0

lk ∈H(β,L0) with β ∈ (0,1] and L0 > 0, then for M large enough, we have

�0
[
Π
(∥ f − f0∥1 > M(T/ log T )−β/(2β+1)(log T )q

∣∣∣N)]
= o(1),

where q = 0 if ϕ verifies Assumption 3.1(i), and q = 1/2 if ϕ verifies Assumption 3.1(ii).

Finally, in the case of the ReLU model (Proposition 3.5), we can also verify (8), in special case of
the true parameter f0 = (ν0,h0) where each h0

lk lie in the space of finite histograms.

Lemma 4.3. Let N be a nonlinear Hawkes process with parameter f0 = (ν0,h0) and ReLU link func-
tions ϕk(x) = (x)+,∀k, satisfying Assumption 2.2 (and condition (C1bis)). If for all (l, k) ∈ [K]2, there
exists J0 ∈�∗ such that h0

lk(t) =
∑J0

j=1ω
lk
j01I j (t), with {I j}J0

j=1 a partition of [0,1] and ∀ j ∈ [J0], ωlk
j0 ∈�,

then (8) holds.

Remark 4.4. In the previous lemma, the condition that the weights wlk
j0, (l, k) ∈ [K]2, j ∈ [J] are ra-

tional numbers is a technical argument that allows to find a lower bound on λ̃k
t ( f0) when λk

t ( f0) > 0.
This results from a density argument of the linear combinations of the weights, which, under these
conditions, constrains λk

t ( f0) to take values on a lattice. Besides, we note that our result is in fact more
general and applies to any model with Lipschitz link functions such that minx∈� ϕk(x) = 0.

Lemma 4.3 is proved in Section S4.2 in the supplementary material [55].

5. Proofs

In this section, we report the proofs of our main theorems on the posterior concentration properties
(Theorems 3.2 and Proposition 3.5), and on the estimation of the connectivity graph (Theorems 3.9
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and 3.11). Instead of using the clustering structure of linear Hawkes processes like in [17] or a cou-
pling technique like in [8], these proofs leverage the renewal properties of nonlinear Hawkes processes
notably studied by Costa et al. in [11]. The novelty of our proofs lies in the selection of parts or special
“excursions”, that allow us to estimate the parameter at a rate equivalent to the one for a linear Hawkes
process. In the following section, we first recall the definitions of the concept of excursions and some
properties of the process’ renewal times.

5.1. Renewal times and excursions

In the following lemma, we introduce the concept of excursions for stationary nonlinear Hawkes pro-
cesses verifying the conditions of Lemma 2.1. This result extends the ones of Costa et al. in [11] to the
multivariate case under condition (C1bis) of Lemma 2.1 and to bounded models (condition (C2)).

Lemma 5.1. Let N be a Hawkes process with monotone non-decreasing and Lipschitz link functions
ϕ = (ϕk)k and parameter f = (ν,h) such that (ϕ, f ) verify (C1bis) or (C2). Then the point process
measure Xt(.) defined as

Xt(.) = N |(t−A,t], (18)

is a strong Markov process with positive recurrent state ∅. Let {τ j} j⩾0 be the sequence of random times
defined as

τ j =


0 if j = 0;
inf

{
t > τ j−1; Xt− , ∅, Xt = ∅

}
= inf

{
t > τ j−1; N |[t−A,t) , ∅, N |(t−A,t] = ∅

}
if j ⩾ 1.

Then, {τ j} j⩾0 are stopping times for the process N. For T > 0, we also define

JT =max{ j ⩾ 0; τ j ⩽ T }. (19)

The intervals {[τ j, τ j+1)}JT−1
j=0 ∪ [τJT ,T ] form a partition of [0,T ]. The point process measures

(N |[τ j,τ j+1))1⩽ j⩽JT−1 are i.i.d. and independent of N|[0,τ1) and N |[τJT ,T ]; they are called excursions and
the stopping times {τ j} j⩾1 are called regenerative or renewal times.

The proof of the previous lemma is omitted since it is a fairly direct multivariate extension of some
elements of Proposition 3.1, Proposition 3.4, Theorem 3.5 and Theorem 3.6 in [11], recalled in Sec-
tion S9 in the supplementary material [55]. For the extension to bounded models, we use a direct
consequence of the results in Costa et al. [11] that if N is dominated by a homogeneous Poisson point
process, then it also have the regenerative properties of Lemma 5.1. We also note that since A is known,
the renewal times τ j’s are observable. In the rest of this article, we denote

∆τ1 = τ2 − τ1, (20)

the length of a generic excursion. For any link functions ϕk’s and parameter f = (ν,h), we denote r f the
value of the intensity process at the beginning of each excursion, defined as

r f = (r f
1 , . . . , r

f
K), r f

k = ϕk(νk), k ∈ [K]. (21)

In the next two lemmas, we prove some useful results on the distributions of ∆τ1, on the number of
points in a generic excursion N[τ1, τ2) and on the number of excursions in the observation window
[−A,T ], JT , defined in (19).
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Lemma 5.2. Under the assumptions of Lemma 5.1, the random variables ∆τ1 and N[τ1, τ2) admit
exponential moments. More precisely, under condition (C1bis), with m =

∥∥∥S +
∥∥∥ < 1, we have

∀s <min(
∥∥∥r f

∥∥∥
1 , γ/A), � f

[
es∆τ1

]
⩽

1 +m
2m

, and � f
[
esN[τ1,τ2)

]
< +∞, γ =

1 −m

2
√

K
log

(
1 +m

2m

)
.

Under condition (C2), we have ∀s < minkΛk), � f
[
es∆τ1

]
⩽

∥Λ∥21
(mink Λk−s)2 and � f

[
esN[τ1,τ2)

]
< +∞. In

particular, this implies that � f
[
N[τ1, τ2) + N[τ1, τ2)2

]
< +∞.

Remark 5.3. The previous lemma provides exponential moments of ∆τ1 and N[τ1, τ2), under the
assumption that

∥∥∥S +
∥∥∥ < 1 (C1bis), but we conjecture that results of Lemma 5.2 still holds under the

more general conditions r(S +) < 1 (C1) of Lemma 2.1.

Lemma 5.4. Under the assumptions of Lemma 5.1, for any β > 0, there exists a constant cβ > 0 such
that � f

[
JT < [JT,β,1, JT,β,2]

]
⩽ T−β, with JT defined in (19) and

JT,β,1 =


T

� f [∆τ1]

1 − cβ

√
log T

T


 , JT,β,2 =


T

� f [∆τ1]

1 + cβ

√
log T

T


 .

The proofs of Lemmas 5.2 and 5.4 are reported in Section S7.2 in the supplementary material [55].

5.2. Proof of Theorem 3.2 and Case 1 of Proposition 3.5

In this section, we prove our main posterior concentration theorem, Theorem 3.2, as well as Case 1
of Proposition 3.5, which deals with the specific case of the standard ReLU model. The first step of
this proof borrows some ideas from the one of Theorem 3 in [17], but also introduces novel elements
built from the renewal properties of the process. In particular, the posterior concentration is first proved
in terms of a particular distance on the intensity process (see Proposition 5.5 below), which in fact
corresponds to a stochastic (pseudo) distance on the parameter space F . This stochastic distance d̃1T
resembles the L1 stochastic distance used in [17], except that it is restricted to a subset of the obser-
vation window [−A,T ] which only contains the beginning of each excursion. More precisely for any
excursion index j ∈ [JT − 1], we denote (U(1)

j ,U(2)
j ) the times of the first two events after the j-th re-

newal time τ j (as defined in Lemma 5.1). We note that by definition, U(1)
j ∈ [τ j, τ j+1), U(2)

j ∈ [τ j, τ j+2]

and τ j+1 ⩾U(1)
j + A. We then define our restricted observation window A2(T ) as

A2(T ) :=
JT−1⋃

j=1

[τ j, ξ j], (22)

with ξ j :=U(2)
j if U(2)

j ∈ [τ j, τ j+1) and ξ j := τ j+1 otherwise. We note that the interval [τ j, ξ j] corresponds
either to the beginning of the j-th excursion or to the whole excursion [τ j, τ j+1) when the latter contains
only one event, implying that U(2)

j ⩾ τ j+1. Moreover, since the renewal times (and JT ) are observable,
so is A2(T ).

The construction of A2(T ) is a novel and essential element of our proof. Informally, it corresponds
to a set of intervals where the parameters can be inferred in a similar way as in the linear Hawkes
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model and which Lebesgue measure is of order T . More precisely, using the renewal properties from
Section 5.1, we will prove, using Lemma A.1, that with probability going to 1, |A2(T )| ≳ T under �0.
We can now define our auxiliary stochastic distance as

d̃1T ( f , f ′) =
1
T

K∑

k=1

∫ T

0
1A2(T )(t)|λk

t ( f ) − λk
t ( f ′)|dt, (23)

and state our intermediate posterior concentration rate result, which holds for all models satisfying the
conditions of Theorem 3.2 and the ReLU-type models considered in Proposition 3.5.

Proposition 5.5. Under the assumptions of Theorem 3.2 or Proposition 3.5, for M′T = M′ √κT with
M′ > 0 a large enough constant,

�0
[
Π(d̃1T ( f , f0) > M′T ϵT |N)

]
= o(1).

The proof of the previous proposition follows the strategy of [17] in Theorem 1, which is based
on the now well-known argument by [28]. However, we note that in our setting, this strategy can be
applied thanks to the definition of the stochastic distance which restricts the observation window to the
set A2(T ). We recall here its main steps. First, we restrict the space of probability events to a subset
Ω̃T that has high probability (see below and Lemma A.1). Secondly, we prove a lower bound of the
denominator DT defined in (5), derived from the technical Lemma A.2. Thirdly, we consider a ball
centered at the true parameter f0 of radius M′T ϵT w.r.t. d̃1T , denoted by Ad1 (M′T ϵT ) ⊂ F . Finally, to
find an upper bound of the numerator NT (Ad1 (M′T ϵT )c) defined in (5), we partition Ad1 (M′T ϵT )c into
slices {S i}i on which we can design tests that have exponentially decreasing type I and type II errors
(see Lemma S5.1). We then define ϕ as the maximum of the tests on the individual slices S i. Due to
the space constraints, this proof is reported in Section S1 of the supplementary material [55].

From Proposition 5.5, we prove Theorem 3.2 and Case 1 of Proposition 3.5 using the following
classical decomposition (see for instance the proof of Theorem 1 in [17]). Let A,B ∈ FT ⊂ F , with B
possibly data dependent, ϕ ∈ [0,1] be a measurable test, κT defined in (6), and Ω̃T ⊂Ω. Then,

�0 [Π(A∩ B|N)] ⩽ �0

[
{DT < e−(κT+c1)T ϵ2

T } ∩ Ω̃T

]
+�0

[
ϕ1Ω̃T

]
+�0[Ω̃c

T ]

+ e(κT+c1)T ϵ2
TΠ(F c

T ) + e(κT+c1)T ϵ2
T

∫

A∩FT

�0

[
� f

[
(1 − ϕ)1B( f )1Ω̃T

(N)
∣∣∣∣G0

]]
dΠ( f ). (24)

We first introduce the set Ω̃T , which from Lemma A.1, has probability �0
[
Ω̃c

T

]
going to 0 at any

polynomial rate. For T > 0, we denote

JT :=

J ∈�;
∣∣∣∣∣
J − 1

T
− 1
�0[∆τ1]

∣∣∣∣∣ ⩽ cβ

√
log T

T

 ,

with cβ > 0 (and β > 0) chosen in Lemma A.1, and, with r0 := r f0 = (r0
1, . . . , r

0
K) where r0

k = ϕk(ν0
k), and

µ0
k =�0

[
λk

t ( f0)
]
, for any k,

ΩN =

max
k∈[K]

sup
t∈[0,T ]

Nk[t − A, t) ⩽Cβ log T

∩


K∑

k=1

∣∣∣∣∣∣
Nk[−A,T ]

T
− µ0

k

∣∣∣∣∣∣ ⩽ δT

 ,

ΩJ = {JT ∈ JT } , ΩU =



JT−1∑

j=1

(U(1)
j − τ j) ⩾

T
�0[∆τ1]∥r0∥1

1 − 2cβ

√
log T

T




,
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with δT = δ0

√
log T

T , δ0 > 0 and Cβ > 0 chosen in Lemma A.1 and define

Ω̃T = ΩN ∩ΩJ ∩ΩU . (25)

The sets ΩN , ΩJ and ΩU control respectively the number of events, the number of excursions and
the length of excursions. First, ΩN corresponds to realisations of N such that the number of events in
any interval of length A is upper bounded by cβ log T , and the number of events on [−A,T ] is close
to its expectation under the stationary distribution �0. Secondly, ΩJ corresponds to the realisations
such that the number of excursions in the observation interval [0,T ] divided by T , JT /T , is close to
its limit 1/�0[∆τ1]. Thirdly, on ΩU , the measure of the subset corresponding to the collections of the
beginnings of excursions (from τ j to the first event U(1)

j ) is of order T .
Next, we bound the denominator of the posterior DT from (5). From Lemma A.2, together with the

lower bound technique of [28], we have that

�0

[
DT <Π(B∞(ϵT ))e−κT T ϵ2

T

]
⩽ 2

∫

B∞(ϵT )

�0[LT ( f ) − LT ( f0) < −κT T ϵ2
T /2]

Π(B∞(ϵT ))
dΠ( f ) = o(1), (26)

which leads to �0

[
DT < e−(κT+c1)T ϵ2

T

]
= o(1) using asssumption (A0).

Then, we find a lower bound on |A2(T )| on Ω̃T . We recall that the point process measures
(N|[τ j,τ j+1))1⩽ j⩽JT−1 are i.i.d. and a fortiori that the random variables {U(1)

j − τ j} j are i.i.d. More-

over, for any j ∈ [JT − 1], t ∈ [τ j,U
(1)
j ) and k ∈ [K], the intensity process is by construction equal

to λk
t ( f0) = r0

k = ϕk(ν0
k). Therefore, conditionally on τ j, U(1)

j has the same distribution as an event from
a Poisson point process beginning at τ j, with intensity ∥r0∥1, since the process is the superposition of
K univariate Poisson process with intensity r0

k , k ∈ [K]. Thus, under �0, each variable U(1)
j − τ j follows

an exponential distribution with mean 1/ ∥r0∥1, and on ΩU , for T large enough, we have that

|A2(T )| =
JT−1∑

j=1

(ξ j − τ j) ⩾
JT−1∑

j=1

(U(1)
j − τ j) ⩾ c0T, c0 :=

1
2�0 [∆τ1] ∥r0∥1

.

Finally, for R > 0, we define the balls in L1 and stochastic distances

AL1 (R) := { f ∈ F ; ∥ f − f0∥1 ⩽ R}, Ad1 (R) = {d̃1T ( f , f0) ⩽ R}.

We now apply the decomposition (24) with ϕ = 1, A := AL1 (MT ϵT )c and B := Ad1 (M′T ϵT ), with
MT = M

√
κT , M′T = M′ √κT , M > M′ and M′ defined in Theorem 5.5. As in the proof of Theorem 3

of [17], we are thus left to prove that

sup
AL1 (MT ϵT )c∩FT

� f
[
Ω̃T ∩ Ad1 (M′T ϵT )|G0

]
= o�0 (e−(c1+κT )T ϵ2

T ), (27)

with c1 defined in assumption (A0). We recall that � f is the process distribution associated to parameter
f defined in (3). To prove (27), we consider f ∈ AL1 (MT ϵT )c such that d̃1T ( f , f0) ⩽ M′T ϵT and for l ∈ [K]
and j ∈ [JT − 1], we define

Z jl :=
∫ ξ j

τ j

|λl
t( f ) − λl

t( f0)|dt. (28)
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We note that using Lemma 5.1, the random variables {Z jl} j∈[JT−1] are i.i.d., and from (23) we also have

that Td̃1T ( f , f0) > max
l∈[K]

JT−1∑
j=1

Z jl. In order to derive a Bernstein-type inequality on the sum of the Z j’s,

we first find an upper bound of Z1l and its moments. Using that the link functions ϕk’s are L-Lipschitz,
we have

Z jl =

∫ ξ j

τ j

|ϕk(λ̃l
t(ν,h)) − ϕk(λ̃l

t(ν0,h0))|dt ⩽ L
∫ ξ j

τ j

|λ̃l
t(ν,h) − λ̃l

t(ν0,h0)|dt

⩽ L(ξ j − τ j)|νl − ν0
l | + L

∑

k

∫ ξ j

U(1)
j

|hkl − h0
kl|(t −U(1)

j )dt

⩽ L(A +U(1)
j − τ j)|νl − ν0

l | + L
∑

k

∥hkl − h0
kl∥1 ⩽ L(A + 1 +U(1)

j − τ j) ∥ f − f0∥1 . (29)

Moreover, under � f , for any j ∈ [J], U(1)
j − τ j follows an exponential distribution with mean 1/

∥∥∥r f
∥∥∥

1,

therefore, for any n ∈�, � f
[
(U(1)

j − τ j)n
]
= n!
∥r f ∥n1 . Using the standard inequality (x + y)n ⩽ 2n−1(xn +

yn), we thus obtain that

� f
[
Zn

1l

]
⩽ 2n−1Ln

(
(A + 1)n +� f

[
(U(1)

j − τ j)n
])
∥ f − f0∥n1

⩽
1
2

2n!

2L max

A + 1,
1∥∥∥r f
∥∥∥

1

 ∥ f − f0∥1


n−2

× L2 max

A + 1,
1∥∥∥r f
∥∥∥

1


2

∥ f − f0∥21 ⩽
1
2

n!bn−2v2,

(30)

with b := 2L max
(
A + 1, 2

∥r0∥1
)
∥ f − f0∥1 and v := L max

(
A + 1, 2

∥r0∥1
)
∥ f − f0∥1. In the last inequality,

we have used the fact that ∥r f − r0∥1 ≲ d̃1T ( f , f0) ⩽ M′T ϵT on Ω̃T . This is because (U(1)
1 − τ1) + · · · +

(U(1)
JT−1 − τJT−1) ⩾ c0T/2, which leads to

Td̃1T ( f , f0) ⩾
∑

k

|r f
k − r0

k |
(
(U(1)

1 − τ1) + · · · + (U(1)
JT−1 − τJT−1)

)
⩾

T
∑

k |r f
k − r0

k |
2�0 [∆τ1] ∥r0∥1

. (31)

It also implies that ∥r f ∥1 ⩾ ∥r0∥1 −
∥∥∥r f − r0

∥∥∥
1 ⩾ ∥r0∥1/2 for T large enough.

Our final argument consists in using the lower bound on � f [Z1l] obtained in Lemma A.4. In this
technical lemma, we show that there exists l ∈ [K] and C( f0) > 0 such that � f [Z1l] ⩾C( f0) ∥ f − f0∥1 .
Therefore, for this l,

� f

[
Ω̃T ∩ {d̃1T ( f , f0) ⩽ M′T ϵT }

∣∣∣∣G0

]
⩽ � f

Ω̃T ∩


JT−1∑

j=1
Z jl ⩽ M′T T ϵT



∣∣∣∣∣∣G0



⩽ � f

Ω̃T ∩


JT−1∑

j=1
(Z jl −� f

[
Z jl

]
) ⩽ M′T T ϵT − (JT − 1)� f

[
Z jl

]


∣∣∣∣∣∣G0



⩽ � f


⋃

J∈JT



J−1∑

j=1
(Z jl −� f

[
Z jl

]
) ⩽ −C( f0)T

∥∥∥ f − f0
∥∥∥1

4�0[∆τ1]



∣∣∣∣∣∣G0

 ⩽
∑

J∈JT

� f


J−1∑

j=1
(Z jl −� f

[
Z jl

]
) ⩽ −C( f0)T

∥∥∥ f − f0
∥∥∥1

4�0[∆τ1]

∣∣∣∣∣∣G0

 ,
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where we have used, for the third inequality, that on Ω̃T , JT − 1 ⩾ T
2�0[∆τ1] , ∥ f − f0∥1 ⩾ MT ϵT and

M′T < MT . For each J ∈ JT , we can now apply the Bernstein’s inequality:

� f


J−1∑

j=1

(Z jl −� f
[
Z jl

]
) ⩽ x

 ⩽ exp
{
− x2

2(J − 1)(v2 + bx)

}
,

with x = −C( f0)T∥ f− f0∥1
4�0[∆τ1] . We first upper bound the term v2 + bx:

v2 + b
C( f0) ∥ f − f0∥1

4�0[∆τ1]
⩽ L max

(
A + 1,

2
∥r0∥1

) (
L max

(
A + 1,

2
∥r0∥1

)
+

C( f0)
2 ∥r0∥1�0 [∆τ1]

)
∥ f − f0∥21

=C1( f0) ∥ f − f0∥21 ,

with C1( f0) := L max
(
A + 1, 2

∥r0∥1
) (

L max
(
A + 1, 2

∥r0∥1
)
+

C( f0)
2∥r0∥1�0[∆τ1]

)
. Finally, we obtain that

� f


J−1∑

j=1
(Z jl −� f

[
Z jl

]
) ⩽ −C( f0)T

∥∥∥ f − f0
∥∥∥1

4�0[∆τ1]

∣∣∣∣∣∣G0

 ⩽ exp


− C( f0)2T 2

∥∥∥ f − f0
∥∥∥2

1

8(J − 1)C1( f0)
∥∥∥ f − f0

∥∥∥2
1


⩽ exp

−
C( f0)2T
16C1( f0)

 ,

and since κT ϵ
2
T = o(1), we can conclude that

� f

[
Ω̃T ∩ {d̃1T ( f , f0) ⩽ M′T ϵT }

∣∣∣∣G0

]
⩽

2T
�0 [∆τ1]

exp
{
− C( f0)2T

16C1( f0)

}
= o(e−(c1+κT )T ϵ2

T ),

which corresponds to (27) and terminates the proof of Theorem 3.2 and Case 1 of Proposition 3.5.

5.3. Proof of Case 2 of Proposition 3.5

We recall that in this case we consider a shifted ReLU model with unknown shift θ0 = (θ0
1, . . . , θ

0
K),

corresponding to a particular case of partially known link functions ϕk(x; θk) = θk + (x)+, and for pa-
rameter f ∈ F and θ ∈Θ, we denote λt( f , θ) the intensity process. We note that in this case, r0 = θ0 + ν0
and similarly r f = θ + ν, with r f defined in (21). We then prove the posterior concentration rate on
both f0 and θ0. First, we apply the same steps as in the proof of Theorem 3.2 in Section 5.2, replacing
∥ f − f0∥1 by

∥∥∥r0 − r f
∥∥∥

1 + ∥h − h0∥1 = ∥θ0 + ν0 − θ − ν∥1 + ∥h − h0∥1. In particular, we re-define the balls
w.r.t. the L1-distance as (for simplicity we keep the same notation)

We therefore obtain (see also Remark 3.7)

�0
[
Π
( ∥h − h0∥1 + ∥θ0 + ν0 − θ − ν∥1 > M

√
κT ϵT

∣∣∣N)]
= o(1). (32)

Secondly, we design a test to separate θ0 and ν0. For this, we restrict again the set Ω̃T to a high
probability set ΩA, where θ0 can be correctly estimated. Let

Ak(T ) = {t ∈ [0,T ]; λ̃k
t (ν0,h0) < 0}, ΩA = {|Ak(T )| > z0T, ∀k ∈ K}, 1 ⩽ k ⩽ K,

with z0 > 0 defined in the proof of Lemma A.1 (see Section S8.1 in the supplementary material [55]),
and define Ω̃′T = Ω̃T ∩ΩA. Moreover, we define a neighborhood around θ0, Ā(R) := {θ ∈Θ; ∥θ − θ0∥1 ⩽
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R} and M̃T = M̃
√
κT with M̃ > M. Using again the decomposition (24), with A = Ā(M̃T ϵT )c, B =

AL1 (MT ϵT ), and the subset Ω̃′T , we thus only need to construct a test function ϕ ∈ [0,1] verifying:

�0

[
ϕ1Ω̃′T

]
= o(1), sup

θ∈Ā(M̃T ϵT )c, f∈AL1 (MT ϵT )∩FT

�0

[
� f

[
(1 − ϕ)1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT+c1)T ϵ2

T ). (33)

To construct this test, we first consider some arbitrary parameter f1 = ((ν1
k)k, (h1

lk)l,k) ∈ AL1 (MT ϵT )
and θ1 = (θ1

k )k ∈ Ā(M̃T ϵT )c, and for any k ∈ [K], we define the following subset of the observation
window

I0
k ( f1, θ1) =

{
t ∈ [0,T ]; λk

t ( f1, θ1) = θ1
k , λ

k
t ( f0, θ0) = θ0

k

}
. (34)

By construction θ0
k and θ1

k can be identified on the set I0
k ( f1, θ1), hence we need I0

k ( f1, θ1) to be
large enough in order to test between θ0

k and θ1
k . We can ensure this by defining a controlled set of

excursions E. Let l ∈ [K] such that h0−
lk , 0, δ′ = (x2 − x1)/3 with x1, x2 defined in condition (4),

c⋆ = minx∈[x1,x2] h0−
lk (x) and n1 = ⌊2ν1

k/(κ1c⋆)⌋ + 1 for some 0 < κ1 < 1. We consider the following
subset of excursions:

E := { j ∈ [JT ]; N[τ j, τ j + δ
′) = Nl[τ j, τ j + δ

′) = n1,N[τ j + δ
′, τ j+1) = 0}, (35)

where the τ j’s are the regenerative times defined in Lemma 5.1. Using the intermediate result (S5.13)
from the proof of Lemma A.5 in the supplementary material [55], if |E| is large enough, then we can
find a lower bound on |I0

k ( f1, θ1)|. We then define our generic test function:

ϕ( f1, θ1) := max
k∈[K]

min

1Nk(I0
k ( f1,θ1))−Λ0

k (I0
k ( f1,θ1))<−vT ∨1|E|< p0T

2�0[∆τ1]
,1Nk(I0

k ( f1,θ1))−Λ0
k (I0

k ( f1,θ1))>vT
∨1|E|< p0T

2�0[∆τ1]

 ,

(36)

where p0 = �0
[
j ∈ E],Λ0

k(I0
k ( f1, θ1)) =

∫ T
0 1I0

k ( f1,θ1)λ
k
t ( f0, θ0)dt, vT = wT T ϵT , wT = 2

√
maxk θ

0
k (κT + c1)+

2x0 and x0 from assumption (A2). From Lemma A.5, there exists u1 > 2x0 and ζ ∈ (0,1) such that

�0

[
ϕ( f1, θ1)1Ω̃′T

]
⩽ e−u1T ϵ2

T , sup
∥ f− f1∥+∥θ−θ1∥⩽ζϵT

�0

[
� f

[
(1 − ϕ( f1, θ1))1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT+c1)T ϵ2

T ). (37)

To define our global test ϕ, we first cover the space Ā(M̃T ϵT )c × AL1 (MT ϵT ) ∩ FT with L1-balls
{Bi}1⩽i⩽N of radius ζϵT , with ζ > 0 andN ∈� the covering number. For each ball Bi centered at ( fi, θi),
we define the elementary test ϕ( fi, θi) as in (36). Then we define ϕ :=maxi∈N ϕ( fi, θi), and obtain that

�0

[
ϕ1Ω̃′T

]
⩽Ne−u1T ϵ2

T , sup
θ∈Ā(M̃T ϵT )c, f∈AL1 (MT ϵT )∩FT

�0

[
� f

[
(1 − ϕ)1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT+c1)T ϵ2

T ).

Next, we find an upper bound of the covering number N using assumption (A2). We note that if
f ∈ AL1 (MT ϵT ), then for any (l, k) ∈ [K]2, θk ⩽ θk + νk = r f

k ⩽ r0
k + ϵT ⩽ 2(θ0

k + ν
0
k). Consequently, using

similar computations as in the proof of Proposition 5.5 (see Section S1 of the supplementary material
[55]), one can find x′0 > 0 such that

N ⩽


2 maxk(θ0
k + ν

0
k)

ζϵT


K 

maxk ν
0
k + ϵT

ζϵT


K

N(ζϵT ,HT , ∥.∥1) ≲ e−K log ϵT ex′0T ϵ2
T ≲ eK log T ex′0T ϵ2

T = o(eu1T ϵ2
T ),
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since log T = o(T ϵ2
T ) by assumption. Hence, reporting into (37), this proves that (33) holds and allows

us to conclude that �0
[
Π(Ā(M̃T ϵT )c|N)

]
= �0

[
Π(∥θ − θ0∥1 > M̃

√
κT ϵT |N)

]
= o(1). Finally, since M̃ >

M, from (32), we also have that�0
[
Π(∥ν + θ − ν0 − θ0∥1 + ∥h − h0∥1 > M̃

√
κT ϵT |N)

]
= o(1),. Therefore

it only remains to prove that�0
[
Π(∥ν − ν0∥1 > M̃

√
κT ϵT |N)

]
= o(1). By the triangle inequality, we have

∥ν − ν0∥1 ⩽ ∥ν + θ − ν0 − θ0∥1 + ∥θ − θ0∥1 , and, up to a modification of the constant M̃,

�0
[
Π(

∥∥∥ν − ν0
∥∥∥1 > M̃

√
κT ϵT |N)

]
⩽�0

[
Π(

∥∥∥ν + θ − ν0 − θ0
∥∥∥1 > M̃

√
κT ϵT |N)

]
+�0

[
Π(

∥∥∥θ − θ0
∥∥∥1 > M̃

√
κT ϵT |N)

]
= o(1),

which terminates this proof.

5.4. Proof of Theorem 3.9

In this section, we show that in all the models satisfying the assumptions of Theorem 3.2 or Proposition
3.5, the posterior distribution is consistent on the connectivity graph parameter δ0. For ease of expo-
sition, we here report the proof for the models considered in Theorem 3.2. We first recall the notation
MT = M

√
κT , AL1 (MT ϵT ) = { f ∈ F ;

∥∥∥r f − r0
∥∥∥

1+ ∥h − h0∥1 ⩽ MT ϵT }, and I(δ0) = {(l, k) ∈ [K]2, δ0
lk = 1}.

We first note that

Π
(
δ , δ0|N

)
= Π

(
∃(l, k) ∈ [K]2, δ0

lk , δlk

∣∣∣∣N
)
⩽Π

(
∃(l, k) ∈ I(δ0), δlk = 0

∣∣∣∣N
)
+

∑

(l,k)<I(δ0)
Π

(
δlk = 1

∣∣∣∣N
)
. (38)

For the first term on the RHS of (38), using Theorem 3.2, we have that

Π

(
∃(l, k) ∈ I(δ0), δlk = 0

∣∣∣∣N
)
⩽

∑

(l,k)∈I(δ0)

Π

(
{δlk = 0} ∩ AL1 (MT ϵT )

∣∣∣∣N
)
+ o�0 (1).

For large enough T , if ∥h0
lk∥1 > M0MT ϵT with M0 > 1, then

{ f ∈ F ;δlk = 0} ⊂ { f ∈ F ;
∥∥∥h0

lk − hlk
∥∥∥

1 =
∥∥∥h0

lk

∥∥∥
1} ⊂

 f ∈ F ;
∥∥∥h0

lk − hlk
∥∥∥

1 >
∥h0

lk∥1
2

 ⊂ AL1 (MT ϵT )c,

therefore Π
(
{δlk = 0} ∩ AL1 (MT ϵT )

∣∣∣∣N
)
= 0. For the second term on the RHS of (38), since (l, k) < I(δ0)

implies that
∥∥∥h0

lk

∥∥∥
1 = 0 and {δlk = 1} ∩ AL1 (MT ϵT ) ⊂ { f ∈ F ; 0 < ∥hlk∥1 ⩽ MT ϵT }, defining NT =∫

{δlk=1}∩AL1 (MT ϵT ) eLT ( f )−LT ( f0)dΠ( f ), and using the decomposition (24) with A = AL1 (MT ϵT ),B = {δlk =

1} and ϕ = 1, we obtain that

�0
[
Π({δlk = 1} ∩ AL1 (MT ϵT )|N)

]
⩽ �0(DT < e−(κT+c1)T ϵ2

T ∩ Ω̃T ) +�0(Ω̃c
T ) + e(κT+c1)T ϵ2

TΠ({δlk = 1} ∩ AL1 (MT ϵT ))

⩽ o(1) + e(κT+c1)T ϵ2
T

∑

δ∈{0,1}K2

1δlk=1Πh|δ
(∥hlk∥1 ⩽ MT ϵT |δ

)
= o(1),

where in the last inequality we have used assumptions (A0)-(A1), (11), and the construction of the
prior from Section 3.2. Consequently, from (38), we finally arrive at �0 [Π (δ , δ0|N)] = o(1).

5.5. Proof of Theorem 3.11

We here prove the consistency of the penalised estimator defined in (13). We consider the models
satisfying the assumptions of Theorem 3.2, although our proof is also valid for the ReLU-type models
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of Proposition 3.5. Besides, for f ∈ F , we use the shortened notation d1T := d̃1T ( f , f0) and δ̂Π,L :=
δ̂Π,L(N). We recall that for (l, k) ∈ [K]2, S lk = ∥hlk∥1 and the notation from previous proofs, MT =

M
√
κT , M′T = M′ √κT with M > M′ > 0. We first note that �0

[
δ̂Π,L , δ0

]
⩽

∑
l,k �0

[
δ̂Π,Llk , δ

0
lk

]
and

consider two cases for each (l, k).

• Case 1: (l, k) < I(δ0), i.e, δ0
lk = 0. Using (13) and (14), there exists a > 0 such that with c′1 :=

a + c1 + κT , for any γ > 0, we have

�0
[
δ̂Π,Llk , δ

0
lk

]
= �0

[
δ̂Π,Llk = 1

]

⩽ �0

[
e−c′1T ϵ2

TΠ(δlk = 1, S lk ⩽ MT ϵT |N) ⩾Π(δlk = 0|N) −Π(S lk > MT ϵT |N)
]

⩽ �0

[
e−c′1T ϵ2

TΠ(δlk = 1, S lk ⩽ MT ϵT |N) ⩾Π(δlk = 0|N)/2
]

+�0 [Π(S lk > MT ϵT |N) >Π(δlk = 0|N)/2] . (39)

To show that the second term in the previous equation is o(1), it is enough to show that

�0
[
Π(d1T > M′T ϵT |N) >Π(δlk = 0|N)/4

]
= o(1), (40)

�0
[
Π(d1T ⩽ M′T ϵT , S lk > MT ϵT |N) >Π(δlk = 0|N)/4

]
= o(1). (41)

Let mT (δlk = 0) :=
∫
FT

eLT ( f )−LT ( f0)dΠ( f |δlk = 0). Similarly to the computations of the lower

bound of DT in Section S1, we have under (A0’) that �0

[
mT (δlk = 0) ⩽ e−κ

′
T T ϵ2

T

]
= o(1) with

κ′T := κT + c1. Using the test function from the proof of Theorem 5.5 in Section S1 in the supple-
mentary material [55] ϕ =maxi ϕ( fi) (with ϕ( fi) defined in Lemma S5.1) we have

�0
[
Π(d1T > M′T ϵT |N) >Π(δlk = 0|N)/4

]
⩽�0

[
ϕ1Ω̃T

]
+�0

[
Ω̃c

T

]
+Π(F c

T )

+�0

[
(1 − ϕ)1Ω̃T

1∫
FT

1d1T >M′T ϵT
eLT ( f )−LT ( f0)dΠ( f )>Π(δlk=0)mT (δlk=0)/4

]

⩽ o(1) +�0

(1 − ϕ)1Ω̃T
1∫
FT

1d1T >M′T ϵT
eLT ( f )−LT ( f0)dΠ( f )>e−κ

′
T T ϵ2T /4



⩽ o(1) + 4eκ
′
T T ϵ2

T

∫

FT

�0
[
� f

[
1Ω̃T

1d1T>M′T ϵT (1 − ϕ)|G0
]
dΠ( f |δlk = 0)

]
.

In the second inequality, we have notably used (S1.4) �0
[
ϕ1Ω̃T

]
= o(1) from Section S1. More-

over, from (S1.5), there exists γ1 > 0 such that

∑

i⩾M′T

∫

FT

� f
[
1Ω̃T

1 f∈S i (1 − ϕ)|G0
]
dΠ( f |δlk = 0) ⩽ 4(2K + 1)e−γ1 M′2T T ϵ2

T ,

where the S i’s are the slices defined in (S1.1). Therefore, we obtain (40) using that

�0
[
Π(d1T > M′T ϵT |N) >Π(δlk = 0|N)/4

]
⩽ o(1) + 4eκ

′
T T ϵ2

T 4(2K + 1)e−(M′T )2T ϵ2
T = o(1).
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To prove (41), using Markov’s inequality and Fubini’s theorem, we have, for M′ large enough,
that

�0
[
Π(d1T ⩽ M′T ϵT , S lk > MT ϵT |N) >Π(δlk = 0|N)/4

]

⩽ �0

[
{mT (δlk = 0) < e−κ

′
T T ϵ2

T } ∩ Ω̃T

]
+�0

[
Ω̃c

T

]

+ 4eκ
′
T T ϵ2

T�0

[∫

FT∩{S lk>MT ϵT }
1Ω̃T

1d1T⩽M′T ϵT eLT ( f )−LT ( f0)dΠ( f |δlk = 0)
]

= o(1) + 4eκ
′
T T ϵ2

T

∫

S lk>MT ϵT

�0
[
� f

[
Ω̃T ∩ {d1T ⩽ M′T ϵT }|G0

]]
dΠ( f ).

Moreover, from (27), we have that sup f∈AL1 (MT ϵT )c∩FT
� f

[
Ω̃T ∩ {d1T ⩽ M′T ϵT }|G0

]
= o(e−κ

′
T T ϵ2

T ).

Finally, since δ0
lk = 0, S lk > MT ϵT implies that f ∈ Ac

L1
(MT ϵT ), which thus leads to (41). Report-

ing into (39), we now have

�0
[
δ̂Π,Llk = 1

]
⩽ �0

[
e−c′1T ϵ2

TΠ(δlk = 1, S lk ⩽ MT ϵT |N) ⩾Π(δlk = 0|N)/2
]
+ o(1)

⩽ �0

[
e−c′1T ϵ2

TΠ(δlk = 1|N) ⩾Π(δlk = 0|N)/2
]
+ o(1)

= �0

[
e−c′1T ϵ2

T mT (δlk = 1) ⩾
Π(δlk = 0)
2Π(δlk = 1)

mT (δlk = 0)
]
+ o(1)

⩽ �0

[{
e−c′1T ϵ2

T mT (δlk = 1) ⩾
Π(δlk = 0)
2Π(δlk = 1)

e−κ
′
T T ϵ2

T

}
∩ Ω̃T

]
+�0

[
mT (δlk = 0) < e−κ

′
T T ϵ2

T

]
+ o(1)

⩽ �0

[{
mT (δlk = 1) ⩾

Π(δlk = 0)
2Π(δlk = 1)

e(c′1−κ′T )T ϵ2
T

}
∩ Ω̃T

]
+ o(1)

⩽�0
[
mT (δlk = 1)

] 2Π(δ = 1)
Π(δlk = 0)

e−(c′1−κ′T )T ϵ2
T + o(1) ⩽

2Π(δlk = 1)2

Π(δlk = 0)
e−(c′1−κ′T )T ϵ2

T + o(1) = o(1),

since c′1 > κT + c1 = κ
′
T and that �0 [mT (δ = 1)] = Π(δlk = 1) with Fubini’s theorem.

• Case 2: (l, k) ∈ I(δ0), i.e, δ0
lk = 1. In the case, the computations are slightly simpler since {δlk =

0} =⇒ f ∈ AL1 (M
√
κT ϵT )c and for T large enough, S 0

lk − MT ϵT > 0. Thus we can use the fact
that Π(δlk = 0|N) ⩽ Π(AL1 (M

√
κT ϵT )c|N) (the full computations are reported in Section S2.1 in

the supplementary material [55].

6. Conclusion

In this paper we have established concentration and consistency properties of the posterior distribution
and of Bayesian estimators of the parameter and connectivity graph, in a general class of nonlinear
Hawkes processes. These results validate the common use of these models in different applied con-
texts. In particular, our results include the commonly used sigmoid and softplus models, as well as the
more challenging ReLU model, under some additional restrictions on the parameter space. Moreover,
we provide the first theoretical results for estimating an additional parameter of the link functions, in
the case of shifted ReLU with unknown shift. To prove those results, we have built a new technique for
obtaining model identifiability and concentration inequalities based on the decomposition of the pro-
cess into excursions, recently introduced by Costa et al. [11]. Finally, our results hold under reasonable
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assumptions on the prior distribution and the true model, and we provide practical examples for which
those conditions are verified.

Although rather weak assumptions have been used to prove our results, it is likely that the latter
hold in more general contexts. In particular, we believe that one could relax the condition on processes
with bounded memory (A < +∞) since the regenerative properties of the nonlinear Hawkes processes
also hold for processes with unbounded memory. One major improvement of our results would be to
consider high dimensional processes (K →∞), possibly in restricted models such as sparse models
[3] or clustering models [48]. Another perspective would be to prove the frequentist minimax rate of
estimation, since it would be of great interest to evaluate the optimality of Bayesian procedures in
nonlinear Hawkes processes. Some practitioners might also be interested in additional results on the
estimation of the link function, through a different parametric or even nonparametric form, like in [62].

Appendix A: Main lemmas

In this section, we state some important lemmas to prove our main results in Section 5. The proofs of
Lemmas A.1, A.2, A.4 and A.5 are provided in Sections S1, S5 and S8 in the supplementary material
[55]. The first two lemmas are controls respectively of the complement of the main event Ω̃T under the
true distribution �0, and of the deviations of the log likelihood ratio LT ( f0) − LT ( f ).

Lemma A.1. Let Q > 0. We consider Ω̃T defined in (25) in Section 5.2. For any β > 0, we can
choose Cβ and cβ in the definition of Ω̃T such that �0[Ω̃c

T ] ⩽ T−β. Moreover, for any 1 ⩽ q ⩽ Q,

�0

1Ω̃c
T

maxl sup
t∈[0,T ]

(
Nl[t − A, t)

)q
 ⩽ 2T−β/2. Finally, the previous results hold when replacing Ω̃T by

Ω̃′T = Ω̃T ∩ΩA with ΩA defined in Section 5.3 for the model with shifted ReLU link and unknown shift.

Lemma A.2. Under the assumptions of Theorem 3.2 or Proposition 3.5, for any f ∈ B∞(ϵT ) and T
large enough, we have

�0

[
LT ( f0) − LT ( f ) ⩾

1
2
κT T ϵ2

T

]
= o(1).

with
κT =



10 (under Assumption 3.1(i))
10(log T ) (under Assumption 3.1(ii) )
10(log T )2 (under Case 1 and condition (8))

Remark A.3. Contrary to the typical approach, the proof of Lemma A.2 is not based on the control
of the variance of LT ( f0) − LT ( f ), which is intractable due to the nonlinear form of the log-likelihood
function, but on a decomposition of LT ( f0)− LT ( f )−KL( f0, f ) into a sum of i.i.d. terms T j defined as:

T j :=
∑

k

∫ τ j+1

τ j

log

λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τ j+1

τ j

(λk
t ( f0) − λk

t ( f ))dt.

The next lemma is a notably used in the proof of Theorem 3.2 in Section 5.2 and bridges the gap
between the posterior concentration rate in stochastic distance (see Theorem 5.5) and the rate in L1-
distance (Theorem 3.2).
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Lemma A.4. For f ∈ FT and l ∈ [K], let

Z1l =

∫ ξ1

τ1

|λl
t( f ) − λl

t( f0)|dt,

where ξ1 is defined in (22) in Section 5.2. Under the assumptions of Theorem 3.2 and Case 1 of
Proposition 3.5, for MT → ∞ such that MT > M

√
κT with M > 0 and for any f ∈ FT such that

∥ν − ν0∥1 ⩽max(∥ν0∥1 , C̃) with C̃ > 0, there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] ⩾C( f0) ∥ f − f0∥1 ,

with C( f0) > 0 a constant that depends only on f0 and ϕ = (ϕk)k.
Similarly, under the assumptions of Case 2 of Proposition 3.5, for f ∈ FT and θ ∈ Θ, let r0 =

(r0
k )k, r f = (r f

k )k with r0
k = ϕk(ν0

k) = θ0
k + ν

0
k , r f

k = ϕk(νk) = θk + νk, ∀k. If
∥∥∥r f − r0

∥∥∥
1 ⩽ max(∥r0∥ , C̃′)

with C̃′ > 0, then there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] ⩾C′( f0)(∥r f − r0∥1 + ∥h − h0∥1), C′( f0) > 0. (42)

Finally, this last lemma provides upper bounds on type I and type II errors for the tests used in the
proof of Case 2 of Proposition 3.5 in Section 5.3 for estimating the parameter of the link functions θ0.

Lemma A.5. Using the notations of Section 5.3, for θ1 ∈ Ā(M̃T ϵT )c, f1 ∈ AL1 (MT ϵT )∩FT , we define

ϕ( f1, θ1) = max
k∈[K]

min

1Nk(I0
k ( f1,θ1))−Λ0

k (I0
k ( f1,θ1))<−vT ∨1|E|< p0T

2�0[∆τ1]
,1Nk(I0

k ( f1,θ1))−Λ0
k (I0

k ( f1,θ1), f0)>vT
∨1|E|< p0T

2�0[∆τ1]

 ,

with I0
k ( f1, θ1) and E defined in (34) and (35), p0 = �0

[
j ∈ E], Λ0

k(Ik
0( f1, θ1)) =

∫ T
0 1I0

k ( f1,θ1)λ
k
t ( f0, θ0)dt

and vT = wT T ϵT with wT = 2
√

maxk θ
0
k (κT + c1)+ 2x0 and x0 > 0. Then there exists u1 > 2x0 such that

�0

[
ϕ( f1, θ1)1′

Ω̃T

]
⩽ e−u1T ϵ2

T , sup
∥θ−θ1∥+∥ f− f1∥⩽ζϵT

�0

[
� f

[
(1 − ϕ( f1, θ1))1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT+c1)T ϵ2

T ).

Supplementary Material

The supplementary material contains nine sections and includes the proofs of our main results, notably
Proposition 2.3, Proposition 2.5, Corollary 3.8, Proposition 3.10, Theorem 5.5, Theorem 3.11 (second
case). It also includes an alternative construction of the prior distribution and the proofs of our technical
lemmas in Section 5 and Appendix A and Lemma 2.6. Finally, the last section contains some useful
results, in particular some extensions of the results from [11] related to the regenerative properties of
nonlinear Hawkes processes.
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2Ceremade, CNRS, UMR 7534, Université Paris-Dauphine, PSL University, 75016 Paris, France.
E-mail: †Vincent.Rivoirard@dauphine.fr
3University of Oxford, E-mail: deborah.sulem@stats.ox.ac.uk; *judith.rousseau@stats.ox.ac.uk
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This supplementary material contains additional results and proofs that could not be included in the
main paper [8] due to space limitations. In Section S1, we report the proofs of Theorem 5.5 and Lemma
A.2. Section S2 contains the proofs of two results in the graph estimation problem (second part of The-
orem 3.11 and Proposition 3.10). In Section S3 we prove frequentist results of Corollary 3.8. Results
regarding the construction of prior distributions can be found in Section S4. In Sections S5, S6 and
S7 we report additional technical results and their proofs, notably on the tests used in the main theo-
rems and on the Kullback-Leibler divergence defined for the Hawkes model. Lemmas A.1 and A.4 are
proved in Section S8. Finally, we report multivariate extensions of existing results on the regenerative
properties of the nonlinear Hawkes model in Section S9.

For the sake of simplicity, all sections, theorems, corollaries, lemmas and equations presented in the
supplement are designed with a prefix S. Regarding the others, we refer to the material of the main text
[8]. This is not specified at each place.

S1. Proofs of Theorem 5.5 and of Lemma A.2

S1.1. Proof of Theorem 5.5

This section contains the proof of the posterior concentration rate w.r.t. the stochastic distance defined
in (23) in [8]. We use the well-known strategy of [4] which has the following steps. First, the space of
observations is restricted to a subset Ω̃T defined in (25) which has high probability (see Lemma A.1).
Secondly, we use a lower bound of the denominator DT defined in (5) using Lemma A.2. Thirdly, we
consider Ad1 (M′T ϵT ) ⊂ F , the ball centered at f0 of radius M′T ϵT w.r.t the auxiliary stochastic distance
d̃1T . To find an upper bound of the numerator NT (Ad1 (M′T ϵT )c) as defined in (5), Ad1 (M′T ϵT )c is parti-
tioned into slices S i on which we can design tests that have exponentially decreasing type I and type
II errors (see Lemma S5.1). We then define ϕ as the maximum of the tests on the individual slices S i.
Note that the following proof applies to all estimation scenarios, and for generality here, we consider
θ0 unknown.

We recall the notation Ad1 (ϵ) = { f ∈ F ; d̃1T ( f , f0) ⩽ ϵ}. and from (5), DT =
∫
F eLT ( f )−LT ( f0)dΠ( f ).

For a sequence ϵT verifying the assumptions of Theorem 3.2 and for i ⩾ 1, we denote

S i = { f ∈ FT ; KiϵT ⩽ d̃1T ( f , f0) ⩽ K(i + 1)ϵT }, (S1.1)

S1



S2

where FT = { f = (ν,h) ∈ F ; h = (hlk)l,k ∈HT , ν ∈ΥT }. Let M′T = M′ √κT with M′ > 0 and κT defined in
(6). Using the decomposition (24) with A = Ad1 (M′T ϵT )c (and B = F ) , for any test function ϕ ∈ [0,1],
we have

�0[Π(Ad1 (M′T ϵT )c|N)] ⩽ �0(Ω̃c
T ) +�0

(
{DT < e−κT T ϵ2

TΠ(B∞(ϵT ))} ∩ Ω̃T

)
+�0[ϕ1Ω̃T

]

+
eκT T ϵ2

T

Π(B∞(ϵT ))
Π(F c

T ) +
eκT T ϵ2

T

Π(B∞(ϵT ))

+
+∞∑

i=M′T

∫

FT

�0
[
� f

[
1Ω̃T

1 f∈S i (1 − ϕ)]|G0
]]

dΠ( f )

 .

(S1.2)

For the first term on the RHS of (S1.2), we have �0(Ω̃c
T ) = o(1) by Lemma A.1 in [8]. For the fourth

term of the RHS of (S1.2), under (A0) and (A1), we have that

eκT T ϵ2
T

Π(B∞(ϵT ))
Π(F c

T ) ⩽ e(κT+c1)T ϵ2
T (Π(Hc

T ) +Π(Υc
T )) = o(1).

The second term of (S1.2) is controlled by (26) and goes to 0.
We now deal with the third and fifth terms on the RHS of (S1.2), which require to define a suitable

test function ϕ. Let i ∈�, i ⩾ M′T and f ∈ S i. On Ω̃T , with A2(T ) defined in (22), we have that

Td̃1T ( f , f0) =
K∑

l=1

∫

A2(T )

∣∣∣λk
l ( f ) − λk

l ( f0)
∣∣∣dt =

K∑

l=1

JT−1∑

j=1

∫ ξ j

τ j

∣∣∣λk
l ( f ) − λk

l ( f0)
∣∣∣dt

⩾
K∑

l=1

JT−1∑

j=1

∫ U(1)
j

τ j

|r f
l − r0

l |dt ⩾
JT−1∑

j=1

(U(1)
j − τ j)

∑

l

|r f
l − r0

l | ⩾
T

2 ∥r0∥1�0 [∆τ1]

∑

l

|r f
l − r0

l |,

with r f = (ϕ1(ν1), . . . , ϕK(νK)), r0 = (ϕ1(ν0
1), . . . , ϕK(ν0

K)) and τ j, ξ j, U(1)
j , 1 ⩽ j ⩽ JT − 1 defined in

Sections 5.1 and 5.2 of [8]. Consequently, for any l ∈ [K], since d̃1T ( f , f0) ⩽ K(i + 1)ϵT , we obtain that

r f
l ⩽ r0

l + 2K(i + 1) ∥r0∥1�0 [∆τ1] ϵT ⩽ r0
l + 1 + 2K ∥r0∥1�0 [∆τ1] iϵT , (S1.3)

for T large enough. Moreover, using Assumption 3.1, ϕ−1
l is L′-Lipschitz on Jl = ϕl(Il) and r0

l ∈ Jl.
With ε > 0 from Assumption 3.1, we now separate the set of indices i in two subsets.

Case 1: i is such that 2L′ ∥r0∥1�0 [∆τ1] K(i + 1)ϵT < ε. Then we have that r f
l ∈ Jl and νl ∈ Il since

|r f
l −r0

l | =⩽ 2 ∥r0∥1�0 [∆τ1] K(i+1)ϵT . Consequently, 1
L′ |νl−ν0

l | ⩽ |r
f
l −r0

l | ⩽ L|νl−ν0
l | and in particular,

νl ⩽ ν
0
l + 2KL′(i + 1) ∥r0∥1�0 [∆τ1] ϵT .

Defining

Fi =
{
f ∈ FT ; ν f

l ⩽ ν
0
l + 1 + 2KL′ ∥r0∥1�0 [∆τ1] iϵT ,∀l ∈ [K]

}
,

we therefore have that for any f ∈ S i and T large enough, f ∈ Fi Let ( fi,n)Ni
n=1 be the centering points

of a minimal L1-covering of Fi byNi balls of radius ζiϵT with ζ = 1/(6N0), and N0 defined in the proof
of Lemma S5.1 in Section S5.2. There exists C0 > 0 such that we have

Ni ⩽
(
C0(1 + iϵT )
ζiϵT /2

)K

N(ζiϵT /2,HT , ∥.∥1).
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If iϵT ⩽ 1,

Ni ⩽
(

4C0

ζiϵT

)K

N(ζiϵT /2,HT , ∥.∥1) =
(

4C0

ζ

)K

e−K log(iϵT )N(ζiϵT /2,HT , ∥.∥1).

Otherwise, if iϵT ⩾ 1,

Ni ⩽
(

4C0

ζ

)K

N(ζiϵT /2,HT , ∥.∥1).

Moreover, since i 7→ N(ζiϵT /2,HT , ∥.∥1) is non-increasing, and if i ⩾ 2ζ0/ζ, we have thatN(ζiϵT /2,HT ∥.∥1) ⩽
N(ζ0ϵT ,HT , ∥.∥1) ⩽ ex0T ϵ2

T using (A2). Consequently, since ϵT > ϵ2
T > 1

T when T is large enough,

e− log(iϵT ) ⩽ elog( ζ
2ζ0

T ) and we obtain

Ni ⩽
(

4C0

ζ

)K (
ζ

2ζ0

)K

eK log TN(ζiϵT /2,HT , ∥.∥1) =
(

2C0

ζ0

)K

eK log TN(ζiϵT /2,HT , ∥.∥1)

⩽CKeK log T ex0T ϵ2
T ,

denoting CK =
( 2C0
ζ0

)K
.

Case 2: 2L′ ∥r0∥1�0 [∆τ1] K(i + 1)ϵT > ε. Then in this case we define Fi = FT and νT = ec2T ϵ2
T , and

the L1-covering number of Fi is now upper bounded by

Ni ⩽
(

νT

ζiϵT /2

)K

N(ζiϵT /2,HT , ∥.∥1) ⩽C′0e(x0+c2K)T ϵ2
T ,

with C′0 > 0 a constant.
In both cases, considering the tests ϕi = max

n∈[Ni]
ϕ fi,n with ϕ fi,n , γ1 =minl x1l defined in Lemma S5.1,

and C′K =CK ∨C′0, x′0 = x0 + cK , we have

�0[1Ω̃T
ϕi] ⩽Nie−γ1T (i2ϵ2

T∧iϵT ) ⩽C′K(2K + 1)eK log T ex′0T ϵ2
T e−γ1T (i2ϵ2

T∧iϵT ),

�0
[
� f

[
1Ω̃T

1 f∈S i (1 − ϕi)|G0
]]
⩽ (2K + 1)e−γ1T (i2ϵ2

T∧iϵT ).

Choosing ϕ = max
M′T⩽i⩽Ni

ϕi and since M′T ⩾ 2ζ0/ζ for T large enough, we obtain

�0[1Ω̃T
ϕ] ⩽C′K(2K + 1)eK log T ex′0T ϵ2

T



ϵ−1
T∑

i=M′T

e−γ1i2T ϵ2
T +

∑

i>ϵ−1
T

e−γ1iT ϵT



⩽C′K(2K + 1)eK log T ex′0T ϵ2
T



ϵ−1
T∑

i=M′T

e−γ1iM′T T ϵ2
T +

∑

i>ϵ−1
T

e−γ1TiϵT



⩽C′K(2K + 1)eK log T ex′0T ϵ2
T

[
2e−γ1 M′2T T ϵ2

T + 2e−γ1T
]

⩽ 4C′K(2K + 1)[e−γ1 M′2T T ϵ2
T + e−γ1T ], (S1.4)
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since log3 T = O(T ϵ2
T ) by assumption. Therefore, we arrive at �0[1Ω̃T

ϕ] = o(1). Similarly, we can
obtain

�0


∑

i⩾M′T

∫

FT

� f
[
1Ω̃T

1 f∈S i (1 − ϕ)|G0
]
dΠ( f )

 ⩽ (2K + 1)



ϵ−1
T∑

i=M′T

e−γ1i2T ϵ2
T +

∑

i>ϵ−1
T

e−γ1TiϵT



⩽ 4(2K + 1)[e−γ1 M′2T T ϵ2
T + e−γ1T ].

Therefore, using (A0), we have for the second term in (S1.2),

eκT T ϵ2
T

Π(B∞(ϵT ))



+∞∑

i=M′T

∫

FT

�0
[
� f

[
1Ω̃T

1 f∈S i (1 − ϕ)|G0
]]

dΠ( f )

 ⩽
eκT T ϵ2

T

e−c1T ϵ2
T

4(2K + 1)[e−γ1 M′2T T ϵ2
T + e−γ1T ]

⩽ 4(2K + 1)e−γ1 M′2T T ϵ2
T /2 = o(1),

(S1.5)

for M′T >
√

c1 + κT , which holds true if M′T = M′ √κT with M′ large enough. Aggregating the upper
bounds previously obtained, we can finally conclude that

�0[Π(Ad1 (M′T ϵT )c|N)] ⩽ �0(Ω̃c
T ) + o(1) = o(1),

which terminates the proof of Theorem 5.5.

S1.2. Proof of Lemma A.2

In this section, we prove a control on the log-likelihood ratio of the form �0
[
LT ( f0) − LT ( f ) ⩾ 5zT

]
=

o(1), where zT = T ϵ2
T (log T )r where r = 0,1,2 is defined in Lemma S6.3 and depends on the assump-

tions on the link function. We have

LT ( f0) − LT ( f ) =
∑

k

∫ T

0
log


λk

t ( f0)

λk
t ( f )

dNk
t −

∫ T

0
(λk

t ( f0) − λk
t ( f ))dt

=W0 +

JT−1∑

j=1

T j +WT ,

with

W0 :=
∑

k

∫ τ1

0
log


λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τ1

0
(λk

t ( f0) − λk
t ( f ))dt,

WT :=
∑

k

∫ T

τJT

log

λk

t ( f0)

λk
t ( f )

dNk
t −

∫ T

τJT

(λk
t ( f0) − λk

t ( f ))dt.
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Let LT = LT ( f0) − LT ( f ) − �0
[
LT ( f0) − LT ( f )

]
= LT ( f0) − LT ( f ) − KL( f0, f ), with KL( f0, f ) the

Kullback-Leibler divergence defined in (S6.19). Then

�0 [LT ⩾ 4zT ] = �0


JT−1∑

j=1

T j +W0 +WT − KL( f0, f ) ⩾ 4zT



= �0


JT−1∑

j=1

(T j −�0
[
T j

]
) +

JT−1∑

j=1

�0
[
T j

]
−�0


JT−1∑

j=1

T j

 +WT −�0 [WT ] +W0 −�0 [W0] ⩾ 4zT



⩽ �0


JT−1∑

j=1

T j −�0
[
T j

]
⩾ zT

 +�0

(JT −�0 [JT ])�0 [T1] −�0


JT−1∑

j=0

T j −�0
[
T j

]
 ⩾ zT

 +�0 [WT −�0 [WT ] ⩾ zT ]

+�0 [W0 −�0 [W0] ⩾ zT ] ,
(S1.6)

using equation (S6.21) and that

KL( f0, f ) =
∑

k

�0


∫ τ1

τ0

log

λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τ1

0
(λk

t ( f0) − λk
t ( f ))dt


︸                                                                    ︷︷                                                                    ︸

�0[W0]

+
∑

k

�0


∫ τJT

0
log


λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τJT

0
(λk

t ( f0) − λk
t ( f ))dt


︸                                                                        ︷︷                                                                        ︸

=�0

[∑JT −1
j=1 T j

]

+
∑

k

�0


∫ T

τJT

log

λk

t ( f0)

λk
t ( f )

dNk
t −

∫ T

τJT

(λk
t ( f0) − λk

t ( f ))dt


︸                                                                     ︷︷                                                                     ︸

�0[WT ]

.

From Lemma S6.3, we have that �0
[∑JT−1

j=1 T j −�0
[
T j

]
⩾ zT

]
= o(1). We now deal with the second

term on the RHS of (S1.6). Using Lemma S6.3, we have

�0


JT−1∑

j=1

T j −�0
[
T j

]
 =�0


JT−1∑

j=⌊T/�0[∆τ1]⌋
T j −�0

[
T j

]


⩽�0


∑

J∈JT

1JT=J


J−1∑

j=⌊T/�0[∆τ1]⌋
|T j −�0

[
T j

]
|


 +
√
�0 [JT <JT ]

√
T 2�0

[
T 2

1

]

⩽�0



⌊ T
�0[∆τ1] (1+cβ

√
log T

T )⌋∑

j=⌊ T
�0[∆τ1] (1−cβ

√
log T

T )⌋

|T j −�0
[
T j

]
|


+ T 1−β/2

√
�0

[
T 2

1

]

⩽
2cβ

�0 [∆τ1]
�0

[
|T1 −�0

[
T j

]
|
] √

T log T + T 1−β/2
√
�0

[
T 2

1

]
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≲
√
�0

[
T 2

1

] √
T log T ≲

√
T (log T )3/2ϵT = o(zT ),

since log3 T =O(zT ) by assumption. Consequently,

�0

(JT −�0 [JT ])�0 [T1] −�0


JT−1∑

j=0

T j −�0
[
T j

]
 ⩾ zT

 ⩽ �0

[
JT −�0 [JT ] ⩾

zT

2�0 [T1]

]

⩽ �0

[
JT − T

�0 [∆τ1]
⩾

zT

4�0 [T1]

]
,

using that JT − �0 [JT ] = JT − T
�0[∆τ1] +

T
�0[∆τ1] − �0 [JT ] and T

�0[∆τ1] − �0 [JT ] ⩽ zT
4�0[T1] for T

large enough. Consequently, since �0 [T1] ⩽
√

zT
T , we have with ηT =

√
zT

4�0[T1] and B j = τ j − τ j−1 −
�0 [∆τ1], and using the computations as for the proof of Lemma A.1,

�0

[
JT − T

�0 [∆τ1]
⩾ ηT

]
⩽ �0

[
τ⌊T/�0[∆τ1]+ηT ⌋ ⩽ T

]

= �0


⌊T/�0[∆τ1]+ηT ⌋∑

j=1

B j ⩽ T − ⌊T/�0 [∆τ1] + ηT ⌋�0 [∆τ1]



⩽ �0


⌊T/�0[∆τ1]+ηT ⌋∑

j=1

B j ⩽ −�0 [∆τ1]ηT +�0 [∆τ1]



⩽
4⌊T/�0 [∆τ1] + ηT ⌋�0

[
∆τ2

1

]

�0 [∆τ1]2 η2
T

≲
T
η2

T

+
1
ηT
≲

1
zT
= o(1).

For the third term on the RHS of (S1.6), applying Bienayme-Chebyshev’s inequality, we have

�0 [WT −�0 [WT ] ⩾ zT ] ⩽
�0

[
W2

T

]

z2
T

. (S1.7)

Using similarly computations as in Lemma S6.3, we obtain

�0
[
W2

T

]
=�0




∑

k

∫ T

τJT

log

λk

t ( f0)

λk
t ( f )

dNk
t −

∫ T

τJT

(λk
t ( f0) − λk

t ( f ))dt


2

≲�0

(T − τJT )
∫ T

τJT

log

λk

t ( f0)

λk
t ( f )

λk
t ( f0) − (λk

t ( f0) − λk
t ( f ))


2

dt

 +�0


∫ T

τJT

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 .

Then since

�0

(T − τJT )
∫ T

τJT

log

λk

t ( f0)

λk
t ( f )

λk
t ( f0) − (λk

t ( f0) − λk
t ( f ))


2

dt

 ⩽�0

∆τ1

∫ τ2

τ1

χ


λk

t ( f0)

λk
t ( f )


2

λk
t ( f0)2dt

 ,

�0


∫ T

τJT

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 ⩽�0


∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 ,
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we can use the bounds derived for �0
[
T 2

j

]
in Lemma S6.3.

We finally obtain

�0 [WT −�0 [WT ] ⩾ zT ] ≲
(log2 T )ϵ2

T

z2
T

≲
log2 T
T 2ϵ2

T

= o(1).

With similar computations, we also obtain that �0 [W0 −�0 [W0] ⩾ zT ] = o(1). Consequently, reporting
into (S1.6) and using Lemma S6.1, we finally obtain that

�0
[
LT ( f0) − LT ( f ) > 5zT

]
⩽ �0 [LT > 5zT − uT ] ⩽ �0 [LT > 4zT ] = o(1),

since KL( f0, f ) ⩽ uT ⩽ zT using Lemmas S6.1 and S6.3.

S2. Proof of Theorem 3.11 and Proposition 3.10

S2.1. Proof of Theorem 3.11 (Case 2)

In this section, we prove the second case of the proof of Theorem 3.11 in Section 5.5 of [8]. We recall
that in this case we consider (l, k) ∈ I(δ0), i.e., δ0

lk = 1. We also recall the notation S 0
lk = ∥h0

lk∥1 and
MT = M

√
κT with M > 0.

We first note that if S 0
lk > M1

√
κT ϵT with M1 > M and 1−F(S 0

lk/2) ⩾ 2e−γT ϵ2
T for some γ > κT +c1 =:

κ′T , then if δlk = 0, f ∈ AL1 (M1
√
κT ϵT )c and

Π(δlk = 0|N) ⩽Π(AL1 (MT ϵT )c|N), and S 0
lk −MT ϵT ⩾ S 0

lk/2.

Therefore, since F is non-increasing, F(S 0
lk −MT ϵT ) ⩽ F(S 0

lk/2) and

�0
[
δ̂Π,Llk = 0

]
⩽ �0

[
Π((1 − F(S lk))1δ=1(1S lk⩾S 0

lk−MT ϵT
+ 1S lk<S 0

lk−MT ϵT
)|N) ⩽Π(AL1 (2MT ϵT )c|N)

]

⩽ �0

[
(1 − F(S 0

lk/2))Π(S lk > S 0
lk −MT ϵT |N) +Π((1 − F(S lk))1S lk<S 0

lk−MT ϵT
)|N) ⩽Π(AL1 (M1

√
κT ϵT )c|N)

]

⩽ �0

[
2e−γT ϵ2

TΠ(S lk > S 0
lk −MT ϵT |N) ⩽Π(AL1 (M1

√
κT ϵT )c|N)

]

⩽ �0
[
Π(S lk > S 0

lk −MT ϵT |N) ⩽ 1/2
]
+�0

[
Ω̃T ∩

{
e−γT ϵ2

T ⩽Π(AL1 (M1
√
κT ϵT )c|N)

}]
+�0

[
Ω̃c

T

]
.

Similar to the first case where δ0
lk = 0, we have that �0

[
Ω̃T ∩

{
e−κ

′
T ϵ

2
T ⩽Π(AL1 (MT ϵT )c|N)

}]
= o(1),

and since γ ⩾ κ′T ,

�0
[
δ̂Π,Llk = 0

]
⩽ �0

[
Π(S lk > S 0

lk −MT ϵT |N) ⩽ 1/2
]
+ o(1) = �0

[
Π(S lk < S 0

lk −MT ϵT |N) > 1/2
]
+ o(1)

⩽ �0
[
Ω̃T ∩ {Π(AL1 (M1

√
κT ϵT )c|N) > 1/2}

]
+�0

[
Ω̃c

T

]
= o(1),

which terminates this proof.
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S2.2. Proof of Proposition 3.10

In this section, we prove our posterior consistency result on the posterior distribution in the restricted
models, the All equal model and Receiver dependent model, defined in Section 3.2 of [8].

In the All equal model, if I(δ0) , ∅ then ∃(l1, k1) ∈ [K]2, δ0
l1k1
= 1, and h0 , 0. Consequently, for T

large enough,

{ f ∈ F ; δl1k1 , δ
0
l1k1
} =

{
f ∈ F ; δl1k1 = 0

}
⊂

{
f ∈ F ; ∥h0

l1k1
− hl1k1∥1 = ∥h0∥1

}
⊂ AL1 (MT ϵT )c,

leading to �0
[
Π(δl1k1 , δ

0
l1k1
|N)

]
= o(1) using Theorem 3.2. This would hold for the same reasons for

any (l, k) ∈ I(δ0). For (l, k) < I(δ0), we have instead that for T large enough,

{ f ∈ F ; δlk , δ0
lk} = { f ∈ F ; δlk = 1} ⊂ { f ∈ F ;

∥∥∥h0
lk − hlk

∥∥∥
1 = ∥h∥1}

⊂ { f ∈ F ; ∥h∥1 +
∥∥∥∥h0

l1k1
− hl1k1

∥∥∥∥
1
⩾ ∥h0∥1} ⊂ AL1 (MT ϵT )c,

as soon as ∥h0∥1 ⩾ 3MT ϵT , since ∥h∥1 +
∥∥∥∥h0

l1k1
− hl1k1

∥∥∥∥
1
⩾ ∥h∥1 + ∥h0∥1 ∧

∥∥∥h − h0
∥∥∥

1 ⩾ (∥h∥1 + ∥h0∥1) ∧
(∥h∥1 + ∥h − h0∥1) ⩾ ∥h0∥. Similarly to the proof of Theorem 3.9 in Section 5.4, we then obtain
�0 [Π(δ , δ0|N)] = o(1).

If I(δ0) = ∅, then ∀(l, k) ∈ [K]2, δ0
lk = 0, and h0 = 0, and in this case we first show that there exists

C > 0 such that

�0
[{

DT <CT−K/2
}
∩ Ω̃T

]
= o(1). (S2.8)

Since h0 = 0, the log-likelihood function is the one of a K independent homogeneous Poisson PP with
parameter r0, i.e.,

LT ( f0) = LT (r0) =
∑

k

log(r0
k )Nk[0,T ) − r0

k T,

with r0
k = ϕk(ν0

k). Let Ā = { f ∈ FT ; h = 0}. For any f ∈ Ā, we also have LT ( f ) = LT (r f ) =
∑

k log(r f
k )Nk[0,T )−

r f
k T and the model is also a Poisson PP, which is a regular model, and which parameter is ϕ(ν). There-

fore, we have

LT (r) − LT (r0) =
∑

k

log(
rk

r0
k

)Nk[0,T ) − (r f
k − r0

k )T

=
∑

k


r f

k − r0
k

r0
k

− 1
2


r f

k − r0
k

r0
k



2

+O�0 (r f
k − r0

k )3

 Nk[0,T ) − (r f
k − r0

k )T

=
∑

k


Nk[0,T )

r0
k

− T

 (r f
k − r0

k ) − Nk[0,T )
2


r f

k − r0
k

r0
k



2

+O�0 (T (r f
k − r0

k )3).

Also, let π̃r be the prior density of r f
k = ϕk(νk) given by π̃r(x) = ϕ(ν)πν(ν). Note that in the case of

partially known link functions of the form ϕk(x) = θk + ψ(x), the parameter of the Poisson PP is now
(ν, θ) and we can consider a marginal prior density of r f

k = θk + ψ(νk) given by

π̃r(x) =
∫ ψ−1(x)

0
πθ(x − ψ(ν))πν(ν)dν.
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The regularity assumptions on πν (and πθ) and ϕ−1 imply that π̃r is continuous and positive at r0
k for

all k.
Defining ĀT = Ā∩ {∥r f − r0∥1 ⩽ ϵ} for ϵ > 0 small enough, we thus have

DT =

∫

FT

eLT ( f )−LT ( f0)dΠ( f ) ⩾
∫

ĀT

eLT (r)−LT (r0)dΠ( f )

⩾
∫

ĀT

K∏

k=1

exp




Nk[0,T )

r0
k

− T

 (r f
k − r0

k ) − Nk[0,T )
2


r f

k − r0
k

r0
k



2

(1 + ϵ)


π̃(rk)drk

=

K∏

k=1

π̃r(r0
k )(1 + o�0 (1))e

r0
k

2(1+ϵ)Nk [0,T )

(
Nk [0,T )

r0
k
−T

)2

×

∫

|r f
k −r0

k |⩽ϵ/K
exp


−Nk[0,T )

2(r0
k )2

(1 − ϵ)
r

f
k − r0

k −
(r0

k )2

(1 + ϵ)Nk[0,T )


Nk[0,T )

r0
k

− T




2


dr f
k

⩾
K∏

k=1

π̃r(r0
k )r0

k

√
2π

[Nk[0,T )(1 + ϵ)]1/2 (1 + o�0 (1)) ⩾
K∏

k=1

√
2ππ̃r(r0

k )r0
k

[T (1 + ϵ)]1/2 (1 + o�0 (1)),

since Nk[0,T ) is a Poisson random variable with parameter r0
k T so that |Nk[0,T )/T − r0

k | ⩽ MT /
√

T

with probability going to 1 and {|r f
k − r0

k | ⩽ ϵ/K} contains the set
∣∣∣∣∣∣∣
r f

k − r0
k −

(r0
k )2

(1 − ϵ)Nk[0,T )


Nk[0,T )

r0
k

− T



∣∣∣∣∣∣∣
⩽

ϵ

2K
,

for T large enough. Therefore we obtain (S2.8) and deduce that ϵT ≲
√

log T/T using the same argu-
ments as in the proofs of Theorem 3.2. As in Theorem 3.2, it is thus sufficient that

Π({0 < ∥h∥1 ⩽ M
√

log T/T } ∩ {max
k
|r f

k − r0
k | ⩽ M

√
log T/T })

⩽Π({0 < ∥h∥1 ⩽ M
√

log T/T } ∩ {max
k
|νk − ν0

k | ⩽
M
L

√
log T/T }) = o(T−K/2),

for M large enough which boils down to assuming that

Π({0 < ∥h∥1 ⩽ M
√

log T/T }) = o((log T )−K/2),

to conclude that �0 [Π (δ , δ0|N)] = o(1).
In the Receiver node dependent model, i.e., ∀(l, k) ∈ [K]2,hlk = δlkhk, we obtain the result similarly

to the All equal model since the likelihood is also a product of likelihoods per node:

LT ( f ) =
K∑

k=1

LT (νk,hk, δ(k), θk), with δ(k) := (δlk,1 ⩽ l ⩽ K),

LT (νk,hk, δ(k), θk) :=
∑

T k
i

logλk
T k

i
( fk) −

∫ T

0
λk

t ( fk)dt, fk = (νk,hk, δ(k), θk), k ∈ [K].
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If the priors on (θk, νk,hk, δ(k)) are independent, the posteriors are also independent and we can directly
apply the previous result.

S3. Proof of Corollary 3.8

In this section we prove our result on the convergence rate of the posterior mean estimator. In all the
considered models with known link functions, the convergence of the posterior mean f̂ = (ν̂, ĥ) results
from the same arguments as in Corollary 1 of [2] (proof in Section 2.3 in the supplementary material).
In the case of the shifted ReLU model with unknown shift, we can also use similar computations for
f̂ = (ν̂, ĥ) and θ̂. We first recall some notation from the proofs of Theorem 3.2 and Proposition 3.5:
Ā(M̃T ϵT ) = {θ ∈ Θ, ∥θ − θ0∥1 < M̃T ϵT }, AL1 (MT ϵT ) = {( f , θ) ∈ F × Θ, ∥θ + ν − θ0 − ν0∥1 + ∥h − h0∥1 <
MT ϵT } and M̃T = M̃

√
κT , MT = M

√
κT , M̃ > M > 0. We note that

∥∥∥θ̂ − θ0
∥∥∥

1 ⩽ M̃T ϵT +�
Π[∥θ − θ0∥1 1Ā(M̃T ϵT )c |N].

Then, splitting Ā(M̃T ϵT )c ×FT into Ā(M̃T ϵT )c ×FT ∩ AL1 (MT ϵT ) and Ā(M̃T ϵT )c ×FT ∩ AL1 (MT ϵT )c,
we control�Π[∥θ − θ0∥1 1BT |N] using the following arguments with BT representing either Ā(M̃T ϵT )c×
FT ∩ AL1 (MT ϵT ) or AL1 (MT ϵT )c. Using the decomposition (24), with κ′T = κT + c1, we have

�0
[
�Π[∥θ − θ0∥1 1BT |N] > ϵT

]
⩽�0

[
ϕ1Ω̃T

]
+�0

[
{DT < e−κ

′
T T ϵ2

T } ∩ Ω̃T

]
+�0

[
Ω̃c

T

]
+

eκ
′
T T ϵ2

T

ϵT
Π(F c

T )

+
eκ
′
T T ϵ2

T

ϵT

∫

FT∩BT

∥θ − θ0∥1�0

[
� f

[
(1 − ϕ)1Ω̃T

] ∣∣∣∣G0

]
dΠ( f , θ)

⩽ o(1) + o
(∫

FT∩BT

∥θ − θ0∥1 dΠ( f , θ)
)
= o(1),

using the tests defined In Lemma A.5 if BT = Ā(M̃T ϵT )c × FT ∩ AL1 (MT ϵT ) or the tests defined

in Lemma S5.1 if BT = AL1 (MT ϵT )c, and also that log T = o(T ϵ2
T ) to obtain that eκ

′
T T ϵ2T
ϵT
Π(F c

T ) ⩽

Π(Hc
T )eκ

′
T T ϵ2

T−log ϵT = o(1), whichs terminates this proof.

S4. Proofs of some results on prior distributions

In this section, we present an alternative construction of the prior distribution using mixtures of Beta
distributions and the proof of Lemma 4.3, which gives one example of model where the condition (8)
can be verified.

S4.1. Mixtures of Betas priors

This family of prior distributions can be also considered alongside the ones presented in Section 4
of [8]. The following construction is similar to Section 2.3.2 of [2], which is based on [7]. Using the
hierarchical structure (15) from Section 4 , we define πh̄ as follows. For simplicity, we here consider
that A = 1. Let

h̃α,M(x) =
∫

u
gα,u(x)dM(u), gα,u(x) =

Γ(α/u(1 − u))
Γ(α/u)Γ(α/(1 − u))

x−α/(1−u)−1(1 − x)−α/u−1,
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and πh̃ be the push forward distribution of Πα ×ΠM by the transformation (α,M)→ hα,M , where Πα
and ΠM are respectively the probability distribution on α and M. Therefore πh̃ is a bounded signed
measure on [0,1]. As in [2], we choose

√
α to follow a Gamma distribution and define ΠM by

M(u) =
J∑

j=1

r j p jδu j (u), u j
i.i.d.∼ G0, J ∼ P(λ),

where G0 is a base measure and the r j’s are independent Rademacher random variables and
(p1, · · · , pJ) ∼ D(a1, · · · ,aJ) with

∑J
j=1 a j ⩽ C for some fixed C > 0. Note that since ∥h̄α,M∥1 ⩽ 1, we

can define

hlk = S̃ lkh̃lk, ∥S̃ +∥ ⩽ 1, h̃lk
i.i.d.∼ πh̃,

so that the prior distribution on h is the push forward distribution of π⊗|I(δ)|
h̃

× πS |δ by the above trans-
formation, with πS defined in (S2) in Section 4 of [8]. Since S̃ is a (component-wise) upper bound on
the matrix S , ∥S̃ +∥ ⩽ 1 implies ∥S +∥ ⩽ 1. We then arrive at the following result.

Corollary S4.1. Let N be a Hawkes process with link functions ϕ = (ϕk)k and parameter f0 = (ν0,h0)
such that (ϕ, f0) verify the conditions of Lemma 2.1, and Assumption 3.1. Under the above spline prior,
if the prior on S satisfies the conditions defined in (S1) (Section 4 of [8]), and also if ∀(l, k) ∈ [K]2, h0

lk ∈H(β,L) with β > 0 and ∥S +0 ∥ < 1 then for M large enough,

�0
[
Π
(∥ f − f0∥1 > MT−β/(2β+1)

√
log log T (log T )q

∣∣∣N)]
= o(1),

where q = 5β/(4β+2) if ϕ verifies Assumption 3.1(i) , and q = 1/2+5β/(4β+2) if ϕ verifies Assumption
3.1(ii) .

S4.2. Proof of Lemma 4.3

Lemma S4.2 (Lemma 4.3). Let N be a Hawkes process with ReLU link functions ϕk(x) = (x)+,∀k ∈
[K], and parameter f0 = (ν0,h0) such that (ϕ, f0) verify condition (C1bis) and for all l, there exists
J0 ∈�∗ such that

h0
lk(t) =

J0∑

j=1

ωlk
j01I j (t), ωlk

j0 ∈�, ∀ j ∈ [J0],

with {I j}J0
j=1 a partition of [0,A]. Then, condition (8) of Proposition 3.5 holds, i.e.,

lim sup
T→∞

1
T
�0


∫ T

0

1λk
t ( f0)>0

λk
t ( f0)

dt
 < +∞, k ∈ [K].

Proof. Let f0 verifying the conditions of the lemma. We first show that there exists c0 > 0 that depends
only on the parameters {ν0

k , {ωkl
j0}Jj=1}Kk,l=1 such that ∀k ∈ [K],∀t ⩾ 0, λk

t ( f0) > 0 =⇒ λk
t ( f0) ⩾ c0. We

prove here the result for the unidimensional Hawkes model with K = 1, but our proof can be easily
generalized to K > 1. We therefore use the notation ν0 and w j0 for ν0

1 and w11
j0 .

Since w j0 ∈ �, let p j,q j ∈ � such that w j0 = p j/q j and let q ∈ � be the least common multiple of
(p j,q j). Thus there exists a j ∈ � such that ω j0 = a j/q. and for any t ⩾ 0, let n j(t) =

∫ t
t−A 1I j (t − s)dNs
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be the number of events that ”activate” the bin j at t. With this notation, we can then write

λt( f0) =

ν0 +

J0∑

j=1

n j(t)
a j

q


+

=

ν0 +

J0∑

j=1

n j(t)
a j

q


+

=


1
q

ν0q +
J0∑

j=1

n j(t)a j




+

.

Let ε > 0 such that ε =minu∈�,ν0q+u>0 ν0q + u. Then ε > 0 and for any t ⩾ 0 such that λ̃t( f0) > 0, since∑J0
j=1 n j(t)a j ∈�, then ν0q+

∑J0
j=1 n j(t)a j ⩾ ε > 0 and λt( f0) ⩾ ε/q =: c0 > 0, which proves that (i) holds.

Therefore, in this model, we have

1
T
�0

(∫ T

0

1λt( f0)>0

λt( f0)
dt

)
⩽

1
T
�0

(∫ T

0

1λt( f0)>0

c0
dt

)
⩽

1
T
�0

(∫ T

0

1
c0

dt
)
=

1
c0
< +∞,

which proves that (8) is satisfied. □

Remark S4.3. We could similarly show that if also ∀l ∈ [K],∀ j ∈ [J], ν0
k ∈ �\�, then there exists

d0 < 0 depending on {ν0
k , {ωkl

j0}Jj=1}Kk,l=1 such that ∀k ∈ [K],∀t ⩾ 0, λk
t ( f0) = 0 =⇒ λ̃k

t (ν0,h0) ⩽ d0.

S5. Lemmas on tests

In this section we prove two technical lemmas on the test functions used in the proofs of Theorem 5.5
and Proposition 3.5. In Section S5.1, we state and prove our first lemma, Lemma S5.1, which relates
to the elementary test functions used in the proof of Theorem 5.5 (Section S1) and in Section S5.2, we
prove Lemma A.5, which provides the bound on the error of the tests used in the proof of Case 2 of
Proposition 3.5.

S5.1. Lemma S5.1: test used in the proof of Theorem 5.5

Lemma S5.1. For i ⩾ 1, let Fi = { f ∈ FT ; νl ⩽ ν0
l + 2K∥r0∥1�0(∆τ1)iϵT , ∀l ∈ [K]} and f1 ∈ Fi. We

define the test

ϕ f1,i =max
l∈[K]

1{Nl(A1l)−Λl(A1l, f0)⩾iT ϵT /8} ∧ 1{Nl(Ac
1l)−Λl(Ac

1l, f0)⩾iT ϵT /8},

where for all l ∈ [K], A1l = {t ∈ [0,T ]; λl
t( f1) ⩾ λl

t( f0)},Λl(A1l, f0) =
∫ T

0 1A1l (t)λ
l
t( f0)dt andΛl(Ac

1l, f0) =∫ T
0 1Ac

1l
(t)λl

t( f0)dt. Then

�0[1Ω̃T
ϕ f1,i] + sup

∥ f− f1∥1⩽iϵT /(12N0)
�0

[
� f [1Ω̃T

1 f∈S i (1 − ϕ f1,i)|G0]
]
⩽ (2K + 1) max

l∈[K]
e−x1lTiϵT (

√
µ0

l ∧iϵT )
,

where for l ∈ [K], x1l > 0 is an absolute constant, µ0
l = �0

[
λl

t( f0)
]
, N0 = 1 +

∑K
l=1 µ

0
l and S i is defined

in (S1.1).
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Proof. For l ∈ [K], let

ϕil = ϕil( f1) = 1{Nl(A1l)−Λl(A1l, f0)⩾iT ϵT /8}.

Mimicking the proof of Lemma 1 of [2], we obtain that

�0
[
ϕil1Ω̃T

]
⩽ e−x1iT ϵT min(

√
µ0

l ,iϵT )
. (S5.9)

We first consider the event {Λl(A1l, f1) −Λl(A1l, f0) ⩾Λl(Ac
1l, f1) −Λl(Ac

1l, f0)}. Let f ∈ Fi such that
∥ f − f1∥1 ⩽ ζiϵT with ζ = 1/(6N0) and N0 = 1+

∑
l µ

0
l . On Ω̃T , using that ϕl is L-Lipschitz for any l, we

have

Td̃1T ( f , f1) =
K∑

l=1

∫ T

0
1A2(T )(t)|λl

t( f ) − λl
t( f1)|dt ⩽

K∑

l=1

∫ T

0
|λl

t( f ) − λl
t( f1)|dt

⩽ L
K∑

l=1

∫ T

0
|λ̃l

t(ν,h) − λ̃l
t(ν1,h1)|dt

⩽ T L
K∑

l=1

|νl − ν1
l | + L

K∑

l=1

K∑

k=1

∫ T

0

∫ t

t−A
|(hkl − h1

kl)(t − s)|Nk(ds)

⩽ T L ∥ν − ν1∥1 +max
l

Nl[−A,T ]L
K∑

l=1

K∑

k=1

∥hkl − h1
kl∥1

⩽ LN0T ∥ f − f1∥1 ⩽ LN0TζiϵT .

Moreover, since f ∈ S i, on Ω̃T , we also have that

∫ T

0
1A2(T )λ

l
t( f )dt ⩽

∫ T

0
1A2(T )λ

l
t( f0)dt + KT (i + 1)ϵT ⩽ 2Tµ0

l + KT (i + 1)ϵT =: ṽ.

Applying again inequality (7.7) of [5] with v = ṽ and using the computations of [2], we arrive at

� f

[
1Ω̃T

1 f∈S i (1 − ϕil)
∣∣∣∣G0

]
⩽ 2Ke−x1liT ϵT min(

√
µ0

l ,iϵT )
,

for some x1l > 0. We can obtain similar results for

ϕ′il = 1{Nl(Ac
1l)−Λl(Āc

1l, f0)⩾iT ϵT /8}.

Finally, with ϕ f1,i =max
l∈[K]

ϕil ∧ ϕ′il, we arrive at the final results of this lemma:

�0
[
ϕ f1,i1Ω̃T

]
⩽max

l
e−x1liT ϵT min(

√
µ0

l ,iϵT )
⩽ e
−(min

l
x1l)iT ϵT min(

√
µ0

l ,iϵT )

� f [1Ω̃T
1 f∈S i (1 − ϕ f1,i)|G0] ⩽min

l
� f [1Ω̃T

1 f∈S i (1 − ϕil)|G0] ⩽ 2Ke
−(min

l
x1l)iT ϵT min(

√
µ0

l ,iϵT )
.

□
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S5.2. Proof of Lemma A.5

In Lemma A.5, we establish the bound on the type I and type II errors of the tests to estimate the
parameter θ in the shifted ReLU link function considered in Case 2 of Proposition 3.5.

We recall that Θ =�+\{0}K and Ā(R) = {θ ∈Θ; ∥θ − θ0∥1 ⩽ R}. Let ζ > 0 and

( f1, θ1) = (ν1,h1, θ1) = ((ν1
k)k, (h1

lk)l,k, (θ1
k )k) ∈ (Ā(M̃T ϵT )c ×F )∩ AL1 (MT ϵT ),

with M̃T = M̃
√
κT , MT = M

√
κT and M̃ ⩾ M. Let ( f , θ) ∈ (Ā(M̃T ϵT )c × F ) ∩ AL1 (MT ϵT ) such that

∥ f − f1∥1 ⩽ ζϵT , i.e,
∑

k

|νk − ν1
k | + |θk − θ1

k | +
∑

l,k

∥∥∥hlk − h1
lk

∥∥∥
1 ⩽ ζϵT .

Since θ ∈ Ā(M̃T ϵT )c, there exists k ∈ [K] such that |θ0
k − θk | ⩾ M̃T ϵT /K. For this k, from assumption

(S7.36), there exists l ∈ [K] and x1, x2, c⋆ > 0 such that ∀x ∈ [x1, x2], h0
lk(x) ⩽ −c⋆ < 0.

We first consider the case θk < θ
0
k − M̃T ϵT /K and recall the notation of Section 5.3: δ′ = (x2 − x1)/3,

n1 = ⌊2ν1
k/(κ1c⋆)⌋ + 1 for some κ1 ∈ (0,1) and the subset of excursions

E = { j ∈ [JT ]; N[τ j, τ j + δ
′) = Nl[τ j, τ j + δ

′) = n1, N[τ j + δ
′, τ j+1) = 0}.

We recall that

I0
k ( f1, θ1) =

{
t ∈ [0,T ]; λk

t ( f1, θ1) = θ1
k , λ

k
t ( f0, θ0) = θ0

k

}
,

and we first state a preliminary lemma on I0
k ( f1, θ1), which is proved at the end of this proof.

Lemma S5.2. In the Hawkes model with shifted ReLU link function , for any f0 ∈ F such that (S7.36)
is satisfied and any ( f1, θ1) ∈ (Ā(M̃T ϵT )c ×Θ)∩ AL1 (MT ϵT ), on Ω̃′T , it holds that

|I0
k ( f1, θ1)| ⩾ x2 − x1

2

∑

j∈[JT ]

1 j∈E,

with E defined in (35).

Let

ϕk( f1, θ1) := 1Nk(I0
k ( f1,θ1))−Λk(I0

k ( f1,θ1), f0)<−vT ∨ 1|E|< p0T
2�0[∆τ1]

,

with Λk(I0
k ( f1, θ1), f0) =

∫ T
0 1I0

k ( f1,θ1)(t)λ
k
t ( f0)dt, p0 = �0

[
j ∈ E], vT = wT T ϵT > 0 with wT > 0 chosen

later. We have by definition

�0

[
ϕk( f1, θ1)1Ω̃′T

]
⩽ �0

[{
|E| < p0T

2�0 [∆τ1]

}
∩ Ω̃′T

]
+�0

[{
Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f0) < −vT

}
∩ Ω̃′T

]
.

(S5.10)
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For the first term on the RHS of (S5.10), we apply Hoeffding’s inequality with X j = 1 j∈E
i.i.d.∼ B(p0):

�0

[{
|E| < p0T

2�0 [∆τ1]

}
∩ Ω̃′T

]
⩽ �0





JT∑

j=1

X j <
p0T

2�0 [∆τ1]


∩ Ω̃′T



⩽ �0


T/(2�0[∆τ1])∑

j=1

X j <
p0T

2�0 [∆τ1]

 ≲ e
− T p2

0
8�0[∆τ1] = o(e−u0T ϵ2

T )),

for u0 < p2
0/(8�0 [∆τ1]) and using that on Ω̃′T , JT > T/(2�0 [∆τ1]). For the second term of the RHS

of (S5.10), we apply inequality (7.7) in [5], with Ht = 1I0
k ( f1,θ1)(t), H2

t ◦Λk
t ( f0) =

∫ T
0 1I0

k ( f1,θ1)(t)θ
0
kdt =

θ0
k |I0

k ( f1, θ1)| ⩽ θ0
kT , x = x3T ϵ2

T , x3 > 0. If
√

2θ0
kT x + x/3 ⩽ wT T ϵT and x3 > u0, then by (7.7) of [5],

�0
[{

Nk(I0
k ( f1, θ1)) −Λk(I0

k ( f1, θ1), f0) < −vT
}
∩ Ω̃′T

]
⩽ e−x3T ϵ2

T = o(e−u0T ϵ2
T ).

Reporting into (S5.10), we obtain that �0

[
ϕk( f1)1Ω̃′T

]
= o(e−u0T ϵ2

T ), which proves the first part of
Lemma A.5. To prove the second part of Lemma A.5, we first note that

� f

[
(1 − ϕk( f1, θ1))1Ω̃′T

]
= � f

[{
Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f0) ⩾ −vT

}
∩

{
|E| ⩾ p0T

2�0 [∆τ1]

}
∩ Ω̃′T

]
.

(S5.11)

We also have

Λk(I0
k ( f1, θ1), f0) −Λk(I0

k ( f1, θ1), f ) = Λk(I0
k ( f1, θ1), f0) −Λk(I0

k ( f1, θ1), f1) (S5.12)

+Λk(I0
k ( f1, θ1), f1) −Λk(I0

k ( f1, θ1), f ). (S5.13)

Firstly, if |E| > p0
2�0[∆τ1] T , then from Lemma S5.2,

|I0
k ( f1, θ1)| ⩾ (x2 − x1)p0

4�0 [∆τ1]
T (S5.14)

and

Λk(I0
k ( f1, θ1), f0) −Λk(I0

k ( f1, θ1), f1) = (θ0
k − θ1

k )|I0
k ( f1, θ1)| ⩾ (x2 − x1)p0

8K�0 [∆τ1]
M̃T T ϵT , (S5.15)

since ∥θ−θ1∥1 ⩽ ζϵT therefore θ0
k −θ1

k ⩾ |θ0
k −θk |− |θk−θ1

k | ⩾ M̃T ϵT /K−ζϵT ⩾ M̃T
2K ϵT for T large enough.

Secondly, since ∀t ∈ I0
k ( f1, θ1), λ̃k

t (ν1,h1) ⩽ 0 and λ̃k
t (ν,h) ⩽ 0, we have

Λk(I0
k ( f1, θ1), f1) −Λk(I0

k ( f1, θ1), f ) = (θ1
k − θk)|I0

k ( f1, θ1)| −
∫

I0
k ( f1,θ1)

(
(λ̃k

t (ν,h))+ − (λ̃k
t (ν1,h1))+

)
dt

⩾ (θ1
k − θk)|I0

k ( f1, θ1)| −
∫

I0
k ( f1,θ1)

|λ̃k
t (ν,h) − λ̃k

t (ν1,h1)|dt

⩾ −ζT ϵT −
∫ T

0
|λ̃k

t (ν,h) − λ̃k
t (ν1,h1))|dt, (S5.16)
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where we have used the fact that by definition |I0
k ( f1, θ1)| ⩽ T . Using Fubini’s theorem, for any l ∈ [K],

we have
∫ T

0
|λ̃k

t (ν,h) − λ̃k
t (ν1,h1))|dt =

∫ T

0

∣∣∣∣∣∣∣
νk − ν1

k +
∑

l

∫ t−

t−A
(hlk − h1

lk)(t − s)dNl
s

∣∣∣∣∣∣∣
dt

⩽ T |νk − ν1
k | +

∑

l

∫ T

T−A

∫ s+A

s
|hlk − h1

lk |(t)|dtdNl
s = T |νk − ν1

k | +
∑

l

∥∥∥hlk − h1
lk

∥∥∥
1 Nl[−A,T ]

⩽ T ∥ f − f1∥
1 +

∑

l

(µ0
l + δT )

 ⩽ ζT ϵT

1 + 2
∑

l

µ0
l

 , (S5.17)

using the definition of Ω̃′T in Section 5.2. Consequently, reporting the previous upper bound into
(S5.16), we obtain

Λk(I0
k ( f1, θ1), f1) −Λk(I0

k ( f1, θ1), f ) ⩾ −ζT ϵT (2 + 2
∑

l

µ0
l ).

Therefore, using now (S5.15) and (S5.16) in (S5.12), we arrive at

Λk(I0
k ( f1, θ1), f0) −Λk(I0

k ( f1, θ1), f ) ⩾
M̃T (x2 − x1)p0

8K�0 [∆τ1]
T ϵT − ζT ϵT (2 + 2

∑

l

µ0
l ) ⩾

M̃T (x2 − x1)p0

16K�0 [∆τ1]
T ϵT ,

since for T large enough, M̃T >
16Kζ�0[∆τ1](2+2

∑
l µ

0
l )

(x2−x1)p0
. Reporting into (S5.11), we obtain

� f

[{
Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f0) ⩾ −vT

}
∩

{
|E| ⩾ p0T

2�0 [∆τ1]

}
∩ Ω̃′T

]

⩽ � f

[
{Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f ) ⩾ −vT +

M̃T (x2 − x1)p0

16�0 [∆τ1]
T ϵT } ∩ Ω̃′T

]

⩽ � f
[
{Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f ) ⩾ vT } ∩ Ω̃′T

]
,

if M̃T >
16wT�0[∆τ1]

(x2−x1)p0
, which is true for M̃ large enough (recall that M̃T = M̃

√
κT ) if wT ⩽ C

√
κT with

C > 0 a constant.
Similarly to the proof of Lemma 1 in [2], we can adapt inequality (7.7) from [5] with Ht = 1I0

k ( f1,θ1)(t)

to the conditional probability � f [.|G0] and the supermartingale
∫ T

0 1I0
k ( f1,θ1)(t)(dNt − λk

t ( f , θ)dt). With

τ = T , xT = x1T ϵ2
T , we obtain

� f
[
{Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f ) > vT } ∩ Ω̃′T

]
⩽ e−xT T ϵ2

T = o(e−(κT+c1)T ϵ2
T ), if xT > κT + c1.

(S5.18)

For this to be true, we also need vT >
√

2ṽ(κT + c1)T ϵ2
T + (κT + c1)T ϵ2

T /3 where ṽ is an upper bound of

H2
t ◦Λk

t ( f ). Using the fact that ∀t ∈ I0
k ( f1, θ1), λ̃k

t (ν1,h1) ⩽ 0, we have

H2
t ◦Λk

t ( f ) =
∫

I0
k ( f1,θ1)

λk
t ( f , θ)dt = θk |I0

k ( f1, θ1)| +
∫

I0
k ( f1,θ1)∩{λ̃k

t (ν,h)>0}
λ̃k

t (ν,h)dt
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⩽ θk |I0
k ( f1, θ1)| +

∫

I0
k ( f1,θ1)∩{λ̃k

t (ν,h)>0}
|λ̃k

t (ν,h) − λ̃k
t (ν1,h1)|dt

⩽ θk |I0
k ( f1, θ1)| + ζT ϵT

1 + 2
∑

l

µ0
l

 ⩽ T (θk + M̃T ϵT /K) ⩽ θ0
kT =: ṽ,

using (S5.17) and since for T large enough, ζK(1 + 2
∑

l µ
0
l ) < MT ⩽ M̃T . Consequently, if wT >√

2θ0
k (κT + c1) + (κT + c1)ϵT /3 and wT ⩽ C

√
κT (which is possible since ϵT = o(1/

√
κT ) by assump-

tion), then (S5.18) holds and we can finally conclude that � f

[
(1 − ϕk( f1, θ1))1Ω̃′T

]
= o(e−(κT+c1)T ϵ2

T ) is
verified, which leads to the second part of Lemma A.5.

In the alternative case where θk > θ
0
k + M̃T ϵT /K, similar arguments can be applied with I0

k ( f1, θ1)
defined as in (34) and E defined as in (35) except that n1 = ⌊2ν0

k/(κ1c⋆)⌋+ 1. We then use the following
test, with vT = wT T ϵT

ϕk( f1, θ1) := 1Nk(I0
k ( f1,θ1))−Λk(I0

k ( f1,θ1), f0)>vT ∨ 1|E|< p0T
2�0[∆τ1]

.

Then Hoeffding’s inequality and inequality (7.7) from [5] lead to �0
[
ϕk( f1, θ1)1Ω̃T

]
= o(e−u0T ϵ2

T ). For
the second part of Lemma A.5, we first note that in this case, since ∀t ∈ I0

k ( f1, θ1), λk
t ( f , θ) ⩾ θk (and

also λk
t ( f0, θ0) = θ0

k , λk
t ( f1, θ1) = θ1

k ), then on the event |E| ⩾ p0T
2�0[∆τ1] ,

Λk(I0
k ( f1, θ1), f0) −Λk(I0

k ( f1, θ1), f ) ⩽ (θ0
k − θ1

k )|I0
k ( f1, θ1)| + (θ1

k − θk)|I0
k ( f1, θ1)|

⩽ (−M̃T ϵT /K + ζϵT )|I0
k ( f1, θ1)| ⩽ − M̃T ϵT |I0

k ( f1, θ1)|
2K

⩽ − (x2 − x1)p0

8K�0 [∆τ1]
M̃T T ϵT ,

for T large enough and using (S5.14). Consequently,

� f

[
{Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f0) ⩽ vT } ∩

{
|E| ⩾ p0T

2�0 [∆τ1]

}
∩ Ω̃′T

]

⩽ � f

[
{Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f ) ⩽ vT − (x2 − x1)p0

8�0 [∆τ1]
M̃T T ϵT } ∩ Ω̃′T

]

⩽ � f
[
{Nk(I0

k ( f1, θ1)) −Λk(I0
k ( f1, θ1), f ) ⩽ −vT } ∩ Ω̃′T

]
,

if M̃T >
16K�0[∆τ1]
(x2−x1)p0

wT . Applying inequality (7.7) from [5], we can finally obtain

� f

[
(1 − ϕk( f1, θ1))1Ω̃′T

]
= o(e−(κT+c1)T ϵ2

T ),

which ends the proof of Lemma A.5.

Proof of Lemma S5.2
Let ( f0, θ0) ∈ F × Θ, ( f1, θ1) ∈ (F × Ā(M̃T ϵT )c) ∩ AL1 (MT ϵT ) and k ∈ [K] such that |θ1

k − θ0
k | >

M̃T ϵT /K. For this k, from assumption (S7.36), there exists l ∈ [K] and x1, x2, c⋆ > 0 such that ∀x ∈
[x1, x2], h0

lk(x) ⩽ −c⋆ < 0. We first consider the case θ1
k < θ

0
k − M̃T ϵT /K. Since ( f1, θ1) ∈ AL1 (MT ϵT ),
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we also have that |θ1
k + ν

1
k − θ0

k − ν0
k | ⩽ MT ϵT , which implies that ν1

k > ν
0
k − (MT − M̃T /K)ϵT > ν0

k/2. For
0 < κ1 < 1, we define

B1 = {x ∈ [0,A]; h1−
lk (x) > κ1c⋆}, n1 =


2ν1

k

κ1c⋆

 + 1.

Moreover, since
∥∥∥h0

lk − h1
lk

∥∥∥
1 ⩽ MT ϵT and h0−

lk (x) ⩾ c⋆ for x ∈ [x1, x2],

|[x1, x2]∩ Bc
1|c⋆(1 − κ1) ⩽

∫

[x1,x2]∩Bc
1

(h1
lk − h0

lk)(x)dx ⩽ MT ϵT

=⇒ |[x1, x2]∩ B1| ⩾ (x2 − x1) − MT ϵT
c⋆(1 − κ1)

⩾ 3(x2 − x1)/4,

for T large enough.
Now let δ′ = (x2 − x1)/4. For j ∈ E, we denote T1, . . . ,Tn1 the n1 events occurring on [τ j, τ j + δ

′].
For t ∈ [τ j + x1 + δ

′, τ j + x2] , we have t − Ti ∈ [x1, x2] for any i ∈ [n1] and

λ̃k
t (ν0,h0) = ν0

k +
∑

i∈[n1]

h0
lk(t − Ti) < ν0

k − n1c⋆ < 2ν1
k − n1κ1c⋆ < 0,

by definition of n1. Similarly, for t ∈ B1 + [τ j, τ j + δ
′], we have t − Ti ∈ B1 and therefore

λ̃t(ν1,h1) = ν1
k +

∑

i∈[n1]

h1
lk(t − Ti) < 2ν1

k − n1κ1c⋆ < 0.

Consequently, for t ∈ ([x1, x2]∩B1)+ [τ j, τ j+δ
′], λk

t ( f0, θ0) = θ0
k and λk

t ( f1, θ1) = θ1
k , and thus ([x1, x2]∩

B1) + [τ j, τ j + δ
′] ⊂ I0

k ( f1, θ1). Moreover, we have
∣∣∣([x1, x2]∩ B1) + [τ j, τ j + δ

′]
∣∣∣ ⩾ 3(x2 − x1)/4 − (x2 − x1)/4 ⩾ (x2 − x1)/2.

Consequently,

|I0
k ( f1, θ1)| =

JT∑

j=0

[τ j, τ j+1]∩ {t ⩾ 0; λk
t ( f0, θ0) = θ0, λ

k
t ( f1, θ1) = θ1} ⩾

∑

j∈[JT ]

x2 − x1

2
1 j∈E.

In the alternative case θ1
k > θ

0
k + M̃T ϵT /K, similar computations can be derived by defining n1 as n1 =

min{n ∈�; nκ1c⋆ > ν0
k}.

S6. Lemmas on LT( f0) − LT( f )
For f0, f ∈ F , we define the Kullback-Leibler (KL) divergence in the Hawkes model as

KL( f0, f ) =�0[LT ( f0) − LT ( f )]. (S6.19)

With a slight abuse of notation, we still use the same notations LT ( f0),LT ( f ),KL( f0, f ) in the nonlinear
model with shifted ReLU link function with the additional shift parameter θ. We also note that with
the standard ReLU link function, the KL divergence can be infinite for some f ∈ F , e.g., if there exists
t ∈ [0,T ] such that dNk

t = 1 and λk
t ( f ) = 0. However, in this model, for any f ∈ B∞(ϵT ), λk

t (ν,h) ⩾
λk

t (ν0,h0), which implies that KL( f0, f ) < +∞. The next lemma provides some upper bound on the KL
divergence on B∞(ϵT ) with all the link functions considered in Theorem 3.2 and Proposition 3.5.
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S6.1. Lemma to bound the Kullback - Leibler divergence

Lemma S6.1. Under the assumptions of Theorem 3.2 and of Case 2 of Proposition 3.5, for any
f ∈ B∞(ϵT ) and T large enough,

0 ⩽ KL( f0, f ) ⩽ κ1T ϵ2
T ,

and, under the assumptions of Case 1 of Proposition 3.5, we similarly have

0 ⩽ KL( f0, f ) ⩽ κ2(log T )2T,

with κ1, κ2 > 0 constants that only depends on (ϕk)k and f0.

Remark S6.2. For the models considered in Theorem 3.2 and with the shifted ReLU link function
(Case 2 of Proposition 3.5), for f ∈ B2(ϵT ,B), we instead obtain

0 ⩽ KL( f0, f ) ≲ (log log T )T ϵ2
T .

Moreover, with the standard ReLU link function (Case 1 of Proposition 3.5), without assuming that the
additional condition (8) holds, we can also obtain the sub-obtimal bound

0 ⩽ KL( f0, f ) ≲ T ϵT ,

which would also lead to the sub-optimal posterior concentration rate
√
ϵT .

Proof. For simplicity of exposition, throughout this proof, we use the notation λk
t ( f ), λk

t ( f0) for the
intensity in all models, therefore including the case λk

t ( f , θ), λk
t ( f0, θ0) (Case 2 of Proposition 3.5).

Firstly, similarly to the proof of Lemma 2 of [2], we can easily prove that KL( f0, f ) ⩾ 0. Secondly,
since intensities are predictable, we have

�0


∫ T

0
log


λk

t ( f0)

λk
t ( f )

 (dNk
t − λk

t ( f0)dt)
 = 0. (S6.20)

Since

KL( f0, f ) =
∑

k

�0


∫ T

0
log


λk

t ( f0)

λk
t ( f )

dNk
t +

∫ T

0
(λk

t ( f ) − λk
t ( f0))dt

 , (S6.21)

then, with

RT =
∑

k

�0

1Ω̃c
T

∫ T

0
λk

t ( f0) log

λk

t ( f0)

λk
t ( f )

dt
 +�0

[
1Ω̃c

T

∫ T

0
(λk

t ( f ) − λk
t ( f0))dt

]
, (S6.22)

KL( f0, f ) =
∑

k

�0

1Ω̃T


∫ T

0
λk

t ( f0) log

λk

t ( f0)

λk
t ( f )

dt +
∫ T

0
(λk

t ( f ) − λk
t ( f0))dt


 + RT . (S6.23)

We first show that RT = o(T ϵ2
T ). For the first term on the RHS of (S6.22), if f ∈ B∞(ϵT ), we use that

log x ⩽ x − 1 for x ⩾ 1 and we have

∑

k
�0

1Ω̃c
T

∫ T

0
log

λk
t ( f )

λk
t ( f0)

λk
t ( f0)dt

 ⩽
∑

k
�0

1Ω̃c
T

∫ T

0
1λk

t ( f )>λk
t ( f0) log

λk
t ( f )

λk
t ( f0)

λk
t ( f0)dt
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⩽
∑

k
�0

[∫ T

0
1Ω̃c

T
1λk

t ( f0)>0

(
λk

t ( f ) − λk
t ( f0)

)
dt

]

⩽
∑

k
T L

|ν0
k − νk | +

∑

l

∥∥∥∥hlk − h0
lk

∥∥∥∥∞�0

1Ω̃c
T

sup
t∈[0,T ]

Nl[t − A, t)





⩽ T L
∑

k

|ν0
k − νk | +

∑

l

∥∥∥∥hlk − h0
lk

∥∥∥∥∞

�0

1Ω̃c
T

max
l

sup
t∈[0,T ]

Nl[t − A, t)

 ⩽ LT 1−βϵT (S6.24)

for T large enough, using Lemma A.1 for β > 0. If the model verifies Assumption 3.1(i), and f ∈
B2(ϵT ,B), we have

λk
t ( f )

λk
t ( f0)

∨ λ
k
t ( f0)

λk
t ( f )

⩽ 2
2θ0

k + 2Lν0
k + L(B+maxl

∥∥∥h0
lk

∥∥∥∞) supt N[t − A, t)

infx ϕk(x)
,

therefore

�0

1Ω̃c
T

∫ T

0

∣∣∣∣∣∣log
λk

t ( f )

λk
t ( f0)

∣∣∣∣∣∣λ
k
t ( f0)dt

 ≲�0

1Ω̃c
T

max
l

sup
t∈[0,T ]

Nl[t − A, t)
∫ T

0
λk

t ( f0)dt


≲ T�0

1Ω̃c
T

 sup
t∈[0,T ]

N[t − A, t)

ν0

k +max
l

∥∥∥h0
lk

∥∥∥∞ sup
t∈[0,T ]

Nl[t − A, t)



≲ T�0

1Ω̃c
T

max
l

 sup
t∈[0,T ]

Nl[t − A, t)


2 ≲ T 1−β.

If instead the model verifies Assumption 3.1(ii), using that logϕk is L1-Lipschitz for any k, we can
alternatively use that

∑

k
�0

1Ω̃c
T

∫ T

0

∣∣∣∣∣∣∣
log

λk
t ( f )

λk
t ( f0)

∣∣∣∣∣∣∣
λk

t ( f0)dt

 ⩽ L1
∑

k
�0

[∫ T

0
1Ω̃c

T
λk

t ( f0)|λ̃k
t ( f ) − λ̃k

t ( f0)|dt
]

≲
∑

k
T

|ν0
k − νk | +

∑

l

∥∥∥∥hlk − h0
lk

∥∥∥∥∞�0

1Ω̃c
T

max
l

 sup
t∈[0,T ]

Nl[t − A, t)


2

 ≲ T 1−β.

We can additionally bound the second term of (S6.22) in a similar fashion and conclude that, in all
cases, RT =O(T 1−β) = o(T ϵ2

T ) for β large enough.
To bound the first term of the RHS of (S6.23), we consider separately the models satisfying As-

sumption 3.1(i) and (ii) and Case 1 and Case 2 of Proposition 3.5.
Scenario 1: under Assumption 3.1(i) or Case 2 of Proposition 3.5

Under Assumption 3.1(i), for any f ∈ B∞(ϵT ) or f ∈ B2(ϵT ,B) and t ⩾ 0, λk
t ( f ) ⩾ infx ϕk(x) ⩾

mink infx ϕk(x) and λk
t ( f0) ⩽ Lν0

k + L supt∈[0,T ] N[t − A, t)
∑

l ∥h0
lk∥∞. In Case 2 of Proposition 3.5, for T

large enough, t ∈ [0,T ] and θ ∈ BΘ∞(ϵT ), λk
t ( f , θ) ⩾ θk ⩾ θ0

k/2 and λk
t ( f0, θ0) ⩽ θ0

k +Lν0
k +L supt∈[0,T ] N[t−

A, t)
∑

l ∥h0
lk∥∞. Therefore, in this scenario, on Ω̃T , λk

t ( f0)/λk
t ( f ) ⩽ ℓ0 log T for some ℓ0 > 0. Thus, with

χ(x) = − log x + x − 1, we have

KL( f0, f ) − RT =
∑

k

�0

1Ω̃T


∫ T

0
λk

t ( f0)
log


λk

t ( f0)

λk
t ( f )

 +
λk

t ( f )

λk
t ( f0)

− 1
dt
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=
∑

k

�0

1Ω̃T


∫ T

0
λk

t ( f0)χ

λk

t ( f )

λk
t ( f0)

dt



⩽
4 log(ℓ0 log T )
mink infx ϕk(x)

∑

k

�0

[
1Ω̃T

∫ T

0
(λk

t ( f0) − λk
t ( f ))2dt

]
,

since for any rT ∈ (0,1/2] and x ⩾ rT , we have χ(x) ⩽ 4 log r−1
T (x − 1)2 (see the proof of Lemma 2 of

[2]). Note that if f ∈ B∞(ϵT ), ∀t ∈ [0,T ], λk
t ( f ) ⩾ λk

t ( f0) and we obtain instead

KL( f0, f ) − RT ⩽
1

mink infx ϕk(x)

∑

k

�0

[
1Ω̃T

∫ T

0
(λk

t ( f0) − λk
t ( f ))2dt

]
.

Moreover, since ϕk is L-Lipschitz, under Assumption 3.1,

|λk
t ( f0) − λk

t ( f )| = |ϕk(λ̃k
t (ν0,h0)) − ϕk(λ̃k

t (ν,h))| ⩽ L|λ̃k
t (ν0,h0) − λ̃k

t (ν,h)|

⩽ L|νk − ν0
k | + L

∑

l

∫ t−

t−A
|hlk − h0

lk |(t − s)dNl
s,

and in Case 2 of Proposition 3.5, we have

|λk
t ( f0, θ0) − λk

t ( f , θ)| = |θ0
k + ϕk(λ̃k

t (ν0,h0)) − θk − ϕkλ̃
k
t (ν,h))| ⩽ |θ0

k − θk | + L|λ̃k
t (ν0,h0) − λ̃k

t (ν,h)|

⩽ |θk − θ0
k | + L|νk − ν0

k | + L
∑

l

∫ t−

t−A
|hlk − h0

lk |(t − s)dNl
s.

Using the same computations as in the proof of Lemma 2 of [2], we obtain

∑

k

�0

[
1Ω̃T

(∫ T

0
(λk

t ( f0) − λk
t ( f ))2

)
dt

]
⩽ γ0T

|νk − ν0
k |2 +

∑

l

∥hlk − h0
lk∥22

 ⩽ γ0T ϵ2
T ,

or

∑

k

�0

[
1Ω̃T

(∫ T

0
(λk

t ( f0, θ0) − λk
t ( f , θ))2

)
dt

]
⩽ γ0T


∑

k

|θk − θ0
k |2 + |νk − ν0

k |2 +
∑

l

∥hlk − h0
lk∥22

 ⩽ γ0T ϵ2
T ,

with γ0 :=max(1,L)
[
3 + 6K

∑
k

(
A�0

[
λk

0( f0)2
]
+�0

[
λk

0( f0)
])]

. Consequently,

KL( f0, f ) − RT ⩽


4 log(ℓ0 log T )
mink infx ϕk(x)γ0T ϵ2

T if f ∈ B2(ϵT ,B)
γ0

mink infx ϕk(x) T ϵ2
T if f ∈ B∞(ϵT ).

(S6.25)

Therefore, KL( f0, f ) ⩽ κ′1(log log T )T ϵ2
T , with κ′1 =

8γ0
mink infx ϕk(x) if f ∈ B2(ϵT ,B) - or KL( f0, f ) ⩽ κ1T ϵ2

T

with κ1 =
2

mink infx ϕk(x) if f ∈ B∞(ϵT ) .

Scenario 2: Under Assumption 3.1(ii), i.e., ϕk > 0, and logϕk and
√
ϕk are L1-Lipschitz, L1 > 0.

For k ∈ [K], let Λk( f ) :=
∫ T

0 λk
t ( f )dt. Then for t ∈ [0,T ], we define

αk
t ( f ) =

λk
t ( f )
Λk( f )

.
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From (S6.23), we have

KL( f0, f ) − RT =
∑

k

�0

1Ω̃T


∫ T

0
λk

t ( f0) log

λk

t ( f0)

λk
t ( f )

dt +
∫ T

0
(λk

t ( f ) − λk
t ( f0))dt




=
∑

k

�0

1Ω̃T

Λk
A( f0)

∫

Ak(T )
αk

t ( f0) log

αk

t ( f0)

αk
t ( f )

dt +Λk( f0) log
(
Λk( f0)
Λk( f )

)
+ (Λk( f ) −Λk( f0))




⩽
∑

k

�0

1Ω̃T

Λk( f0)
∫ T

0
αk

t ( f0) log

αk

t ( f0)

αk
t ( f )

dt +
(Λk( f0) −Λk( f ))2

Λk( f0)


 ,

where in the last inequality we have used that χ(x) ⩽ (x − 1)2 for x ⩾ 1/2, with x = Λ
k( f )
Λk( f0) . In fact, we

have

|Λk( f ) −Λk( f0)| ⩽ T L|νk − ν0
k | + L

∑

l

∥∥∥hlk − h0
lk

∥∥∥
1 Nl[−A,T ] ⩽ T LϵT (1 + 2 max

l
µ0

l ),

using that on Ω̃T , Nl[−A,T ] ⩽ Tµ0
l + TδT ⩽ 2Tµ0

l . Moreover, on Ω̃T , using the notations of Section
5.2, we have

Λk( f0) ⩾ ϕk(ν0
k)

JT−1∑

j=1

(U(1)
j − τ j) ⩾ ϕk(ν0

k)
T

2�0[∆τ1]∥r0∥1 =: y0T,

for some y0 > 0. Similarly, for f ∈ B2(ϵT ,B) or f ∈ B∞(ϵT ), we have

Λk( f ) ⩾ ϕk(νk)
JT−1∑

j=1

(U(1)
j − τ j) ⩾ ϕk(ν0

k/2)
T

2�0[∆τ1]∥r0∥1 .

Consequently,

1
2
⩽ 1 − |Λ

k( f ) −Λk( f0)|
ΛA( f0)

⩽
Λk( f )
Λk( f0)

⩽ 1 +
|Λk( f ) −Λk( f0)|
ΛA( f0)

⩽ 1 +
1 + 2A maxl µ

0
l

y0
ϵT = 1 +O(ϵT ),

for T large enough, and

(Λk( f ) −Λk( f0))2

Λk( f0)
⩽

L2T 2ϵ2
T (1 + 2 maxl µ

0
l )2

Λk( f0)
⩽

L2T ϵ2
T (1 + 2A maxl µ

0
l )2

y0
.

Additionally, on Ω̃T , on the one hand, for f ∈ B2(ϵT ,B), we also have that for any t ∈ [0,T ], since

λk
t ( f0) ⩽ λk

t ( f ) + ϵT + BCβ log T =⇒ λk
t ( f0)
λk

t ( f )
⩽ M0 log T for some M0 > 0, then

αk
t ( f0)

αk
t ( f )

=
λk

t ( f0)Λk( f )

λk
t ( f )Λk( f0)

⩽ M0 log T
Λk( f )
Λk( f0)

⩽ M log T +O(M0 log T ϵT ).

Applying Lemma 8.7 from [3], we have, for any M ⩾ M0,
∫ T

0
αk

t ( f0) log


αk

t ( f0)

αk
t ( f )

dt ⩽ log(M log T )
∫ T

0

(√
αk

t ( f0) −
√
αk

t ( f )
)2

dt.
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Moreover,

∫ T

0

(√
αk

t ( f0) −
√
αk

t ( f )
)2

dt ⩽
∫ T

0

1
Λk( f0)


√
λk

t ( f0) −
√
Λk( f0)
Λk( f )

λk
t ( f )



2

dt

⩽
2

Λk( f0)

∫ T

0

(√
λk

t ( f0) −
√
λk

t ( f )
)2

dt +
1

Λk( f0)

∫ T

0
λk

t ( f )

1 −
√
Λk( f0)
Λk( f )



2

dt

≲
1

Λk( f0)

∫ T

0

(√
λk

t ( f0) −
√
λk

t ( f )
)2

dt +
(Λk( f ) −Λk( f0))2

Λk( f0)2
.

On the other hand, if f ∈ B∞(ϵT ), then λk
t ( f0) ⩽ λk

t ( f ) and we have

∫ T

0
αk

t ( f0) log

αk

t ( f0)

αk
t ( f )

dt ⩽
2

Λk( f0)

∫ T

0

(√
λk

t ( f0) −
√
λk

t ( f )
)2

dt +
4(Λk( f ) −Λk( f0))2

Λk( f0)2 .

Moreover, in this case,

∫ T

0

(√
λk

t ( f0) −
√
λk

t ( f )
)2

dt =
∫ T

0

(√
ϕk(λ̃k

t (ν0,h0)) −
√
ϕk(λ̃k

t (ν,h))
)2

dt

⩽ L2
1

∫

Ak(T )

(
λ̃k

t (ν0,h0) − λ̃k
t (ν,h)

)2
dt ≲ T ϵ2

T .

Finally, we obtain that

KL( f0, f ) ≲


(log log T )T ϵ2

T if f ∈ B2(ϵT ,B)
T ϵ2

T if f ∈ B∞(ϵT )
.

Scenario 3: Case 1 of Proposition 3.5, i.e., ϕk(x) = (x)+,∀k ∈ [K].
In a Hawkes model with the standard ReLU link function, we can obtain two types of rates, under

and without condition (8). We consider f ∈ B∞(ϵT ) so that ∀t ∈ [0,T ], λ̃k
t (ν,h) ⩾ λ̃k

t (ν0,h0). Since for
any t ∈ [0,T ], log(λk

t ( f0)/λk
t ( f )) ⩽ 0, we can use that

KL( f0, f ) ⩽
∑

k

�0

[∫ T

0
(λk

t ( f ) − λk
t ( f0))dt

]
=

∑

k

�0
[
Λk( f ) −Λk( f0)

]
,

with for any 1 ⩽ k ⩽ K, Λk( f ) :=
∫ T

0 λk
t ( f )dt, and Λk( f0) :=

∫ T
0 λk

t ( f0)dt. Since for any t, λ̃k
t (ν,h) ⩾

λ̃k
t (ν0,h0), we have

0 ⩽Λk( f ) −Λk( f0) =
∫ T

0
((λ̃k

t (ν,h))+ − (λ̃k
t (ν0,h0))+dt ⩽

∫ T

0
|λ̃k

t (ν,h) − λ̃k
t (ν0,h0)|dt

⩽ T |νk − ν0
k | +

∑

l

∫ T

0

∫ t−

t−A
|hlk − h0

lk |(t − s)dNl
sdt ⩽ T (νk − ν0

k) +
∑

l

∥∥∥hlk − h0
lk

∥∥∥
1 Nl[−A,T ].

(S6.26)
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Consequently, we arrive at

KL( f0, f ) ⩽ KT ϵT (1 +max
l
�0

[
Nl[−A,T ]

]
) + RT

⩽ T ϵT K(1 + 2 max
l
µ0

l ) + o(T ϵ2
T ) ≲ T ϵT .

To refine this bound, we will assume that (8) holds. For k ∈ [K] and t ∈ [0,T ], we define pk
t ( f ) =

λk
t ( f )/Λk( f ) and similarly for pk

t ( f0). Using (S6.23), we then have

KL( f0, f ) − RT =
∑

k
�0

1Ω̃T

Λk( f0)
∫ T

0
1λk

t ( f0)>0 pk
t ( f0) log


pk

t ( f0)

pk
t ( f )

dt +Λk( f0) log

Λk( f0)
Λk( f )

 + (Λk( f ) −Λk( f0))




⩽
∑

k
�0

1Ω̃T

Λk( f0)
∫ T

0
1λk

t ( f0)>0 pk
t ( f0) log


pk

t ( f0)

pk
t ( f )

dt +
(Λk( f0) −Λk( f ))2

Λk( f0)


 , (S6.27)

where in the last inequality, we have used the fact that − log x + x − 1 ⩽ (x − 1)2 for x ⩾ 1/2, with
x = Λ

k( f )
Λk( f0) ⩾ 1. Moreover, from (S6.26), we have on Ω̃T ,

Λk( f ) −Λk( f0) ⩽ T ϵT (1 + 2 max
l
µ0

l ).

Besides, on Ω̃T , using A2(T ) defined in (22) and noting that in this case, r0
k = ν

0
k ,∀k,

Λk( f0) ⩾
∫

A2(T )
λk

t ( f0)dt ⩾
JT−1∑

j=1

∫ U(1)
j

τ j

λk
t ( f0)dt = ν0

k

JT−1∑

j=1

(U(1)
j − τ j)

⩾
ν0

kT

�0(∆τ1)∥ν0∥1

1 − 2cβ

√
log T

T

 ⩾
ν0

kT

2�0(∆τ1)∥ν0∥1 .

Therefore,

Λk( f0) ⩽Λk( f ) ⩽Λk( f0) + T ϵT (1 + 2 max
l
µ0

l )

⩽Λk( f0) +
2Λk( f0)(1 + 2A maxl µ

0
l )�0(∆τ1)∥ν0∥1

ν0
k

ϵT

⩽Λk( f0)

1 +
2(1 + 2A maxl µ

0
l )�0(∆τ1)∥ν0∥1
ν0

k

ϵT

 ⩽ 2Λk( f0), (S6.28)

for T large enough. Besides, this implies that pk
t ( f ) = λk

t ( f )
Λk( f ) ⩾

λk
t ( f0)

2Λk( f0) ⩾ pk
t ( f0)/2. Using again the in-

equality − log x + x − 1 ⩽ (x − 1)2 with x = pk
t ( f )

pk
t ( f0)
⩾ 1

2 and the fact that
∫ T

0 pk
t ( f )dt =

∫ T
0 pk

t ( f0)dt = 1,

we have
∫ T

0
1λk

t ( f0)>0 pk
t ( f0) log


pk

t ( f0)

pk
t ( f )

dt =
∫ T

0
pk

t ( f0) log


pk

t ( f0)

pk
t ( f )

dt +
∫ T

0
(pk

t ( f ) − pk
t ( f0))dt

=

∫ T

0
pk

t ( f0)

log


pk

t ( f0)

pk
t ( f )

 +
pk

t ( f )

pk
t ( f0)

− 1

dt ⩽
∫ T

0
1λk

t ( f0)>0
(pk

t ( f0) − pk
t ( f ))2

pk
t ( f0)

dt
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⩽
1

Λk( f0)

∫ T

0
1λk

t ( f0)>0

2
(
λk

t ( f0) − λk
t ( f )

)2
+ 2λk

t ( f )2
(
1 − Λk( f0)

Λk( f )

)2

λk
t ( f0)

dt

⩽
2

Λk( f0)



∫ T

0
1λk

t ( f0)>0

3
(
λk

t ( f0) − λk
t ( f )

)2

λk
t ( f0)

+ 2Λk( f0) × (Λk( f ) −Λk( f0))2

Λk( f )2



⩽
6

Λk( f0)

∫ T

0
1λk

t ( f0)>0

2
(
λk

t ( f0) − λk
t ( f )

)2

λk
t ( f0)

dt + 4
(Λk( f ) −Λk( f0))2

Λk( f0)2
.

In the previous inequalities, we have used Λk( f0) ⩽Λk( f ), and for T large enough, we have the follow-
ing intermediate result:

KL( f0, f ) − RT ⩽
∑

k

�0

1Ω̃T

6
∫ T

0
1λk

t ( f0)>0
(λk

t ( f0) − λk
t ( f ))2

λk
t ( f0)

dt + 4
(Λk( f0) −Λk( f ))2

Λk( f0)


 . (S6.29)

Moreover, on Ω̃T , using (S6.28)

Λk( f0) =
∫ T

0

ν
0
k +

∑

l

∫ t−

t−A
h0

lk(t − s)dNl
s


+

dt ⩽ Tν0
k +

∑

l

∥h0+
lk ∥1Nl[−A,T )

⩽ Tν0
k +

3
2

T
∑

l

∥h0+
lk ∥1(µ0

l + δT ) ⩽ 2T

ν
0
k +

∑

l

∥h0+
lk ∥1µ0

l

 ,

for T large enough, since δT = δ0

√
log T

T . Thus,

(Λk( f0) −Λk( f ))2

Λk( f0)
⩽Λk( f0)


2(1 + 2A maxl µ

0
l )�0(∆τ1)∥ν0∥1
ν0

k


2

ϵ2
T ⩽= c0

2T ϵ2
T ,

with

c0
2 = 8

ν
0
k +

∑

l

∥h0+
lk ∥1µ0

l




(1 + 2A maxl µ

0
l )�0(∆τ1)∥ν0∥1
ν0

k


2

.

Therefore, reporting into (S6.29) we have

KL( f0, f ) − RT ⩽ 6
∑

k

�0

1Ω̃T

∫ T

0
1λk

t ( f0)>0
(λk

t ( f0) − λk
t ( f ))2

λk
t ( f0)

dt
 + 4Kc0

2T ϵ2
T .

We now bound the first term on the RHS of the previous equation.

∑

k
�0

1Ω̃T

∫ T

0
1λk

t ( f0)>0
(λk

t ( f0) − λk
t ( f ))2

λk
t ( f0)

dt

 ⩽
∑

k
�0

1ΩΩ̃T
sup

t∈[0,T ]
1λk

t ( f0)>0(λk
t ( f ) − λk

t ( f0))2
∫ T

0

1λk
t ( f0)>0

λk
t ( f0)

dt

 .

Moreover, for any k ∈ [K] and t ∈ [0,T ], we have on B∞(ϵT )

1Ω̃T
1λk

t ( f0)>0(λk
t ( f ) − λk

t ( f0))2dt ⩽ 2(νk − ν0
k)2 + 2K max

l
∥hlk − h0

lk∥2∞ sup
t∈[0,T ]

Nl[t − A, t)2
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⩽ 2ϵ2
T + 2KC2

β log2 T ϵ2
T ⩽ 4KC2

β log2 T ϵ2
T .

Consequently,

∑

k

�0

1Ω̃T

∫ T

0
1λk

t ( f0)>0
(λk

t ( f0) − λk
t ( f ))2

λk
t ( f0)

dt
 ⩽ 4C2

βK(log T )2T ϵ2
T

∑

k

�0


1
T

∫ T

0

1λk
t ( f0)>0

λk
t ( f0)

dt


= 4C2
βc0

1K(log T )2T ϵ2
T ,

using (8), with

c0
1 := lim sup

T→∞
�0


1
T

∫ T

0

1λk
t ( f0)>0

λk
t ( f0)

dt
 < +∞.

Consequently, reporting into (S6.29), we finally obtain

KL( f0, f ) ⩽ 4C2
βc0

1KL(log T )2T ϵ2
T + 4Kc0

2T ϵ2
T + o(T ϵ2

T )

⩽ 8KC2
βc0

1(log T )2T ϵ2
T = κ2(log T )2T ϵ2

T ,

with κ2 := 8KC2
βc0

1, which terminates the proof of this lemma.
□

S6.2. Deviations on the log likelihood ratio: Lemma S6.3

The next lemma is a control under �0 over the centered sum of i.i.d. variables that are used to decom-
pose the log-likelihood ratio in Lemma A.2.

Lemma S6.3. Under the assumptions of Lemma S6.1, for f ∈ B∞(ϵT ) and j ⩾ 1, let

T j :=
∑

k

∫ τ j+1

τ j

log

λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τ j+1

τ j

(λk
t ( f0) − λk

t ( f ))dt. (S6.30)

Then it holds that �0
[
T 2

j

]
≲ zT /T, with

zT =



T ϵ2
T (under Assumption 3.1(i))

(log T )T ϵ2
T (under Assumption 3.1(ii))

(log T )2T ϵ2
T (ReLU link)

Moreover, if log3 T =O(zT ),

�0


JT−1∑

j=0

T j −�0
[
T j

]
⩾ zT

 = o(1).

Remark S6.4. Under Assumption 3.1, for f ∈ B2(ϵT ,B), we also obtain similar results with zT =

(log log T )2T ϵ2
T .
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Proof. Firstly, using the fact that τ1, τ2 are stopping times, we have

�0
[
T 2

1

]
=�0




∑

k

∫ τ2

τ1

log


λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τ2

τ1

(λk
t ( f0) − λk

t ( f ))dt


2

≲
∑

k
�0




∫ τ2

τ1

log


λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt +

∫ τ2

τ1

log


λk

t ( f0)

λk
t ( f )

 (dNk
t − λk

t ( f0)dt) −
∫ τ2

τ1

(λk
t ( f0) − λk

t ( f ))dt


2

≲�0

∆τ1

∫ τ2

τ1

χ


λk

t ( f )

λk
t ( f0)


2

λk
t ( f0)2dt

 +�0


∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 , (S6.31)

with χ(x) = − log x + x − 1. For any x > 0, we have χ2(x) ⩽ 2 log2 x + 2(x − 1)2. Now, if f ∈ B∞(ϵT ),

using that log2 x ⩽ (x− 1)2 for x = λk
t ( f )/λk

t ( f0) ⩾ 1, we have χ
(
λk

t ( f )
λk

t ( f0)

)2
λk

t ( f0)2 ≲ (λk
t ( f0)− λk

t ( f ))2 and

log2
(
λk

t ( f )
λk

t ( f0)

)
λk

t ( f0) ≲ (λk
t ( f0)−λk

t ( f ))2

λk
t ( f0)

. Therefore, (S6.31) becomes

�0
[
T 2

1

]
≲�0

[
∆τ1

∫ τ2

τ1

(λk
t ( f0) − λk

t ( f ))2dt
]
+�0

1Ω̃c
T

∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 (S6.32)

+�0

1Ω̃T

∫ τ2

τ1

1λk
t ( f0)>0

(λk
t ( f0) − λk

t ( f ))2

λk
t ( f0)

dt
 .

With the ReLU link function, we can easily bound the third term on the RHS of (S6.32) using (8):

�0

1Ω̃T

∫ τ2

τ1

1λk
t ( f0)>0

(λk
t ( f0) − λk

t ( f ))2

λk
t ( f0)

dt
 ≲ log2 T ϵ2

T�0


∫ τ2

τ1

1λk
t ( f0)>0

λk
t ( f0)

dt
 ≲ log2 T ϵ2

T .

For the second term on the RHS of (S6.32), using that log2(λk
t ( f ))λk

t ( f ) ≲ (supt N[t − A, t))3 and simi-
larly for λk

t ( f0), we have

�0

1Ω̃c
T

∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 ≲�0

[
1Ω̃c

T

∫ τ2

τ1

log2(λk
t ( f0))λk

t ( f0)dt
]
+�0

[
1Ω̃c

T

∫ τ2

τ1

log2(λk
t ( f ))λk

t ( f )dt
]

≲

√
�0

[
1Ω̃c

T
(sup

t
N[t − A, t))6

]√
�0

[
∆τ2

1

]
≲ T−β/2 = o(ϵ2

T ),

using Lemma A.1. For the first term on the RHS of (S6.32), we have

�0

[
∆τ1

∫ τ2

τ1

(λk
t ( f0) − λk

t ( f ))2dt
]
≲�0

[
∆τ1

∫ τ2

τ1

(λ̃k
t ( f0) − λ̃k

t ( f ))2dt
]

⩽�0

∆τ1

∫ τ2

τ1

(2|νk − ν0
k |2 + 2K

K∑

l=1

(∫ t

t−A
(hlk − h0

lk)(t − s)dNl
s

)2
dt



⩽ 2|νk − ν0
k |2�0

[
∆τ2

1

]
+ 2K

K∑

l=1
�0

[
∆τ1

∫ τ2

τ1

Nl(t − A, t)
∫ t

t−A
(hlk − h0

lk)2(t − s)dNl
sdt

]

= 2|νk − ν0
k |2�0

[
∆τ2

1

]
+ 2K

K∑

l=1

∥∥∥∥hlk − h0
lk

∥∥∥∥
2

2
�0

[
∆τ1Nl[τ1, τ2)2

]
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⩽ 2|νk − ν0
k |2�0

[
∆τ1

]
+ 2K

K∑

l=1

∥∥∥∥hlk − h0
lk

∥∥∥∥
2

2

√
�0

[
Nl[τ1, τ2)4

]√
�0

[
∆τ2

1

]
≲ ϵ2

T .

Thus, reporting into (S6.32), we can conclude that if (8) holds, �0
[
T 2

1

]
≲ log2 T ϵ2

T .
Under Assumption 3.1(i), if f ∈ B∞(ϵT ), we can use the same computations. If f ∈ B2(ϵT ,B), for the

first term on the RHS of (S6.32) and for the second term, we use instead that log2 x ⩽ 4 log2(r−1
T )(x−1)2

for x ⩾ rT with x = λk
t ( f0)
λk

t ( f )
≳ rT := (log T )−1 and we obtain,

�0

1Ω̃T

∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 ≲ (log log T )2�0

[∫ τ2

τ1

(λk
t ( f0) − λk

t ( f ))2dt
]

≲ (log log T )2�0

[∫ τ2

τ1

(λ̃k
t (ν0,h0) − λ̃k

t (ν,h))2dt
]
≲ (log log T )2ϵ2

T ,

or, in the shifted ReLU model with unknown link (Case 2 of Proposition 3.5),

�0

1Ω̃T

∫ τ2

τ1

log2

λk

t ( f0, θ0)

λk
t ( f , θ)

λk
t ( f0, θ0)dt



≲ (log log T )2
[
�0 [∆τ1] (θk − θ0

k )2 +�0

[∫ τ2

τ1

(λ̃k
t (ν0,h0) − λ̃k

t (ν,h))2dt
]]
≲ (log log T )2ϵ2

T ,

using similar computations to the control of the first term of (S6.32). The remaining term, i.e.,

�0

1Ω̃c
T

∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 ,

is bounded as the second term of (S6.32).
Finally, under Assumption 3.1(ii), using the fact that logϕk L1-Lipschitz for any k, we have

�0


∫ τ2

τ1

log2

λk

t ( f0)

λk
t ( f )

λk
t ( f0)dt

 ≲�0

[∫ τ2

τ1

(λ̃k
t (ν0,h0) − λ̃k

t (ν,h))2λk
t ( f0)dt

]

≲ log T�0

[∫ τ2

τ1

(λ̃k
t (ν0,h0) − λ̃k

t (ν,h))2dt
]
+�0

[
1Ω̃c

T

∫ τ2

τ1

(λ̃k
t ( f0) − λ̃k

t ( f ))2λk
t ( f0)dt

]

≲ (log T )ϵ2
T ,

and the first term of (S6.31) can be bounded similarly.
We now prove the second part of the lemma. We first note that

�0


JT−1∑

j=0

T j −�0
[
T j

]
⩾ zT

 ⩽
∑

J∈JT

�0


J−1∑

j=0

T j −�0
[
T j

]
⩾ zT

 +�0
(
Ω̃c

T

)

⩽ T�0


J−1∑

j=0

T j −�0
[
T j

]
⩾ zT

 + o(1). (S6.33)

Let J ∈ JT . Since the {T j}1⩽ j⩽J are i.i.d.. random variables, we apply Fuk-Nagaev inequality (see
Proposition S9.3) to the sum of centered variables T j −�[T j] with λ := zT and x := xT with xT →∞ a
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sequence determined later. We denote v := J�0
[
T 2

1

]
⩽ T�0

[
T 2

1

]
≲ zT . Hence, we have xλ/v = xT zT /v ≳

xT . Since xT →∞,
(
1 +

xλ
v

)
log

(
1 +

xλ
v

)
− xλ

v
⩾

xTλ

v
.

From Fuk-Nagaev inequality, we have

�0


J∑

j=1

(T j −�[T j]) ⩾ zT

 ⩽ J�0 [T1 −�[T1] ⩾ xT ] + exp
{
− zT

xT

}
. (S6.34)

We note that in the second term on the RHS of (S6.34), if zT
xT
⩾ x0 log T with x0 > 0 large enough, then

exp
{
− zT

xT

}
= o( 1

T ). Since by assumption, log T = o(T ϵ2
T ), then we can choose xT = x′0

zT
log T →∞ with

x′0 > 0 a constant small enough. For the first term on the RHS of (S6.34), let us consider j ∈ [J]. From
(S6.30), we have

T1 ⩽
∑

k

{∫ τ2

τ1

|λk
t ( f ) − λk

t ( f0)|dt +
∫

[τ1,τ2)
| logλk

t ( f ) − logλk
t ( f0)|dNk

t

}
.

Using the first part of the lemma and Cauchy-Schwarz inequality, we have that �0 [T1] ⩽
√

zT
T ⩽ xT

since xT ≳ zT / log T and log3 T =O(zT ). Therefore,

�0
[
T1 −�0

[
T1

]
⩾ xT

]
⩽ �0

[
Ω̃T ∩

{∫ τ2

τ1

|λk
t ( f ) − λk

t ( f0)|dt +
∫

[τ1,τ2)
| logλk

t ( f ) − logλk
t ( f0)| ⩾ xT

}]
+�0

[
Ω̃c

T

]
.

On the one hand, on Ω̃T , under Assumption 3.1(i), using that | log x − logy| ⩽ |x−y|y for x ⩾ y,

∫

[τ1,τ2)
| logλk

t ( f ) − logλk
t ( f0)|dNk

t ⩽
2

mink infx ϕk(x)

∫

[τ1,τ2)
| logλk

t ( f ) − logλk
t ( f0)|dNk

t

⩽
2LN[τ1, τ2)

mink infx ϕk(x)
|νk − ν0

k | +
2L

mink infx ϕk(x)

∫

[τ1,τ2)2
|hlk − h0

lk |(t − s)dNk
t dNk

s

⩽
4L

mink infx ϕk(x)
(ϵT N[τ1, τ2) + N[τ1, τ2)2

∥∥∥hlk − h0
lk

∥∥∥∞) ⩽ 3LBN[τ1, τ2)2,

for T large enough. In Case 2 of Proposition 3.5, we similarly have
∫

[τ1,τ2)
| logλk

t ( f ) − logλk
t ( f0)|dNk

t ⩽
2
θ0

k

∫

[τ1,τ2)
| logλk

t ( f ) − logλk
t ( f0)|dNk

t

⩽
2N[τ1, τ2)

θ0
k

(|θk − θ0
k | + |νk − ν0

k |) +
2
θ0

k

∫

[τ1,τ2)

∫

[τ1,τ2)
|hlk − h0

lk |(t − s)dNk
t dNk

s

⩽
4
θ0

k

ϵT N[τ1, τ2) + 2N[τ1, τ2)2
∥∥∥hlk − h0

lk

∥∥∥∞ ⩽ 3BN[τ1, τ2)2,

Under Assumption 3.1(ii), logϕk is L1-Lipschitz, therefore,
∑

ti∈[τ1,τ2)

| logλk
ti ( f ) − logλk

ti ( f0)| ⩽ L1

∑

ti∈[τ1,τ2)

|λ̃k
ti (ν,h) − λ̃k

ti (ν0,h0)| ⩽ L1BN[τ1, τ2)2.



S30

With the ReLU link function, we directly have that T1 ⩽
∑

k
∫ τ2
τ1

(λk
t ( f ) − λk

t ( f0))dt.
In Case 2 of Proposition 3.5,

∫ τ2

τ1

|λk
t ( f , θ) − λk

t ( f0, θ0)|dt ⩽ |θ0
k − θk |∆τ1 +

∫ τ2

τ1

(λ̃k
t (ν,h) − λ̃k

t (ν0,h0))dt

⩽ (|θ0
k − θk | + |νk − ν0

k |)∆τ1 +
∑

l

∥∥∥hlk − h0
lk

∥∥∥
1 Nl[τ1, τ2) ⩽ [2∆τ1 + N[τ1, τ2)]ϵT .

and in all other cases,
∫ τ2

τ1

|λk
t ( f ) − λk

t ( f0)|dt ⩽ L
∫ τ2

τ1

(λ̃k
t (ν,h) − λ̃k

t (ν0,h0))dt

⩽ L|νk − ν0
k |)∆τ1 + L

∑

l

∥∥∥hlk − h0
lk

∥∥∥
1 Nl[τ1, τ2) ⩽ L[2∆τ1 + N[τ1, τ2)]ϵT .

Consequently,

T1 ⩽ KC[2∆τ1 + N[τ1, τ2)]ϵT + 3KCBN[τ1, τ2)2 ⩽ 4KCBN[τ1, τ2)2,

with C =max(1,L,L1) or C =max(1,L) depending on the assumptions on the link functions, and

�0 [T1 −�0[T1] ⩾ 2xT ] ⩽ �0

[
N[τ1, τ2)2 >

xT

2KCB

]
.

Using Lemma 5.1, we have for some s > 0

�0

[
N[τ1, τ2)2 >

xT

2KCB

]
⩽�0

[
esN[τ1,τ2)

]
e−s
√

xT /(2KCB) = o(T−2),

if xT ⩾ x′′0 log2 T for some x′′0 > 0 large enough, implying that zT ⩾ z0 log3 T for some z0 > 0. Finally,
reporting into (S6.33), we can conclude that

�0


JT∑

j=1

(T j −�[T j]) ⩾ zT

 ⩽ T 2�0 [T1 −�[T1] ⩾ xT ] + T�0
[
Ω̃c

T

]
+ T exp

{
− zT

xT

}
+ o(1) = o(1).

□

S7. Proofs of identifiability results and regenerative properties of
nonlinear Hawkes models

S7.1. Proofs of Proposition 2.3, Proposition 2.5 and Lemma 2.6

In this section, we prove our two propositions on the model identifiability, i.e., Propositions 2.3 and
2.5, as well as Lemma 2.6 in the mutually-exciting Hawkes model. We recall the results in each case.

Proposition S7.1 (Proposition 2.3). Let N be a nonlinear Hawkes process as defined in (1) with link
functions (ϕk)k and parameter f = (ν,h) satisfying the conditions of Lemma 2.1 and Assumption 2.2. If
N′ is a Hawkes processes with the same link functions (ϕk)k and parameter f ′ = (ν′,h′), then

N L= N′ =⇒ ν = ν′ and h = h′.
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Proof. Let f ′ = (ν′,h′) and N′ ∼ � f ′ . We recall that N ∼ � f and N L= N′ is equivalent to λl
t( f ) = λl

t( f ′)
for all t > 0 and l ∈ [K]. Let τ1 be the first renewal time of the process N, as defined in Section 5.1.
From the proof of Lemma 5.1, with U(1)

1 the time of the first event after τ1 and V (1) ∈ [K] the index of
the component associated with this event, we have that U(1)

1 ∼ Exp(
∥∥∥r f

∥∥∥
1)⊥⊥ V (1)

1 with r f = (r f
1 , . . . , r

f
K)

and r f
k = ϕk(νk),∀k, and

V (1)
1 ∼ Multi

1;
r f

1∥∥∥r f
∥∥∥

1

, . . . ,
r f

K∥∥∥r f
∥∥∥

1

 .

Therefore we can conclude that

N L= N′ =⇒ r f = r f ′ ⇐⇒ ϕk(νk) = ϕk(ν′k), ∀k ∈ [K]. (S7.35)

Since for all k, νk ∈ Ik defined by Assumption 2.2 (ii), then ν′k = ϕ
−1
k (ϕk(νk)) and since ϕk is monotone

non-decreasing, we obtain νk = ν
′
k,∀k.

Moreover, for each k ∈ [K], we define the event Ωk as

Ωk =

{
max
k′,k

Nk′ [τ1, τ2) = 0,Nk[τ1, τ1 + A] = 1,Nk[τ1 + A, τ2) = 0
}
.

On Ωk, for t ∈ [τ1, τ2) ∩ [U(1)
1 ,U(1)

1 + A] and l ∈ [K], λl
t( f ) = ϕl(νl + hkl(t − U(1)

1 )) and similarly for
λl

t( f ′). Then, for any s = t − U(1)
1 ∈ [0,A], λl

U(1)
1 +s

( f ) = ϕl(νl + hkl(s)) = ϕl(νl + h′kl(s)). Consequently,

using that ϕl is injective on Il, hkl = h′kl for all 1 ⩽ k, l ⩽ K which concludes the proof of this proposition.
□

Proposition S7.2. Proposition 2.5 Let N be a Hawkes process with parameter f = (ν,h) and link
function ϕk(x; θk) = θk + ψk(x) with θk ⩾ 0 for any k ∈ [K] satisfying the conditions of Lemma 2.1 and
Assumption 2.2. We also assume that for all k ∈ [K], lim

x→−∞ψk(x) = 0 and

∃l ∈ [K], x1 < x2, such that h−lk(x) > 0, ∀x ∈ [x1, x2]. (S7.36)

Then if N′ is a Hawkes processes with link functions ϕk(x; θ′k) = θ′k + ψk(x), θ′k ⩾ 0 and parameter
f ′ = (ν′,h′),

N L= N′ =⇒ ν = ν′, h = h′, and θ = θ′, θ = (θk)K
k=1, θ′ = (θ′k)K

k=1.

Besides, in this case we have �0

[
inf
t⩾0

λk
t ( f , θ) = θk

]
= 1.

Proof. Using the proof of Proposition 2.3, we first obtain that ϕk(νk) = ϕk(ν′k), therefore

θk + ψk(νk) = θ′k + ψk(ν′k), ∀k ∈ [K].

Secondly, we also have that θl+ψk(νl+hkl(s)) = θ′l +ψk(ν′l +h′kl(s)) for any s ∈ [0,A] and all 1 ⩽ k, l ⩽ K.
We first prove that θ = θ′ and from the latter we can deduce that ν = ν′ and finally that h = h′ by

the injectivity of ψk on Ik, for any k. The proof of the identification of θ relies on the construction of
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a specific excursion for each k ∈ [K] in which there exists t > 0 such that λk
t ( f ) ∈ [θk, θk + ϵ] for any

ϵ > 0. From that, we will deduce that N L= N′ =⇒ θ = θ′.
Let k ∈ [K] and consider l ∈ [K] such that hlk satisfies Assumption S7.36. We first note that

λk
t ( f ) = θk + ψk(λ̃k

t (ν,h)) ⩾ θk.

Thus, we directly have that θk ⩽ inf
t>0

λk
t ( f ), a.s. Let ϵ > 0. Using Assumption S7.36 (i), ∃M > 0,∀x ⩽

M, ψk(x) ⩽ ϵ. Using now Assumption S7.36 (ii), let l ∈ [K] and x1 < x2 such that [x1, x2] ⊂ B0 :=
{x ∈ [0,A],hlk(x) ⩽ −c∗}. Define n1 =min{n ∈�; nc∗ > ν0

k − M}, δ′ = (x2 − x1)/3, and we consider an
excursion, which we write [0, τ], and which satisfies

E = {N[0, δ′] = Nl[0, δ′] = n1, N[δ′, δ′ + A] = 0}.

In other words the events only occur on the l-th component of the Hawkes process and only on [0, δ′].
Since ψk is Lipschitz and injective on Ik = (νk − maxl

∥∥∥h−lk
∥∥∥∞ − ε, νk +maxl

∥∥∥h+lk
∥∥∥∞ + ε), it holds that

� f [E] > 0. For t ∈ [x1 + δ
′, x2], ∀i ∈ [n1], we have x1 ⩽ t − ti ⩽ x2, and therefore,

λ̃k
t (ν,h) = νk +

∑

i∈[n1]

hlk(t − ti) ⩽ νk − n1c∗ ⩽ M.

Consequently, for t ∈ [x1 + δ
′, x2], λk

t ( f0) = θk + ψk(λ̃k
t (ν,h)) ⩽ θk + ϵ. We can then conclude that

�0
[
∃t ⩾ 0, λk

t ( f ) ∈ [θk, θk + ϵ]
]
> 0,

for any ϵ > 0. This is equivalent to

θk = inf
ω∈Ω

inf
t∈[0,τ]

λk
t ( f )(ω),

where λk
t ( f0)(ω) denotes the value of the random process (λt( f0))t at time t.

Now, if N′ is a Hawkes process with parameter f ′ ∈ F and link functions ϕk = θ
′
k +ψk, k ∈ [K] such

that N L= N′, then for any t ⩾ 0 and k such λk
t ( f ) ⩽ θk + ϵ, we have θ′k ⩽ λ

k
t ( f ′) ⩽ θk + ϵ and thus, θk ⩾ θ′k.

Inversely, if λk
t ( f ′) ⩽ θ′k + ϵ then θk ⩽ θ′k and finally we can conclude that θ = θ′.

□

Lemma S7.3 (Lemma 2.6). Let N be a Hawkes process with parameter f = (ν,h) and link functions
ϕk(x; θk) = θk + (x)+, θk ⩾ 0, k ∈ [K] satisfying Assumption 2.2, and let k ∈ [K]. If ∀l ∈ [K],hlk ⩾ 0, then
for any θ′k ⩾ 0 such that θk + νk − θ′k > 0, let N′ be the Hawkes process driven by the same underlying
Poisson process Q as N (see Lemma S9.2) with parameter f ′ = (ν′,h′) and link functions ϕk(x; θ′k) =
θ′k + (x)+, k ∈ [K] with ν′ = (ν1, . . . , νk + θk − θ′k, . . . , νK) , ν, h′ = h, and θ′ = (θ1, . . . , θ

′
k, . . . , θK) , θ.

Then for any t ⩾ 0, λk
t ( f , θ) = λk

t ( f ′, θ′), and therefore N L= N′.

Proof. We consider k ∈ [K] such that ∀l ∈ [K], hlk ⩾ 0. For any t ⩾ 0, we have

λ̃k
t (ν,h) = νk +

∑

l

∫ t−

t−A
hlk(t − s)dNl

s ⩾ νk > 0,



Supplementary material of Bayesian estimation of nonlinear Hawkes process S33

and thus λk
t ( f ) = θk + (λ̃k

t (ν,h))+ = θk + λ̃
k
t (ν,h). Moreover, for any t ⩾ 0, we have

λ̃k
t (ν′,h′) = νk + θk − θ′k +

∑

l

∫ t−

t−A
hlk(t − s)dNl

s ⩾ νk + θk − θ′k > 0,

and

λk
t ( f ′) = θ′k + (λ̃k

t (ν′,h′))+ = θ′k + λ̃
k
t (ν′,h′)

= θ′k + νk + θk − θ′k +
∑

l

∫ t−

t−A
hlk(t − s)dNl

s = θk + λ̃
k
t (ν,h) = λk

t ( f ).

Therefore, we obtain that N =L N′.
□

S7.2. Proofs of Lemmas 5.2 and 5.4

In this section, we prove our lemmas related to the renewal properties of the nonlinear Hawles pro-
cesses, in particular the existence of exponential moments for the generic renewal time ∆τ1, and a
concentration inequality on JT . the nunber of excursions in the interval of observation [0,T ].

Lemma S7.4 (Lemma 5.2). Under the assumptions of Lemma 5.1, the random variables ∆τ1 and
N[τ1, τ2) admit exponential moments. More precisely, under condition (C1bis), with m =

∥∥∥S +
∥∥∥ < 1, we

have

∀s <min(
∥∥∥r f

∥∥∥
1 , γ/A), � f

[
es∆τ1

]
⩽

1 +m
2m

, and � f
[
esN[τ1,τ2)

]
< +∞, γ =

1 −m

2
√

K
log

(
1 +m

2m

)
.

Under condition (C2), we have ∀s < minkΛk, � f
[
es∆τ1

]
⩽

∥Λ∥21
(mink Λk−s)2 and � f

[
esN[τ1,τ2)

]
< +∞. In

particular, this implies that � f
[
N[τ1, τ2) + N[τ1, τ2)2

]
< +∞.

Proof. Under condition (C1bis), similarly to [1], we use the fact that the multivariate Hawkes model is
stochastically dominated by a mutually-exciting process N+ with parameter f + = (ν, (h+lk)l,k), and driven
by the same Poisson process as N (see Lemma S9.2). For N+, the stopping time ∆τ+1 corresponds to
the length of the busy period of a MK/GK/∞ queue (see Lemma S9.1, which is a multi-type extension
of existing results).

More precisely, since N+ is mutually-exciting, the cluster representation is available [6], with the
ancestor arrival process being a Poisson Point Process equal to the baseline rate r f , defined in (21). For
this process, the duration of the clusters then corresponds to the generic service time H of a queue with
an infinite number of servers. In the multidimensional case, this duration may depend on the type of
the ancestor (or ”customer” in the queuing framework) but the generic service time can be written in a
compact form, and is independent of the arrival process

H =
K∑

k=1

δkHk,
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where δk = 1 if and only if the ancestor is of type k ∈ [K]. To apply Lemma S9.1, we only need to check
that the cluster length Hk, k ∈ [K] has exponential moments. This can be proved using results from [2].

For the process N+, let Wk be the number of events in a cluster with an ancestor of type k. By
definition of a cluster of events, Hk ⩽ AWk. Moreover, from Lemma 5 in the Supplementary Materials

of [2], for a mutually-exciting Hawkes process and for any t ⩽
1−∥S +∥1

2
√

K
log

(
1+∥S +∥
2∥S +∥

)
and k ∈ [K],

� f

[
etWk

]
⩽

1 +
∥∥∥S +

∥∥∥
2 ∥S +∥ .

Therefore, we define γ = (1−
∥∥∥S +

∥∥∥)
[
log

(
1 +

∥∥∥S +
∥∥∥
)
− log(2

∥∥∥S +
∥∥∥)

]
/(2
√

K) and s0 =
1+∥S +∥
2∥S +∥ . For all 0 <

t ⩽ γ, we thus have � f
[
etHk/A

]
⩽ s0. Consequently, we deduce that the service time Hk has exponential

tails, i.e., � f
[
Hk ⩾ t

]
⩽ s0e−tγ/A. We can now use the fact that a.s. T1 = ∆τ

+
1 (cf Lemma S9.2), so that

for any s <
∥∥∥r f

∥∥∥
1 ∧ γ/A, we have � f

[
es∆τ+1

]
<∞. Finally using the second part of Lemma S9.2, we

have that � f
[
∆τ1 ⩽ ∆τ+1

]
= 1 and, using Lemma S9.1, we arrive at ∀s <

∥∥∥r f
∥∥∥

1 ∧ γ/A, � f
[
es∆τ1

]
<∞.

Under condition (C2), we use the fact that the process N is dominated by a K-dimensional homoge-
neous Poisson point process NP = (N1

P, . . . ,N
K
P ) with rate Λ = (Λ1, . . . ,ΛK). For the latter process, the

generic service time of an ancestor of type k, Hk, is exponentially distributed with mean Λk, i.e.,

� f [Hk > t] = e−Λkt, t ⩾ 0.

Therefore, denoting ∆τP
1 , the corresponding generic stopping time of NP - with the same definition as

in Lemma 5.1 for the Hawkes process (note that the Poisson point process is a renewal process), we
have

� f
[
∆τP

1 > t
]
⩽� f

[
NP[0, t]

]
e−mink Λk(t−A) = ∥Λ∥1 te−mink Λk(t−A).

Therefore, for any s <minkΛk,

� f
[
es∆τ1

]
⩽� f

[
es∆τP

1

]
=

∫ +∞

0
sest� f

[
∆τP

1 ⩾ t
]
dt ⩽ ∥Λ∥21 emink ΛkA

∫ +∞

0
tet(s−mink Λk)dt

⩽ ∥Λ∥21
∫ +∞

0

et(s−mink Λk)

minkΛk − s
dt =

∥Λ∥21
(minkΛk − s)2 .

We now consider the number of events in a excursion N[τ1, τ2). Under condition (C1bis), From
Lemma S9.2, we can also deduce that � f [N[τ1, τ2)] ⩽� f

[
N+[τ+1 , τ

+
2 )

]
. We once again use the cluster

representation available for N+. For the latter, let nτ be the number of ancestors arriving in [τ+1 , τ
+
2 )

and Wi be the number of points in the cluster with ancestor i for 1 ⩽ i ⩽ nτ. We denote (NPt)t the
homogeneous Poisson process of intensity

∥∥∥r f
∥∥∥

1 corresponding to the arrival times of the ancestors.
By definition of τ+1 , τ

+
2 , we have

N+[τ+1 , τ
+
2 ) =

nτ∑

i=1

Wi. (S7.37)
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Let γ > s > 0 and u <
∥∥∥r f

∥∥∥
1∧γ/A. With t =� f

[
esW1

]
⩽ s0, since the Wi’s are independent conditionally

on nτ,

� f
[
esN[τ1,τ2)

]
⩽� f

[
es

∑nτ
i=1 Wi

]
=� f

[
� f

[
es

∑nτ
i=1 Wi |nτ

]]
=� f

[
�0

[
esW1

]nτ]
=� f


+∞∑

l=A

esnτ1∆τ1∈[l,l+1)



⩽
+∞∑

l=A

� f
[
esNP[τ1,τ1+l+1)1∆τ1⩾l

]
⩽
+∞∑

l=A

√
� f

[
e2sNP[τ1,τ1+l+1)

]√
� f [∆τ1 > l]

⩽
√
� f

[
eu∆τ1

] +∞∑

l=A

√
� f

[
e2sNP[τ1,τ1+l+1)

]
e−ul/2 =

√
� f

[
eu∆τ1

] +∞∑

l=A

e∥r f ∥1(l+1)(e2s−1)/2e−ul/2,

since NP is a homogoneous Poisson process with rate
∥∥∥r f

∥∥∥
1. Moreover, since for any α ∈ (0,1),

� f
[
eαsW1

]
= (� f

[
eαsW1

]1/α
)α ⩽� f

[
esW1

]α
⩽ sα0 , with t′ =� f

[
eαsW1

]
, we have that

∥∥∥r f
∥∥∥

1 (l+ 1)(e2t′ −
1) < u/2 for α small enough. Consequently,

� f
[
esN[τ1,τ2)

]
⩽

√
� f

[
eu∆τ1

] +∞∑

l=A

e−ul/4 =

√
�0

[
eu∆τ1

]

1 − e−u/4 <∞.

In particular, this implies that � f [N[τ1, τ2)] + � f
[
N[τ1, τ2)2

]
<∞. Under condition (C2), the domi-

nating process N+ is a homogeneous Poisson process with intensity Λ = (Λ1, . . . ,ΛK) and the previous
computations remain valid by replacing r f by Λ and with Wi = 1 for any i ∈ [nτ] (since in this case
each cluster only contains the “ancestor” event).

□

Lemma S7.5 (Lemma 5.4). Under the assumptions of Lemma 5.1, for any β > 0, there exists a con-
stant cβ > 0 such that � f

[
JT < [JT,β,1, JT,β,2]

]
⩽ T−β, with JT defined in (19) and

JT,β,1 =


T

� f [∆τ1]

1 − cβ

√
log T

T


 , JT,β,2 =


T

� f [∆τ1]

1 + cβ

√
log T

T


 .

Proof. Let cβ > 0 and for 2 ⩽ j ⩽ JT , B j = τ j−τ j−1−� f [∆τ1]. Using Lemma 5.1, the random variables
{B j}2⩽ j⩽JT are i.i.d.. By definition of JT,β,2, we have

T
� f [∆τ1]

1 + cβ

√
log T

T

 − 1 < JT,β,2 ⩽
T

� f [∆τ1]

1 + cβ

√
log T

T

 .

Therefore,

� f
[
JT ⩾ JT,β,2

]
= �0

[
τJT,β,2 ⩽ T

]
= � f

τ0 +

JT,β,2∑

j=1

B j ⩽ T − JT,β,2� f [∆τ1]



= � f



JT,β,2∑

j=1

B j ⩽ T − JT,β,2� f [∆τ1]

 ⩽ � f



JT,β,2∑

j=1

B j ⩽ T − T

1 + cβ

√
log T

T

 +� f [∆τ1]
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= � f



JT,β,2∑

j=0

B j ⩽ −cβ
√

T log T +� f [∆τ1]

 ⩽ � f



JT,β,2∑

j=1

B j ⩽ −
cβ

√
T log T
2

 .

We can now apply the Bernstein’s inequality. Using Lemma 5.2, there exists α > 0, such that
� f

[
eα∆τ1

]
< +∞. Since

� f
[
eα∆τ1

]
=

+∞∑

k=1

αk� f
[
(∆τ1)k

]

k!
,

we therefore have that

� f
[
(∆τ1)k

]
⩽

k!
αk� f

[
eα∆τ1

]
=

1
2

k!α−k+2 × 2
� f

[
eα∆τ1

]

α2 .

In particular, � f
[
(∆τ1)2

]
⩽ 2

�0
[
eα∆τ1

]

α2 =: v. Consequently, with b := 1/α, we obtain � f
[
(∆τ1)k

]
⩽

1
2 k!bk−2v, and therefore,

� f
[
JT ⩾ JT,β,2

]
⩽ exp


−c2

βT log T

8(σ2 +
cβ
2

√
T log Tb)

 ,

with

σ2 =

JT,β,2∑

j=1

� f (B j) = JT,β,2� f (∆τ1) ⩽ T

1 + cβ

√
log T

T


� f

[
∆τ2

1

]

� f [∆τ1]
⩽ 2T

� f
[
∆τ2

1

]

� f [∆τ1]
,

for T large enough. Therefore, σ2 +
cβ
2

√
T log Tb ⩽ 4T

� f
[
∆τ2

1

]

� f [∆τ1] and

� f
[
JT ⩾ JT,β,2

]
⩽ exp


−c2

β log T� f [∆τ1]

32� f
[
∆τ2

1

]


= o(T−β),

for any β > 0, if cβ > 0 is chosen large enough. Consequently, with probability greater than 1 − 1
2 T−β,

we have that JT ⩽ T
� f [∆τ1]

(
1 + cβ

√
log T

T

)
. Similarly, we obtain that

� f
[
JT ⩽ JT,β,1

]
⩽ � f



JT,β,1∑

j=1

B j ⩾ cβ
√

T log T

 ⩽ exp


−c2

βT log T

2(σ2 + cβ
√

T log Tb)



⩽ exp


−c2

β log T� f [∆τ1]

4� f
[
∆τ2

1

]


= o(T−β).

Finally, we conclude that with probability greater than 1 − T−β, JT,β,1 ⩽ JT ⩽ JT,β,2.
□
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S8. Proof of lemmas A.1 and A.4

S8.1. Proof of Lemma A.1

Lemma S8.1 (Lemma A.1). Let Q > 0. We consider Ω̃T defined in (25) in Section 5.2. For any β > 0,
we can choose Cβ and cβ in the definition of Ω̃T such that

�0[Ω̃c
T ] ⩽ T−β.

Moreover, for any 1 ⩽ q ⩽ Q, �0

1Ω̃c
T

maxl sup
t∈[0,T ]

(
Nl[t − A, t)

)q
 ⩽ 2T−β/2. Finally, the previous results

hold when replacing Ω̃T by Ω̃′T = Ω̃T ∩ΩA with ΩA defined in Section 5.3 for the model with shifted
ReLU link and unknown shift.

Proof. Let β > 0. From the definition of Ω̃T , we have that

�0[Ω̃c
T ] ⩽ �0[Ωc

N] + 3�0[Ωc
J] +�0[ΩJ ∩Ωc

U ]. (S8.38)

For the second term on the RHS of (S8.38), we can directly use Lemma 5.4, and we obtain �0[Ωc
J] ⩽

1
12 T−β for cβ large enough. For the first term on the RHS of (S8.38), we use the same strategy as in [2].
Firstly we have

�0[Ωc
N] ⩽ �0

max
k∈[K]

sup
t∈[0,T ]

Nk[t − A, t) >Cβ log T
 +

K∑

k=1

�0

[∣∣∣∣∣∣
Nk[0,T ]

T
− µ0

k

∣∣∣∣∣∣ ⩾ δT

]
. (S8.39)

For the first term on the RHS of (S8.39), we use the coupling with the process N+, i.e., the Hawkes
process with parameter f +0 = (ν0,h+0 ) driven by the same Poisson process. Then for any l ∈ [K],
sup

t∈[0,T ]
Nl[t − A, t) ⩽ sup

t∈[0,T ]
(N+)l[t − A, t) and consequently,

�0

max
k∈[K]

sup
t∈[0,T ]

Nk[t − A, t) >Cβ log T
 ⩽ �0

max
k∈[K]

sup
t∈[0,T ]

(N+)k[t − A, t) >Cβ log T
 .

Using Lemma 2 from [2], we obtain that for any β > 0, there exists Cβ > 0 such that

�0

max
k∈[K]

sup
t∈[0,T ]

(N+)k[t − A, t) >Cβ log T
 ⩽

1
4

T−β.

For the second term on the RHS of (S8.39), we use the same arguments as in the proof of Lemma 3 in
[2]. For k ∈ [K], we have

�0


∣∣∣∣∣∣
Nk[0,T ]

T
− µ0

k

∣∣∣∣∣∣ ⩾ δT

 ⩽ �0

[∣∣∣∣∣∣N
k[0,T ] −

∫ T

0
λk

t ( f0)

∣∣∣∣∣∣ ⩾ TδT /2
]
+�0

[∣∣∣∣∣∣

∫ T

0
λk

t ( f0) − µ0
kT

∣∣∣∣∣∣ ⩾ TδT /2
]
. (S8.40)

For the second term on the RHS of (S8.40), we can use Corollary 1.1 from [1]. We have that λk
t ( f0) =

Z(S tN), with

Z(N) = λk
0( f0) = ϕk

ν
0
k +

∑

l

∫ 0−

−A
hlk(t − s)dNl

s

 ⩽ Lb(1 + N[−A,0)),
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with b =max(ν0
k ,maxl

∥∥∥h0+
lk

∥∥∥∞) and for t ∈�, S t :N(�)→ S tN = N(. + t) the shift operator by t units

of time. Applying Corollary 1.1 of [1] with f = Z, πA f =�0
[
λk

0( f0)
]
= µ0

k , ε = δT /2 and η = 1
4 T−β, we

obtain that for δ0 large enough,

�0

[∣∣∣∣∣∣

∫ T

0
λk

t ( f0) − µ0
kT

∣∣∣∣∣∣ ⩾ TδT /2
]
⩽

1
4

T−β.

For the first term on the RHS of (S8.40), we use the computations of the proof Lemma 3 in the Sup-
plementary Materials of [2] and obtain

�0

[∣∣∣∣∣∣N
k[0,T ] −

∫ T

0
λk

t ( f0)

∣∣∣∣∣∣ ⩾ TδT /2
]
⩽

1
4

T−β,

for δ0 large enough.
For the third term on the RHS of (S8.38), we denote X j =U(1)

j − τ j for 1 ⩽ j ⩾ JT − 1. We recall that

the X j’s are i.i.d. and follow an exponential law with rate ∥r0∥1 under �0 and �0
[
X j

]
= 1
∥r0∥1 . We thus

have

�0[ΩJ ∩Ωc
U ] ⩽ �0

ΩJ ∩


JT−1∑

j=1

X j ⩽
T

�0[∆τ1]∥r0∥1

1 − 2cβ

√
log T

T







⩽ �0

ΩJ ∩


JT−1∑

j=1

X j − JT − 1
∥r0∥1

⩽
T

�0[∆τ1]∥r0∥1

1 − 2cβ

√
log T

T
− 1 + cβ

√
log T

T







= �0

ΩJ ∩


JT−1∑

j=1

X j − JT − 1
∥r0∥1

⩽ − cβ
√

T log T
�0[∆τ1]∥r0∥1



 ⩽
∑

J∈JT
�0


J−1∑

j=1

X j − J − 1
∥r0∥1

⩽ − cβ
√

T log T
�0[∆τ1]∥r0∥1

 ,

where in the first inequality we have used the fact that on ΩJ ,

JT − 1 ⩾
T

�0[∆τ1]

1 − cβ

√
log T

T

 .

We apply the Bernstein’s inequality using that for any k ⩾ 1, �0
[
Xk

1

]
⩽ k!(∥r0∥1)−k+2�0

[
X2

1

]
/2. There-

fore, since �0
[
X2

1

]
= ∥r0∥−2

1 , we obtain

�0


J−1∑

j=1

X j − J − 1
∥r0∥1

⩽ − cβ
√

T log T
�0[∆τ1]∥r0∥1

 ⩽ exp−



c2
β log T

�0 [∆τ1]2 (1 +
cβ
√

log T

�0[∆τ1]
√

T
)



⩽ exp−


c2
β log T

2�0 [∆τ1]

 ⩽
1
4

T−β,

for cβ > 0 large enough. Finally, reporting into (S8.38) we can conclude that for Cβ, cβ, δ0 large enough,

�0
[
Ω̃c

T

]
⩽ T−β.
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For the second part of the lemma, we can use the exact same arguments as in the proof of Lemma 2 in
[2] to obtain the result.

For the case of shifted ReLU link function with unknown shift, we similarly have that

�0[Ω̃′cT ] ⩽ �0[Ωc
N] + 3�0[Ωc

J] +�0[ΩJ ∩Ωc
U ] +�0

[
ΩJ ∩Ωc

A

]
, (S8.41)

and therefore it only remains to bound the last term on the RHS of the previous inequality. Using
Assumption S7.36 (ii), let 0 < x1 < x2 and c⋆ such that [x1, x2] ⊂ B0 = {x ∈ [0,A],h0

lk(x) ⩽ −c∗}, n1 =

min{n ∈�; nc∗ > ν0
k}, δ′ = (x2 − x1)/3. We denote E0 the set of indices satisfying

E0 = { j ∈ [JT ]; N[τ j, τ j + δ
′] = Nl[τ j, τ j + δ

′] = n1, N[τ j + δ
′, τ j+1) = 0}.

Since ∀t ∈ [τ j + x1 + δ
′, τ j + x2], λ̃k

t ( f ) < 0, then |Ak( f0)| ⩾ 2(x2−x1)
3 |E0| and, with p0 = �0

[
j ∈ E0

]
,

�0
[
|Ak( f0)| < z0T

]
⩽ �0

[
|E0| < 3z0

2(x2 − x1)
T
]
⩽ �0

[|E0| < p0T/2
]
,

if z0 < 2p0(x2 − x1)/3. Consequently, applying Hoeffding’s inequality with Y j = 1 j∈E0
i.i.d.∼ B(p0) for

j ∈ [JT ] with JT ⩾ 2T/3�0 [∆τ1], we obtain

�0

[
|E0| < p0T

2

]
⩽ �0


2T/3�0[∆τ1]∑

j=1

Y j <
p0T

2

 ≲ e
− T p2

0
6�0[∆τ1] ⩽

1
4

T−β.

Consequently, �0
[
ΩJ ∩Ωc

A

]
= o(T−β), which terminates the proof of this lemma.

□

S8.2. Proof of Lemma A.4

Lemma S8.2 (Lemma A.4). For f ∈ FT and l ∈ [K], let

Z1l =

∫ ξ1

τ1

|λl
t( f ) − λl

t( f0)|dt,

where ξ1 is defined in (22) in Section 5.2. Under the assumptions of Theorem 3.2 and Case 1 of
Proposition 3.5, for MT → ∞ such that MT > M

√
κT with M > 0 and for any f ∈ FT such that

∥ν − ν0∥1 ⩽max(∥ν0∥1 , C̃) with C̃ > 0, there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] ⩾C( f0) ∥ f − f0∥1 ,

with C( f0) > 0 a constant that depends only on f0 and ϕ = (ϕk)k.
Similarly, under the assumptions of Case 2 of Proposition 3.5, for f ∈ FT and θ ∈ Θ, let r0 =

(r0
k )k, r f = (r f

k )k with r0
k = ϕk(ν0

k) = θ0
k + ν

0
k , r f

k = ϕk(νk) = θk + νk, ∀k. If
∥∥∥r f − r0

∥∥∥
1 ⩽ max(∥r0∥ , C̃′)

with C̃′ > 0, then there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] ⩾C′( f0)(∥r f − r0∥1 + ∥h − h0∥1), C′( f0) > 0. (S8.42)
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Proof. In this proof, we will show that (S8.42) holds for all the models satisfying the assumptions of
Theorem 3.2 and Proposition 3.5, with r0

k = ϕk(ν0
k) and r f

k = ϕk(νk) for all k. Then, excluding Case 2,
we use the fact that for any k, ϕ−1

k is fully known and L′-Lipshitz on Jk = ϕk(Ik) with Ik defined in
Assumption 3.1 (which also holds for the ReLU link function by Assumption 2.2), to show that

∥r f − r0∥1 + ∥h − h0∥1 ⩾ 1/L′∥ν − ν0∥1 + ∥h − h0∥1
⩾min(1,1/L′)(∥ν − ν0∥1 + ∥h − h0∥1) =min(1,1/L′) ∥ f − f0∥1 .

The proof of (S8.42) is inspired by the proof of Lemma 4 in the supplementary material of [2]. The
following computations are valid in all our estimation scenarios. We recall that for any k, r f

k = νk for the

ReLU link (Case 1 of Proposition 3.5) and r f
k = θk +νk for the shifted ReLU link (Case 2 of Proposition

3.5).
Let A > x > 0 and η > 0 such that

0 <
(A + x)2ηK2

1 − ηK
<

1
2

and η ⩽
minl r0

l

2C′0
, (S8.43)

with C′0 such that ∥r f − r0∥1 + ∥h − h0∥1 ⩽C′0. Assume that for any 1 ⩽ l′ ⩽ K, |r f
l′ − r0

l′ | ⩽ η(∥r f − r0∥1 +
∥h − h0∥1) and let l ∈ [K] such that

∑
k ∥hkl − h0

kl∥1 =maxl′
∑

k ∥hkl′ − h0
kl′∥1.

Then we have

∥r f − r0∥1 + ∥h − h0∥1 ⩽
(
ηK2

1 − ηK
+ K

)∑

k

∥hkl − h0
kl∥1. (S8.44)

For each k ∈ [K], we define the event Ωk as

Ωk =

{
max
k′,k

Nk′ [τ1, τ2) = 0, Nk[τ1, τ1 + x] = 0, Nk[τ1 + x, τ1 + x + A] = 1, Nk[τ1 + x + A, τ2) = 0
}
.

On Ωk, we have ξ1 =U(1)
1 + A and thus,

� f [Z1l] ⩾
∑

k

� f

1Ωk

∫ A+U(1)
1

τ1

|λl
t( f ) − λl

t( f0)|dt

 .

Let � be the point process measure of a homogeneous Poisson process with unit intensity on �+ and
equal to the null measure on [−A,0). Then

� f [Z1l] ⩾
∑

k

��


∫ U(1)

1 +A

τ1

Lt( f )1Ωk |λl
t( f ) − λl

t( f0)|
dt,

with Lt( f ) the likelihood process given by

Lt( f ) = exp

Kt −
∑

k

∫ t

τ1

λk
u( f )du +

∑

k

∫ t

τ1

log(λk
u( f ))dNk

u

 .
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For t ∈ [τ1,U
(1)
1 + A), since on Ωk, τ1 + x ⩽U(1)

1 ⩽ τ1 + A + x, we have

Lt( f ) ⩾ eKtλk
U(1)

1
( f ) exp

−
∑

k′

∫ t

τ1

ϕk′ (λ̃k′
u ( f ))du

 .

Under condition (C2), since ϕk′ ⩽Λk′ ,∀k′, with Λ = (Λ1, . . . ,ΛK), we directly have that

Lt( f ) ⩾ eKtλk
U(1)

1
( f )e−∥Λ∥1 ⩾ r f

k e−∥Λ∥1 ,

since at λk
U(1)

1

= r f
k = ϕk(νk).

Under condition (C1bis), using that ϕk is L-Lipschitz, we have

Lt( f ) ⩾ e−
∑

k′ ϕk′ (0)(A+U(1)
1 −τ1)λk

U(1)
1

( f ) exp

−
∑

k′

∫ A+U(1)
1

τ1

(ϕk′ (λ̃k′
u ( f )) − ϕk′ (0))du



⩾ e−
∑

k′ ϕk′ (0)(A+U(1)
1 −τ1)λk

U(1)
1

( f ) exp

−L
∑

k′

(A +U(1)
1 − τ1)νk′ +

∫ A+U(1)
1

U(1)
1

hkk′ (u −U(1)
1 )du





⩾ e−
∑

k′ ϕk′ (0)(2A+x)λk
U(1)

1
( f ) exp

−L
∑

k′

(2A + x)νk′ +

∫ A+U(1)
1

U(1)
1

h+kk′ (u −U(1)
1 )du





⩾ e−
∑

k′ ϕk′ (0)(2A+x)r f
k exp

−L
∑

k′

(
(2A + x)νk′ + ∥h+kk′∥1

) .

Moreover, since ∥S +∥1 < 1, then ∀(k, k′) ∈ [K]2, ∥h+kk′∥1 < 1. Thus, we obtain

Lt( f ) ⩾ e−
∑

k′ ϕk′ (0)(2A+x)r f
k e−LK−L(2A+x)

∑
k′ νk′

⩾
e−

∑
k′ ϕk′ (0)(2A+x)r0

k

2
e−LK−6AL max(C̃,∥ν0∥1) =: C.

In the last inequality, we have used our assumption ∥ν − ν0∥1 ⩽max(∥ν0∥1 , C̃) which implies that
∑

k′
νk′ ⩽ 2 max(∥ν0∥1 , C̃).

Moreover, we have that

� f [Z1l] ⩾C
∑

k

��

1Ωk

∫ U(1)
1 +A

U(1)
1

∣∣∣ϕl(λ̃l
t( f )) − ϕl(λ̃l

t( f0))|
∣∣∣dt



⩾
C
L′

∑

k

��

1Ωk

∫ U(1)
1 +A

U(1)
1

∣∣∣∣(νl − ν0
l ) + (hkl − h0

kl)(t −U(1)
1 )

∣∣∣∣dt

 ,

in all models except Case 2. In fact, in the latter case, we obtain

� f [Z1l] ⩾C
∑

k

��

1Ωk

∫ U(1)
1 +A

U(1)
1

∣∣∣∣(θl + νl − θ0
l − ν0

l ) + (hkl − h0
kl)(t −U(1)

1 )
∣∣∣∣dt
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=C
∑

k

��

1Ωk

∫ U(1)
1 +A

U(1)
1

∣∣∣∣(r f
l − r0

l ) + (hkl − h0
kl)(t −U(1)

1 )
∣∣∣∣dt

 .

On the one hand,

��

1Ωk

∫ U(1)
1 +A

U(1)
1

|νl − ν0
l |dt

 = A|νl − ν0
l |�(Ωk) ⩽ AL′|ϕl(νl) − ϕl(ν0

l )|�(Ωk) = AL′|r f
l − r0

l |�(Ωk)

⩽ AL′
ηK2

1 − ηK

∑

k′
∥hk′l − h0

k′l∥1,

and in Case 2 we have

��

1Ωk

∫ U(1)
1 +A

U(1)
1

|r f
l − r0

l |dt

 = A|rl − r0
l |�(Ωk) ⩽ A

ηK2

1 − ηK

∑

k′
∥hk′l − h0

k′l∥1.

On the other hand, by definition of �, Nk[τ1, τ1 + x + A] ∼ Poisson(x + A). Consequently, with U a
random variable with uniform distribution on [τ1 + x, τ1 + x + A], we obtain

��

1Ωk

∫ U(1)
1 +A

U(1)
1

∣∣∣∣(hkl − h0
kl)(t −U(1)

1 )
∣∣∣∣dt

 =�(Ωk)�
[∫ U+A

U
|(hkl − h0

kl)(t −U)|dt
]

=
�(Ωk)

A

∫ τ1+A+x

τ1+x

[∫ A+s

s
|hkl − h0

kl|(t − s)dt
]

ds ⩾�(Ωk)∥hkl − h0
kl∥1.

Moreover, we have

�(Ωk) ⩾�(max
k′,k

Nk′ [τ1, τ1 + x + 2A] = 0,Nk[τ1, τ1 + x] = 0,Nk[τ1 + x, τ1 + x + A] = 1)

=�(max
k′,k

Nk′ [τ1, τ1 + x + 2A] = 0)�(Nk[τ1, τ1 + x] = 0)�(Nk[τ1 + x, τ1 + x + A] = 1)

= e−(K−1)(x+2A) × e−x × Ae−A :=C′.

Using (S8.43) together with (S8.44), we obtain

� f [Z1l] ⩾
C
L′

∑

k

�(Ωk)
A

(
∥hkl − h0

kl∥1 − A2L′
ηK2

1 − ηK
∥hkl − h0

kl∥1
)
⩾

C
L′

C′

2

∑

k

∥hkl − h0
kl∥1

⩾C( f0)(∥r − r0∥1 + ∥h − h0∥1), C( f0) =
C
L′

C′

2(K + ηK2/(1 − ηK))
.

If there exists l ∈ [K] such that |r f
l − r0

l | ⩾ η(∥r − f − r0∥1 + ∥h − h0∥1), we can use similar arguments
as in the proof of Lemma 4 of [2]:

� f [Z1l] ⩾ � f

[
max

k
Nk[τ1, τ1 + A] = 0

]
× A|r f

l − r0
l |,

and

� f

[
max

k
Nk[τ1, τ1 + A] = 0

]
=��

[∫ τ1+A

τ1

Lt( f )1max
k

Nk[τ1,τ1+A]=0dt
]
=��

[∫ τ1+A

τ1

eA∥r∥11max
k

Nk[τ1,τ1+A]=0dt
]
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⩾ AeA∥r f ∥1e−KA,

so that

� f [Z1l] ⩾C′( f0)(∥r f − r0∥1 + ∥h − h0∥1), C′( f0) = A2ηeA∥r0∥1/2e−KA.

We can conclude that in all cases,

� f [Z1l] ⩾min(C( f0),C′( f0))(∥r f − r0∥1 + ∥h − h0∥1),

and except in Case 2 of Proposition 3.5,

� f [Z1l] ⩾min(C( f0),C′( f0),
1
L′
,1) ∥ f − f0∥1 .

□

S9. Additional results

In this section we recall some useful results on the regenerative properties of the nonlinear Hawkes
model, which are mainly straightforward extensions of [1] to our multivariate and general nonlinear
setup. Besides, we recall the well-known Fuk-Nagaev’s inequality.

The first lemma is an extension of Theorem A.1 [1] for a MK/GK/∞ queue when the arrival process
is the superposition of K Poisson Point processes, corresponding to K types of customers.

Lemma S9.1. Consider a MK/GK/∞ queue with K types of customers that arrive according to a
Poisson process with rate r = (r1, . . . , rK). Assume that for each k ∈ [K], the generic service time Hk for
a customer of type k satisfies for some γ > 0 and for any t ⩾ 0:

�
[
Hk ⩾ t

]
= o(e−γt).

Let T1 the first time of return of the queue to zero.

1. If ∥r∥1 < γ, then

� [T1 ⩾ t] ⩽

1 +
�

[
eγB

]

γ − ∥r∥1

 e−∥r∥1t,

where B is the length of a busy period of the queue, i.e. B = T1 − V1 with V1 the arrival time of
the first customer.

2. If γ ⩽ ∥r∥1, then for any 0 < α < γ, � [T1 ⩾ t] ⩽ c1(α)e−αt, with

c1(α) =

1 +
�

[
eαB

]

∥r∥1 − α

 .

3. ∀α ⩽ ∥r∥1 ∧ γ, �
[
eαT1

]
⩽ ∥r∥1
∥r∥1+s �

[
eαB

]
< +∞.

Proof. In this situation, the arrival process of customers, regardless of their type, is a superposition
of K Poisson processes with individual rate rk, k ∈ [K]. Consequently, it is equivalent to a Poisson
process with rate ∥r∥1 =∑

k rk. Moreover, the generic service time H of a customer can be written as
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H =
∑

k δkHk, with δ = (δk)k∈[K] a one-hot vector indicating the type of customer. We can easily see
that

δ ∼Mult
(
1,

r1

∥r∥1 , . . . ,
rK

∥r∥1

)
, H|δ ∼ δP,

with P the vector of service time distributions of the K types of customers. We note that the service
time H is independent of the arrival process. Consequently, for t ⩾ 0,

� [H ⩾ t] =
∑

k

�
[
Hk ⩾ t, δk = 1

]
⩽

∑

k

�
[
Hk ⩾ t

]
= o(e−γt).

We can therefore conclude that this queue is equivalent to a M/G/∞ queue with rate ∥r∥1 and generic
service time satisfying � [H ⩾ t] = o(e−γt). We can then apply Theorem A.1 in [1] to obtain the results.

□

The next lemma is a direct multivariate extension of the results in Propositions 2.1 and 3.1 and
Lemma 3.2 of [1]. It introduces the mutually-exciting process dominating (in the sense of measure) a
nonlinear Hawkes process.

Lemma S9.2. Let Q be a K-dimensional Poisson point process on (0,+∞) × (0,+∞)K with unit in-
tensity. Let N be the Hawkes process with immigration rate ν = (ν1, . . . , νK), νk > 0, k ∈ [K], interaction
functions hlk : �+→ �, (l, k) ∈ [K]2 and initial measure N0 on [−A,0] driven by (Qt)t⩾0 and satisfy-
ing one condition of Lemma 2.1. N is the pathwise unique strong solution of the following system of
stochastic equations


Nk = Nk

0 +
∫

(0,+∞)×(0,+∞) δ(u)1θ⩽λk(u)Q
k(du,dθ),

λk(u) = ϕk
(
νk +

∑K
l=1

∫ u
u−A hlk(u − s)dNl

s

)
, u > 0, k ∈ [K]

.

with δ(.) the Dirac delta function. Consider the similar equation for a point process N+ in which hlk is
replaced by h+lk for any l, k ∈ [K]2. Then

1. there exists a pathwise unique strong solution N;
2. the same holds for N+ and N ⩽ N+ a.s. in the sense of measures.

This also implies that, with ∆τ+1 defined similarly to ∆τ1 in (20) for the process N+,

�
[
∆τ1 ⩽ ∆τ

+
1

]
= 1.

Moreover, with T1 defined as in Lemma S9.1, we also have �
[
∆τ+1 = T1

]
= 1.

Finally, the last proposition is the Fuk-Nagaev’s inequality.

Proposition S9.3. Let (Xi)i⩾1 a sequence of independent and centered random variables with finite
variance and S n =

∑n
i=1 Xi. With v =

∑n
i=1�(Xi), for any x ⩾ 0 and λ ⩾ 0, it holds that

� [S n ⩾ λ] ⩽
n∑

i=1

� [Xi > x] + exp
{
− v

x2 h
( xλ
v

)}
,

where h(u) = (1 + u) log(1 + u) − u, u ⩾ 0.
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Déborah Sulem
Department of Statistics

University of Oxford
deborah.sulem@stats.ox.ac.uk

Vincent Rivoirard
Ceremade, CMRS, UMR 7534
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Abstract

Multivariate Hawkes processes are temporal point processes extensively applied to model event data
with dependence on past occurrences and interaction phenomena, e.g., neuronal spike trains, online
messages, and financial transactions. In the nonparametric setting, learning the temporal dependence
structure of Hawkes processes is often a computationally expensive task, all the more with Bayesian
estimation methods. In the generalised nonlinear Hawkes model, the posterior distribution is non-
conjugate and doubly intractable, and existing Monte-Carlo Markov Chain methods are often slow
and not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting
a mean-field variational approximation of the posterior distribution have been proposed. In this
work, we unify existing variational Bayes inference approaches under a general framework, that we
theoretically analyse under easily verifiable conditions on the prior, the variational class, and the
model. Then, in the context of the popular sigmoid Hawkes model, we design adaptive and sparsity-
inducing mean-field variational methods. In particular, we propose a two-step algorithm based on
a thresholding heuristic to select the connectivity graph parameter of the Hawkes model. Through
an extensive set of numerical simulations, we demonstrate that our approach enjoys several benefits:
it is computationally efficient, can reduce the dimensionality of the problem by selecting the graph
parameter, and is able to adapt to the smoothness of the underlying parameter.

1 Introduction

Modelling point or event data with temporal dependence often implies inferring a local dependence structure between
events, or estimating interaction parameters. In this context, the multivariate Hawkes model is a widely used temporal
point process (TPP) model, e.g., in seismology [Ogata, 1999], criminology [Mohler et al., 2011], finance [Bacry and
Muzy, 2015], and social network analysis [Lemonnier and Vayatis, 2014]. In particular, the generalised nonlinear
Hawkes model is able to account for different types of temporal interactions, including excitation and inhibition ef-
fects. For event data, the excitation phenomenon, sometimes named contagion or bursting behaviour, corresponds
to empirical observation that the occurrence of an event, e.g., a post on a social media, increases the probability of
observing similar events in the future, e.g., reaction comments. In contrast, the inhibition phenomenon refers to the
opposite observation and is prominent in neuronal applications due to biological regulation mechanisms [Bonnet et al.,
2021], and in criminology due to the enforcement of policies [Olinde and Short, 2020]. In addition to its expressive
power, the multivariate Hawkes model has become popular for the interpretability of its parameter, in particular the
connectivity or dependence graph parameter, which corresponds to a Granger-causal graph [Eichler et al., 2017].

In general, a multivariate TPP can be described as a counting process N = (Nt)t = (N1
t , . . . ,N

K
t )t∈�, where K > 1 is

the number of components (or dimensions) of the process. Each component of a TPP can represent a specific type of



event (e.g., a flooding or earthquake, when modelling natural disaster events), or a particular location where events
are recorded (e.g., a region or country). For each k = 1, . . . ,K and time t, Nk

t denotes the number of events that
have occurred until t at component k. We note that a multivariate TPP is also equivalent to a marked TPP where the
marks belong to the set {1, 2, . . . ,K} [Daley and Vere-Jones, 2007]. Therefore, multivariate TPPs are of interest for
jointly modelling the occurrences of events of distinct types, or recorded at multiple places. In TPPs, the probability
distribution of events is characterised by a conditional intensity function (or, more concisely, the intensity), denoted
(λt)t = (λ1

t , . . . , λ
K
t )t∈�. This function is informally the infinitesimal probability rate of event, conditionally on the

history of the process, i.e,

λk
t dt = �

[
Nk

t has a jump in [t, t + dt]
∣∣∣∣Gt

]
, k = 1, . . . ,K, t ∈ �,

where Gt = σ(Ns, s < t) denotes the history of the process until time t. In the nonlinear Hawkes model, the intensity
is defined as

λk
t = φk

νk +

K∑

l=1

∫ t−

−∞
hlk(t − s)dN l

s

 , k = 1, . . .K, (1)

where for each k, φk : � → �+ is a link or activation function, νk > 0 is a background or spontaneous rate of events,
and for each l, hlk : �+ → � is the interaction function or triggering kernel from N l onto Nk. On the one hand,
the parameter ν = (νk)k characterises the external influence of the environment on the process. Here, we assume that
this parameter is constant over time. On the other hand, the functions h = (hlk)l,k parametrise the causal influence
of past events. In particular, for any l, k, there exists a causal relationship from N l to Nk, or in other words, Nk is
locally-dependent on N l, if and only if hlk , 0 [Eichler et al., 2017]. Moreover, defining for each l, k, δlk := 1hlk,0,
the parameter δ := (δlk)l,k ∈ {0, 1}K×K defines a Granger-causal graph, called the connectivity graph. Finally, the link
functions φ = (φk)k’s are in general nonlinear and monotone non-decreasing. They are an essential part of the model
chosen by the practitioner, and frequently set as ReLU functions φk(x) = max(x, 0) = (x)+ [Hansen et al., 2015, Chen
et al., 2017, Costa et al., 2020, Lu and Abergel, 2018, Bonnet et al., 2021, Deutsch and Ross, 2022], sigmoid-type
functions, e.g., φk(x) = θk(1 + ex)−1 with a scale parameter θk > 0 [Zhou et al., 2021b,a, Malem-Shinitski et al., 2021],
softplus functions φk(x) = log(1+ex) [Mei and Eisner, 2017], or clipped exponential functions, i.e., φk(x) = min(ex,Λk)
with a clip parameter Λk > 0 [Gerhard et al., 2017, Carstensen et al., 2010]. When all the interaction functions are non-
negative and φk(x) = x for every k, the intensity (1) corresponds to the linear Hawkes model. Defining the underlying
or linear intensity as

λ̃k
t = νk +

K∑

l=1

∫ t−

−∞
hlk(t − s)dN l

s, k = 1, . . .K, (2)

for any t ∈ �, the nonlinear intensity (1) can be re-written as λk
t = φk(λ̃k

t ).

Estimating the parameter of the Hawkes model, denoted f = (ν, h), and the graph parameter δ, has been theoretically
studied in the Bayesian nonparametric framework and the linear model by Donnet et al. [2020] and in general nonlinear
models in Sulem et al. [2021]. Moreover, the properties of nonparametric penalised projection estimators have been
analysed in the linear model by Hansen et al. [2015] and Bacry et al. [2020] for high-dimensional linear processes,
and by Cai et al. [2021] in nonlinear models. Yet, in practice, most methods rely on a parametric framework. In
particular, a popular approach in the ReLU Hawkes model consists in estimating a parametric exponential form of
the interaction functions, i.e., hlk(x) = αlke−βlk x. Then, the estimation of (α, β) = (αlk, βlk)l,k can be performed via
the maximum likelihood estimate (MLE) Bonnet et al. [2021], Wang et al. [2016], or a Monte-Carlo Markov Chain
(MCMC) method Deutsch and Ross [2022]. Besides, a nonparametric approximated MLE is proposed in Lemonnier
and Vayatis [2014] for the ReLU model. In sigmoid models, a data augmentation strategy derived from Donner
and Opper [2019] and Adams et al. [2009] for Poisson point processes, allows to design Gibbs sampling algorithms.
Such MCMC sampler has been notably proposed in a time-varying Hawkes model and semi-parametric estimation
framework in Zhou et al. [2021a], and in a Gaussian process framework in Malem-Shinitski et al. [2021]. However,
these algorithms rely on a computationally expensive sampling strategy and are not efficient enough in practice for
multivariate processes.

Recently, data augmentation strategies have also been used to derive variational Bayes algorithms in Hawkes models.
These novel methods leverage the conjugacy of an augmented mean-field variational posterior distribution with certain
families of Gaussian priors. In the linear univariate model (i.e., K = 1), the self-exciting function h := h11 is estimated
via a transformation of a Gaussian process, e.g., a quadratic function in Zhang et al. [2020], or a sigmoid function in
Zhou et al. [2019, 2020], and an iterative mean-field variational inference (MF-VI) algorithm. In the sigmoid Hawkes
model, Zhou et al. [2021b] propose an efficient variational EM algorithm, then Zhou et al. [2021a] develop a related
iterative MF-VI algorithm in a time-varying and semi-parametric multivariate model. A similar type of algorithm
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is introduced by Malem-Shinitski et al. [2021] in a Gaussian process framework. Nonetheless, these variational ap-
proaches have not been yet theoretically analysed. Moreover, the estimation of the graph δ has not been considered in
the variational framework, although this parameter can be of interest for scaling up these methods to high-dimensional
Hawkes processes. In fact, the connectivity graph also determines the dimensionality and the sparsity of the estimation
problem, similarly to the structure parameter in high-dimensional regression [Ray and Szabó , 2021].

In this work, we first provide a general variational Bayes estimation framework for multivariate Hawkes processes
that unifies existing approaches, and theoretically analyse variational methods in this context. We notably derive con-
centration rates for variational posterior distributions, leveraging the general methodology of Zhang and Gao [2017]
based on verifying a prior mass, a testing, and a variational class condition. We apply our general results to two vari-
ational classes of interest in the Hawkes model, namely the mean-field family and a novel spike-and-slab family, and
two families of nonparametric priors. These resuts provide asymptotic guarantees, i.e., in the infinite-data setting, for
variational Bayes methods. Then, we propose a novel adaptive and sparsity-inducing variational approach, based on
the general methods of Zhang and Gao [2017] and Ohn and Lin [2021] for variational inference with model selection.

Next, building on existing data augmentation strategy, we design two adaptive and sparsity-inducing MF-VI algorithms
in the sigmoid Hawkes model. In particular, we propose a two-step procedure based on a thresholding heuristic to
select the connectivity graph parameter, which allows to reduce the computational cost for high-dimensional processes.
We empirically demonstrate the effectiveness of our algorithms in an extensive set of simulations. We notably show
that our adaptive variational algorithms are more computationally efficient than MCMC methods, while enjoying
comparable estimation performance. Finally, our algorithms can also correctly infer the connectivity graph parameter,
therefore uncovering the causality structure of the true generating process.

Additionally, we note that in the context of sigmoid Hawkes models with link function φk(x) = θk(1 + e−x)−1 with
θk > 0, k ∈ [K], existing algorithms also aim at estimating the scale parameter θ = (θk)k [Apostolopoulou et al., 2019,
Zhou et al., 2021b, Malem-Shinitski et al., 2021, Zhou et al., 2021a]. However, the latter estimation problem has not
been thoroughly analysed yet, neither in the Bayesian nor the frequentist frameworks. Therefore, we also extend the
posterior concentration results of Sulem et al. [2021] to the latter model with unknown scale parameter θ, and validate
the use of Bayesian methods in this setup.

Outline We first introduce some useful notation. Then, in Section 2, we describe our model and inference setup.
Section 3 contains our general results, and their applications to prior and variational families of interest in the Hawkes
model. In Section 4, we focus on the sigmoid Hawkes model and present our novel adaptive and sparsity-inducing
variational algorithms. Finally, Section 5 contains the results of our numerical experiments. The proofs of our main
results are reported in Appendix A.

Notations. For a function h, we denote ‖h‖1 =
∫
�
|h(x)|dx the L1-norm, ‖h‖2 =

√∫
�

h2(x)dx the L2-norm, ‖h‖∞ =

sup
x∈�
|h(x)| the supremum norm, and h+ = max(h, 0), h− = max(−h, 0) its positive and negative parts. For a K×K matrix

A, we denote r(A) its spectral radius, ‖A‖ its spectral norm, and tr(A) its trace. For a vector u ∈ �K , ‖u‖1 =
∑K

k=1 |uk |.
The notation k ∈ [K] is used for k ∈ {1, · · · ,K}. For a set B and k ∈ [K], we denote Nk(B) the number of events of
Nk in B and Nk |B the point process measure restricted to the set B. For random processes, the notation L= corresponds
to equality in distribution. We also denote N(u,H0, d) the covering number of a set H0 by balls of radius u w.r.t. a
metric d. For any k ∈ [K], let µ0

k = �0[λk
t ( f0)] be the mean of λk

t ( f0) under the stationary distribution �0. For a set
Ω, its complement is denoted Ωc. We also use the notations uT . vT if |uT /vT | is bounded when T → ∞, uT & vT if
|vT /uT | is bounded and uT � vT if |uT /vT | and |vT /uT | are bounded. We recall that a function φ is L-Lipschitz, if for
any (x, x′) ∈ �2, |φ(x) − φ(x′)| 6 L|x − x′|. We denote 1n and 0n the all-ones and all-zeros vectors of size n. Finally,
we denoteH(β, L0) the class of β-smooth functions with radius L0.

2 Model and inference setup

In this section, we first recall the formal definition of multivariate Hawkes processes and our main assumptions. Then,
we describe our general variational Bayes inference framework.

2.1 Multivariate Hawkes processes

Let (X,G,�) be a probability space, N = (Nt)t∈� = (N1
t , . . . ,N

K
t )t∈� be a K-dimensional temporal point process, and

{Gt}t∈� be the filtration such that Gt = σ(Ns, s 6 t) ⊂ G.

Definition 2.1 (Multivariate nonlinear Hawkes process). A TPP (Nt)t is a Hawkes process adapted to G if
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i) almost surely, ∀k, l ∈ [K], (Nk
t )t and (N l

t )t never jump simultaneously;

ii) for all k ∈ [K], the Gt-predictable conditional intensity function of Nk at t ∈ � is given by (1).

An alternative definition of Hawkes processes can be formulated via a system of stochastic equations driven by a
marked Poisson point process (see for instance Bremaud and Massoulie [1996]).
Definition 2.2. Let Q = (Q1, . . . ,Qk) be a K-dimensional point process such that for each k, Qk is a Poisson point
process on (0,+∞) × (0,+∞)K with unit intensity. Let N0 a point process measure on �−. If N is the pathwise unique
strong solution of the following system of equations

Nk = Nk
0 +

∫
(0,+∞)×(0,+∞) δ(u)1θ6λk(u)Qk(du, dθ),

λk(u) = φk

(
νk +

∑K
l=1

∫ u
u−A hlk(u − s)dN l

s

)
, u > 0, k ∈ [K]

.

with δ(.) the Dirac delta function, then N is a Hawkes process with parameter ν = (νk), h = (hlk)lk, link functions (φk)k
and initial measure N0 on �− driven by (Qt)t>0

We consider finite-memory and stationary Hawkes processes. More precisely, we assume that the interaction functions
(hlk)l,k have a bounded support included in [0, A] with A > 0 a known constant. We also assume that the activation
functions (φk)k are monotone non-decreasing, L-Lipschitz, L > 0, and that one of the two following conditions is
satisfied (see for instance Bremaud and Massoulie [1996], Deutsch and Ross [2022], or Sulem et al. [2021]):

(C1) The matrix S + = (S +
lk)l,k ∈ �K×K

+ with S +
lk = L

∥∥∥h+
lk

∥∥∥
1 ,∀l, k, satisfies ‖S +‖ < 1;

(C2) For any k ∈ [K], the link function φk is bounded, i.e., ∃Λk > 0,∀x ∈ �, 0 6 φk(x) 6 Λk.

2.2 Bayesian inference framework

We assume that we observe a stationary K-dimensional Hawkes process N with unknown parameter f0 = (ν0, h0) and
known link functions (φk)k such that (φ, h0) verifies condition (C1), i.e.,

∥∥∥S +
0

∥∥∥ < 1 with S +
0 = (L

∥∥∥h0+
lk

∥∥∥
1)l,k. Given an

observation of N over a time window [−A,T ], with T > 0, the log-likelihood function for a parameter f = (ν, h) is
given by

LT ( f ) :=
K∑

k=1

Lk
T ( f ), Lk

T ( f ) =

[∫ T

0
log(λk

t ( f ))dNk
t −

∫ T

0
λk

t ( f )dt
]
. (3)

We then denote � f (.|G0) the conditional distribution of N defined as

d� f (.|G0) = eLT ( f )−LT ( f0)�0(.|G0).
We also denote �0 and � f the expectations associated to �0(.|G0) and � f (.|G0). With a slight abuse of notation, we
will drop the notation G0. Let F be the parameter space and Π be a prior distribution on F . The posterior distribution
for any subset B ⊂ F is defined as

Π(B|N) =

∫
B exp(LT ( f ))dΠ( f )

∫
F exp(LT ( f ))dΠ( f )

=:
NT (B)

DT
, DT :=

∫

F
exp(LT ( f ))dΠ( f ). (4)

The posterior distribution (4) is often said to be doubly intractable, because of the integrals in the log-likelihood
function (3) and in the denominator DT . In general, it is expensive to compute since the parameter f includes K2

functions.
Remark 2.3. Let, for each component k ∈ [K], fk = (νk, (hlk)l=1,...,K) ∈ Fk so that f = ( fk)k and F = F1 × · · · × FK . If
the prior distribution verifies Π( f ) =

∏
k Πk( fk), then, given the expressions of the log-likelihood function (3) and the

intensity (1), we have that Lk
T ( f ) = Lk

T ( fk) and the posterior distribution can be written as

Π(B|N) =
∏

k

Πk(Bk |N), Πk(Bk |N) =

∫
Bk

exp(Lk
T ( fk))dΠk( fk)

∫
Fk

exp(Lk
T ( fk))dΠk( fk)

, Bk ⊂ Fk, ∀k ∈ [K].

The latter factorisation implies that each factor Πk(.|N) of the posterior distribution can be independently computed -
nonetheless, given the whole data N.

For the prior distribution Π, we use a construction similar to Donnet et al. [2020] and Sulem et al. [2021]. For ease of
exposition, we consider link functions (φk)k that are injective on � (see Assumption 3.1 in Section 3.1), however, our
construction can be easily adapted if for each k, φk is injective on a subset of �. We define a prior on f of the form

dΠ( f ) = dΠh(h)
∏

k

dΠν(νk).
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We use a distribution Πν absolutely continuous with respect to the Lebesgue measure, with positive and continuous
probability density on �+\{0}, e.g., a gamma distribution. For h = (hlk)l,k, we use the hierarchical spike-and-slab
prior of Donnet et al. [2020] based on the connectivity graph parameter δ. For each l, k, we consider the following
reparametrisation

hlk = δlkh̄lk, δl,k ∈ {0, 1}, h̄lk ∈ H ′,
so that δ = (δlk)lk is the connectivity graph. We then consider δ ∼ Πδ, where Πδ is a prior distribution on {0, 1}K2

.
Next, conditionally on δ, we use a truncated distribution on h|δ of the form

dΠh(h|δ) =


∏

l,k

dΠ̃h|δ(hlk)

1‖S +‖<1(h),

or simply dΠh(h) =
∏

l,k dΠ̃h(hlk) if (φk)k satisfies (C2), with

Π̃h|δ(hlk) = δlkΠ̃h(h̄lk) + (1 − δlk)δ{0}(h̄lk),

where δ{0} is the Dirac measure at hlk = 0 and Π̃h is a nonparametric prior distribution onH ′, e.g., a Gaussian process,
random histogram, or spline prior (see Sulem et al. [2021]).

Remark 2.4. From the previous construction, one can see that the graph parameter δ ∈ {0, 1}K2
defines the sparsity

structure of h. Besides, one can also use a soft-sparse (or shrinkage) prior distribution for Π̃h.

2.3 Variational Bayes framework

Previous work on Hawkes processes underlines the difficulty of computing the nonparametric posterior distribution
(4) [Donnet et al., 2020, Zhou et al., 2021a, Malem-Shinitski et al., 2021], and scaling up Bayesian methods to high-
dimensional processes. Alternatively, variational Bayes methods consist in approximating the posterior distribution
within a variational class of “convenient” distributions. We first recall the definition of the Kullback-Leibler diver-
gence. For any two distributions Q and Q′ on F , it is defined as

KL(Q||Q′) :=


∫
log dQ

dQ′ dQ, if Q � Q′

+∞, otherwise
.

LetV be an approximating family of distributions on F . The variational posterior distribution, denoted Q̂, is defined
as the best approximation of the posterior distribution withinV, with respect to the Kullback-Leibler divergence, i.e.,

Q̂ := arg min
Q∈V

KL (Q||Π(.|N)) . (5)

From Remark 2.3, we note that the variational distribution also factorises in K factors, Q̂ =
∏

k Q̂k where each factor Q̂k
approximates Πk(.|N). Therefore, one can choose a variational classV′ of distributions on F1 and defineV = V′⊗K .

Mean-field variational inference When the parameter of interest, say ϑ, is multi-dimensional, i.e., ϑ = (ϑ1, . . . , ϑD)
with D > 1, a common choice of variational class is a mean-field family [Zhang and Gao, 2017, Ohn and Lin, 2021],
that can be defined as

VMF =

Q; dQ(ϑ) =

D∏

d=1

dQd(ϑd)

 .

Then, the mean-field variational posterior distribution corresponds to Q̂ = arg minQ∈VMF KL (Q||Π(.|N)) =
∏D

d=1 Q̂d.
Note that the mean-field family removes correlation between coordinates of the parameter. From now on, we assume
that the mean-field variational posterior distribution has a density with respect to a dominating measure µ =

∏
d µd,

and with a slight abuse of notation, we denote Q̂ both the distribution and density with respect to µ. An interesting
result from Bishop and Nasrabadi [2006], Donnet et al. [2020] is that the mean-field variational posterior distribution
verifies, for each d ∈ [D],

Q̂d(ϑd) ∝ exp
{
�Q̂−d

[log p(ϑ,N)]
}
, (6)

where p(ϑ,N) is the joint density of the observations and the parameter with respect to
∏

d µd × µN with µN the
data density, and Q̂−d :=

∏
d′,d Q̂d′ . This property (6) can be used to design efficient algorithms for computing the

variational posterior, such as the coordinate-ascent variational inference algorithm. In the sigmoid Hawkes model, for
which φk(x) = θk(1+ex)−1,∀k, a mean-field approximating class is used within a latent variable augmentation scheme,
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by breaking only the correlation between the original parameter and the latent variable [Malem-Shinitski et al., 2021,
Zhou et al., 2021a]. We therefore consider a general setting where the log-likelihood function of the nonlinear Hawkes
model can be augmented with some latent variable z ∈ Z, with Z the latent parameter space. We denote LA

T ( f , z) the
augmented log-likelihood and define the augmented posterior distribution as

ΠA(B|N) =

∫
B exp(LA

T ( f , z))d(Π( f ) × �A(z))
∫
F×Z exp(LA

T ( f , z))d(Π( f ) × �A)(z)
, B ⊂ F ×Z,

where �A is a prior distribution on z which has a density with respect to a dominating measure µz. The approximating
mean-field family of ΠA(.|N) is then defined as

VAMF = {Q : F ×Z → [0, 1]; Q( f , z) = Q1( f )Q2(z)} .
Thus, using property (6), the (augmented) mean-field variational posterior defined as

Q̂AMF( f , z) := arg min
Q∈VAMF

KL (Q( f , z)||ΠA( f , z|N)) =: Q̂1( f )Q̂2(z), (7)

also verifies

Q̂1( f ) ∝ exp
{
�Q̂2

[log p( f , z,N)]
}
,

Q̂2(z) ∝ exp
{
�Q̂1

[log p( f , z,N)]
}
,

where p( f , z,N) is the joint density of the parameter, the latent variable, and the observations with respect to the
measure

∏
d µd × µz × µN .

Spike-and-slab variational inference Another variational class of interest in the context of sparse and high-
dimensional models is the spike-and-slab variational family. In the multivariate Hawkes model, we introduce the
following spike-and-slab variational family, inspired by the spike-and-slab prior from Section 2.2.

Definition 2.5 (Spike-and-slab variational class). In the Hawkes model with parameter f = (ν, h) and connectivity
graph δ, the spike-and-slab variational family can be defined as

VS AS =
{
Q; dQ( f ) = dQδ(δ)dQ f |δ( f ) = dQδ(δ)dQ f |δ(ν, δh)

}
.

We note that if Qδ is deterministic, i.e., Qδ is the Dirac measure at some δ′ ∈ {0, 1}K×K , then VS AS corresponds to
a variational family where the graph parameter is fixed, i.e., the variational posterior has a certain sparsity structure.
Moreover, if Qδ is given a factorised form, i.e., Qδ(δ) =

∏
l,k Q̄δ(δlk), thenVS AS corresponds to a mean-field variational

family. While standard MCMC methods using spike-and-slab priors are generally untractable, it is sometimes possible
to design spike-and-slab variational inference algorithms that enjoy good computational properties (see for instance
Titsias and Lázaro-Gredilla [2011], Ray and Szabó [2021] in sparse linear regression).

Variational inference with model selection More generally, variational inference algorithms aim at optimising a
lower bound of the marginal log-likelihood, called the evidence lower bound (ELBO), and defined as

ELBO(Q) := �Q

[
log

p( f ,N)
Q( f )

]
, Q ∈ V, (8)

where p( f ,N) is the joint distribution of the parameter and the data. The ELBO can also be used within a model-
selection variational methodology, and we recall here the two related approaches of Zhang and Gao [2017] and Ohn
and Lin [2021]. Let M be a set of models and for each m ∈ M, let Πm be a prior distribution on M and Vm be a
variational class. The variational posterior in model m is defined Q̂m = arg minQ∈Vm KL(Q|||Π(.|N)). Then, a model-
selection variational posterior, which lies in a selected model, is defined by Zhang and Gao [2017] as

Q̂ := Q̂m̂, m̂ := arg max
m∈M

ELBO(Q̂m). (9)

We note that the approximating variational family in this case is V =
⋃

m∈MVm. Another possibility is to construct
an adaptive variational posterior as a mixture of distributions over the different models [Ohn and Lin, 2021], i.e.,

Q̂( f ) =
∑

m∈M
γ̂mQ̂m, (10)
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where {γ̂m}m∈M are marginal probabilities defined as

γ̂m =
Πm(m) exp

{
ELBO(Q̂m)

}

∑
m∈M Πm(m) exp

{
ELBO(Q̂m)

} , ∀m ∈ M. (11)

In this case, the variational family is

V =


∑

m∈M
αmQm;

∑

m

αm = 1, αm > 0, Qm ∈ Vm, ∀m

 .

In Section 3.2.2, we will use this approach to induce sparsity and achieve adaptivity in our variational method. In our
context of multivariate Hawkes processes, a “model” m will correspond to the sparsity structure and dimensionality of
h, i.e., a graph parameter δ and the truncation level in a basis decomposition for each non-null function hlk.

3 Main results

In this section, we provide theoretical guarantees for using variational Bayes methods to estimate the parameter of
nonlinear Hawkes processes. We first derive the concentration rate of the variational posterior distribution (5), under
general conditions on the model, the prior distribution, and the variational family. Then, we apply our results to
variational methods of practical interest.

3.1 Variational posterior concentration rates

We recall that in our setting, the link functions φ = (φk)k in the nonlinear intensity (1) are fixed by the statistician
and therefore known a priori. To analyse the variational posterior distribution, we first state a general assumption that
guarantees the concentration of the posterior distribution (4) in the nonlinear Hawkes model (see Sulem et al. [2021]).

Assumption 3.1. For a parameter f , we assume that there exists ε > 0 such that for each k ∈ [K], the link function
φk restricted to Ik = (νk −max

l∈[K]

∥∥∥h−lk
∥∥∥∞ − ε, νk + max

l∈[K]

∥∥∥h+
lk

∥∥∥∞ + ε) is bijective from Ik to Jk = φk(Ik) and its inverse is L′-

Lipschitz on Jk, with L′ > 0. We also assume that at least one of the two following conditions is satisfied.

i) For any k ∈ [K], inf
x∈�

φk(x) > 0.

ii) For any k ∈ [K], φk > 0, and
√
φk and log φk are L1-Lipschitz with L1 > 0 .

Assumption 3.1 is needed in Sulem et al. [2021] to prove the posterior concentration rates, and is verified for commonly
used link functions (see Example 1 in Sulem et al. [2021]). We also need this assumption to obtain the concentration
of the variational posterior distribution since our proofs leverage this existing theory.

We define the parameter space F as follows

H ′ = {h : [0, A]→ �; ‖h‖∞ < ∞} , H =
{
h = (hlk)K

l,k=1 ∈ H ′K
2
; (h, φ) satisfy (C1) or (C2)

}
,

F =
{
f = (ν, h) ∈ (�+\{0})K ×H ; ( f , φ) satisfies Assumption 3.1

}
,

and the L1-distance for any f , f ′ ∈ F as

‖ f − f ′‖1 :=
∥∥∥ν − ν′

∥∥∥
1 +

∥∥∥h − h′
∥∥∥

1 ,
∥∥∥h − h′

∥∥∥
1 :=

K∑

l,k=1

∥∥∥hlk − h′lk
∥∥∥

1 ,
∥∥∥ν − ν′

∥∥∥
1 :=

∑

k

|νk − ν′k |.

In our main assumptions, we will consider the following neighbourhood around f0 in supremum norm

B∞(ε) =
{
f ∈ F ; ν0

k 6 νk 6 ν0
k + ε, h0

lk 6 hlk 6 h0
lk + ε, (l, k) ∈ [K]2

}
, ε > 0.

Finally, we define

κT := 10(log T )r, (12)

with r = 0 if (φk)k satisfies Assumption 3.1 (i), and r = 1 if (φk)k satisfies Assumption 3.1 (ii).
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Theorem 3.2. Let N be a Hawkes process with link functions φ = (φk)k and parameter f0 = (ν0, h0) such that (φ, f0)
satisfy Assumption 3.1. Let εT = o(1/

√
κT ) be a positive sequence verifying log3 T = O(T ε2

T ), Π be a prior distribution
on F and V be a variational family of distributions on F . We assume that the following conditions are satisfied for
T large enough.

(A0) There exists c1 > 0 such that Π(B∞(εT )) > e−c1T ε2
T .

(A1) There existHT ⊂ H , ζ0 > 0, c2 > 0 and x0 > 0 such that, with ΘT = {θ ∈ Θ, 0 < θk 6 ec2T ε2
T }, Π(Hc

T ) + Π(Θc
T ) =

o(e−(κT +c1)T ε2
T ) and logN (ζ0εT ,HT , ||.||1) 6 x0T ε2

T .

(A2) There exists Q ∈ V such that supp(Q) ⊂ B∞(εT ) and KL(Q||Π) = O(κT T ε2
T ).

Then, for any MT → ∞ and Q̂ defined in (5), we have that

Q̂
(
‖ f − f0‖1 > MT

√
κT εT

)
−−−−→
T→∞

0 �0 − a.s.,

or equivalently,

�0

[
Q̂(‖ f − f0‖1 > MT

√
κT εT )

]
−−−−→
T→∞

0.

Remark 3.3. Similarly to Donnet et al. [2020] Sulem et al. [2021], Theorem 3.2 also holds when the neighborhoods
B∞(εT ) around f0 in supremum norm, considered in assumptions (A0) and (A2), are replaced by the following L2-balls

B2(εT , B) =

{
f ∈ F ; max

k
|νk − ν0

k | 6 εT , max
l,k
‖hlk − h0

lk‖2 6 εT , max
l
νl + max

k
‖hkl‖∞ < B

}
,

with B > 0 and κT replaced by κ′T = 10(log log T )(log T )r.
Remark 3.4. Theorem 3.2 also holds under a more general condition on the variational family

(A2’) The variational familyV verifies minQ∈V KL(Q||Π(.|N)) = O(κT T ε2
T ).

However, in practice, one often verifies (A2) and deduces (A2’) using the following steps from Zhang and Gao [2017].
For any Q ∈ V, we have that

KL(Q||Π(.|N)) 6 KL(Q||Π) + Q(KL(d�0, d� f )) = KL(Q||Π) + Q(KL(�T, f0 ,�T, f )),

where we denote �T, f0 = eLT ( f0) and �T, f = eLT ( f ). Using Lemma S6.1 from Sulem et al. [2021], for any f ∈ B∞(εT ),
we also have that

�0
[
LT ( f0) − LT ( f )

]
6 κT T ε2

T .

Therefore, under (A2), there exists Q ∈ V such that KL(Q||Π(.|N)) = O(κT T ε2
T ), which implies (A2’) .

Remark 3.5. On the one hand, assumptions (A0) and (A1) are similar to the ones of Theorem 3.2 in Sulem et al.
[2021]. They are sufficient conditions for proving that the posterior concentration rate is at least as fast as

√
κT εT .

On the other hand, (A2) (or (A2’)), is the only condition on the variational class, and informally states that this family
of distributions can approximate well enough the true posterior. Nonetheless, as previously noted by Nieman et al.
[2021], we could well have minQ∈V KL(Q||Π(.|N)) −−−−→

T→∞
∞ under (A2).

The proof of Theorem 3.2 is reported in Section A.2.

3.2 Applications to variational classes of interest

In this section, we apply our previous result to variational inference methods of interest in nonlinear Hawkes models.
We consider the mean-field and spike-and-slab variational families introduced in Section 2.3, and verify our general
conditions on two nonparametric prior families, namely the random histogram prior and the Gaussian process prior.
We then obtain explicit concentration rates for the variational posterior distribution and for Hölder-smooth classes of
functions.

We recall from Sulem et al. [2021] that in the spike-and-slab prior construction from Section 2.2, we can in fact replace
assumption (A0) by

(A0’) There exists c1 > 0 such that Π(B∞(εT )|δ = δ0) > e−c1T ε2
T /2 and Πδ(δ = δ0) > e−c1T ε2

T /2,

and that one can choose for instance, Πδ = B(p)K2
with 0 < p < 1, implying that the δlk’s are i.i.d. Bernoulli random

variables. Then, for any fixed p, one only needs to verify Πh|δ(B∞(εT )|δ = δ0) > e−c1T ε2
T /2.
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3.2.1 Mean-field variational family

We consider the mean-field variational inference method within a latent variable augmentation scheme from Section
2.2. We recall our notation VAMF , Q̂AMF and �A, for respectively the (augmented) mean-field variational family
and variational posterior, and the prior distribution on the latent variable. In this section, we apply Theorem 3.2 to
Q̂AMF and two nonparametric prior distributions of interest. Practical algorithms in this context will also be designed in
Section 4 for the sigmoid Hawkes model. We first note in this scheme, the augmented prior distribution Π×�A ∈ VAMF ,
therefore assumption (A2) is automatically satisfied forVAMF , therefore, we only need to verify conditions (A0’) and
(A1) on the prior distribution.

Random histogram prior We consider a random histogram prior for Π̃h, the prior on the slabs from Section 2.2.
This prior family is notably used in Donnet et al. [2020], Sulem et al. [2021], and is similar to the basis decomposition
prior in Zhou et al. [2021b,a]. We consider a regular partition of (0, A], (t j) j=0,...,J with t j = jA/J and J > 0, and define
piecewise-constant functions as

hwlk(x) =

J∑

j=1

w
j
lke j(x), e j(x) =

J
A
1(t j−1,t j](x), ∀ j ∈ [J],

with w j
lk ∈ �,∀l, k = 1, . . . ,K and j = 1, . . . , J. We then consider a prior on the number of pieces J, J ∼ P(λ) with

λ > 0, then a normal prior distribution on each wlk given J, i.e.,

wlk |J i.i.d.∼ N(0J ,KJ), KJ = σ2
0IJ , σ0 > 0.

With this prior construction, assumptions (A0’) and (A1) are directly satisfied. For instance, this Gaussian random
histogram prior is a particular case of the spline prior family in Sulem et al. [2021], with a spline basis of order q = 0.
It would also be straightforward to verify that these conditions also hold for the shrinkage prior of Zhou et al. [2021b]
based on the Laplace distribution pLap(w j

lk; 0, b) = (2b)−1 exp{−|w j
lk |/b} with b > 0, and for a “locally spike-and-slab”

prior inspired by the prior of Donnet et al. [2020], Sulem et al. [2021] such as

w
j
lk |J

i.i.d.∼ pδ0 + (1 − p)pLap(.; 0, b), p ∈ (0, 1), b > 0,

where δ0 is the Dirac measure at 0.
Proposition 3.6. Let N be a Hawkes process with link functions φ = (φk)k and parameter f0 = (ν0, h0) such that (φ, f0)
verify Assumption 3.1. Assume that for any l, k ∈ [K], h0

lk ∈ H(β, L0) with β ∈ (0, 1) and L0 > 0. Then, under the
above Gaussian random histogram prior, the mean-field variational distribution Q̂1 defined in (7) satisfies, for any
MT → +∞,

Q̂1

(
‖ f − f0‖1 > MT (log T )qT−β/(2β+1)

)
−−−−→
T→∞

0 �0 − a.s.,

with q = 0 if φ verifies Assumption 3.1(i) and q = 1/2 if φ verifies Assumption 3.1(ii).

The proof of Proposition 3.6 is omitted since it is a direct application of Theorem 3.2 to mean-field variational families
in the context of a latent variable augmentation scheme.

Gaussian process prior Gaussian process priors are commonly used for nonparametric estimation of Hawkes pro-
cesses Zhang et al. [2020], Zhou et al. [2020], Malem-Shinitski et al. [2021]. We consider Π̃h a centered Gaussian
process distribution with covariance function kGP, i.e., for each l, k ∈ [K] and for any n > 1, x1, . . . , xn ∈ [0, A],

(hlk(xi))i=1,...,n ∼ N
(
0n, (kGP(xi, x j))i, j=1,...,n

)
.

Here, we verify assumptions (A0’) and (A1) using the L2-neighborhoods (see Remark 3.3), i.e., we check that there
existHT ⊂ H and c1, x0, ζ0 > 0 such that

Π(Hc
T ) 6 e−(κT +c1)T ε2

T , logN(ζ0εT ,HT , ‖.‖1) 6 x0T ε2
T , Π(B2(εT , B)) > e−c1T ε2

T .

It is therefore enough to find BT ⊂ L2([0, A]) such that

Π̃h(Bc
T ) 6 e−(κT +c1)Tε2

T , logN(ζ0εT ,BT , ‖.‖1) 6 x0T ε2
T /2, Π̃h(

∥∥∥h − h0
lk

∥∥∥
2 < εT ) > e−c2Tε2

T /K2,

and defineHT = B⊗K2

T , since

Π(Hc
T ) 6 Π̃(Bc

T ), logN(ζεT ,HT , ‖.‖1) 6 2 log K +N(ζ2εT ,BT , ‖.‖1), Π(B2(εT , B)) >
∏

l,k

Π̃h

(∥∥∥h − h0
lk

∥∥∥
2 < εT

)
.
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These conditions are easily deduced from Theorem 2.1 in van der Vaart and van Zanten [2009b] that we recall here.
Let � be the Reproducing Kernel Hilbert Space of kGP and φh0 (ε) be the concentration function associated to Π̃h
defined as

φh0 (ε) = inf
h∈�,‖h−h0‖26ε

‖h − h0‖� − log Π̃(‖h‖2 6 ε), ε > 0.

For any εT > 0 such that φh0 (εT ) 6 T ε2
T , there exists BT ⊂ L2([0, A]) satisfying

Π̃h(Bc
T ) 6 e−CT ε2

T , logN(3εT ,BT , ‖.‖2) 6 6CTε2
T , Π̃h(

∥∥∥h − h0
lk

∥∥∥∞ < 2εT ) > e−T ε2
T ,

for any C > 1 such that e−CT ε2
T < 1/2. Since ‖h‖1 6

√
A ‖h‖2, we then obtain that

logN(3
√

AεT ,BT , ‖.‖1) 6 logN(3εT ,BT , ‖.‖2) 6 6CT ε2
T ,

and finally, that logN(ζ0εT ,HT , ‖.‖1) 6 2 log K + 6CT ε2
T 6 x0T ε2

T with ζ0 = 3
√

A, x0 = 12C.

Although more general kernel functions kGP could be considered, we focus on squared exponential kernels for which

∀x, y ∈ �, kGP(x, y; `) = exp
{
−(x − y)2/`2

}
, ` ∼ IV(`; a0, a1), a0, a1 > 0,

where IV(.; a0, a1) with a0, a1 > 0 is the Inverse Gamma distribution. The squared exponential kernel is notably chosen
in the variational method of Malem-Shinitski et al. [2021], and its adaptivity and near-optimality has been proved by
van der Vaart and van Zanten [2009a].
Proposition 3.7. Let N be a Hawkes process with link functions φ = (φk)k and parameter f0 = (ν0, h0) such that
(φ, f0) verify Assumption 3.1. Assume that for any l, k ∈ [K], h0

lk ∈ H(β, L0) with β > 0 and L0 > 0. Let Π̃ be a
Gaussian Process prior with squared exponential kernel kGP. Then, under the above Gaussian process and inverse
Gamma prior, the mean-field variational distribution Q̂1 defined in (7) satisfies, for any MT → +∞,

Q̂1

(
‖ f − f0‖1 > MT (log log T )1/2(log T )qT−β/(2β+1)

)
−−−−→
T→∞

0 �0 − a.s.,

with q = 1 if φ verifies Assumption 3.1(i) and q = 3/2 if φ verifies Assumption 3.1(ii).

Proposition 3.7 is also a direct consequence of Theorem 3.2 and van der Vaart and van Zanten [2009a], therefore its
proof is omitted. In practice, the Gaussian process prior is used in variational methods for Hawkes processes when
there exists a conjugate form of the mean-field variational posterior distribution, i.e., Q̂1 is itself a Gaussian process
with mean function mVP and kernel function kVP. For nonlinear Hawkes models, this is notably the case in the sig-
moid model, under the latent variable augmentation scheme recalled in Section 4.2 Malem-Shinitski et al. [2021].
Nonethelles, the computation of the Gaussian process variational distribution is often expensive for large data set,
therefore Malem-Shinitski et al. [2021] further approximate the posterior distribution using the sparse Gaussian pro-
cess approximation via inducing variables Titsias and Lázaro-Gredilla [2011]. This leads to an “inducing variable”
mean-field variational posterior, which is itself a variational approximation of the original mean-field variational pos-
terior Nieman et al. [2021]. Using the results of Nieman et al. [2021], we conjecture that we could also show that our
result in Proposition 3.7 also holds for the “inducing variable” mean-field variational posterior.

3.2.2 Spike-and-slab variational family

In this section, we consider the spike-and-slab variational family VS AS from Definition 2.5 and first assume that the
true connectivity graph parameter δ0 is known. Then, the variational distribution on δ reduces to a Dirac measure at
δ0. One can then use any family of distributions for f |δ0, e.g., the augmented mean-field and prior families and our
results in Section 3.2.1, directly apply to this context.

Now, if δ0 is unknown, since the spike-and-slab variational posterior may not be tractable for general distributions
Qδ(δ), we propose to infer the graph within a variational Bayes approach with model selection (see Section 2.2). To
avoid ambiguity with the Hawkes model, we use the term graph selection. We then adapt the general results of Zhang
and Gao [2017] and Ohn and Lin [2021] to obtain the concentration rates of the graph selection variational posterior
and the adaptive variational posterior, respectively defined in (9) and (10). We recall that the graph δ ∈ {0, 1}K×K

belongs to a set of cardinality 2K for any fixed K > 1.

From Theorem 4.1 in Zhang and Gao [2017], the prior mass conditions are enough in this case to ensure the concen-
tration of the variational posterior (9). More precisely, we define a graph-selection variational posterior as follows.
For any δ ∈ {0, 1}K2

, we denote

V(δ)
S AS =

{
Q = Q f |δ

}
, Q̂(δ) = arg min

Q∈V(δ)
S AS

KL (Q||Π(.|N)) , δ̂ = arg max
δ∈{0,1}K×K

ELBO(Q̂(δ)),
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where the ELBO is defined in (8). The graph selection variational posterior distribution is then defined as

Q̂GS := Q̂(δ̂). (13)

Proposition 3.8. Let N be a Hawkes process with link functions φ = (φk)k, parameter f0 = (ν0, h0) such that (φ, f0)
verify Assumption 3.1. Let εT = o(1/

√
κT ) be a positive sequence verifying log3 T = O(T ε2

T ) and Π be a prior
distribution on F satisfying (A0’) and (A1). Then, for the graph selection variational posterior (13), we have that

Q̂GS

(
‖ f − f0‖1 > MT

√
κT εT

)
−−−−→
T→∞

0 �0 − a.s.

We note that explicit concentration rates for Hölder-smooth functions can then be derived when using the prior families
of Section 3.2.1. Proposition 3.8 is a direct consequence of Theorem 3.2 and Theorem 4.1 in Zhang and Gao [2017],
therefore its proof is omitted. Finally, we also obtain a similar result for the adaptive variational posterior, defined in
this context as

Q̂AD( f ) =
∑

δ∈{0,1}K×K

γ̂δQ̂(δ), (14)

where γ̂δ are the marginal probabilities defined as

γ̂δ =
Πδ(δ) exp

{
ELBO(Q̂(δ))

}

∑
δ∈{0,1}K×K Πδ(δ) exp

{
ELBO(Q̂(δ))

} , ∀δ ∈ {0, 1}K×K .

We note that from Theorem 2.1 of Ohn and Lin [2021], the adaptive variational posterior can be alternatively defined
as Q̂AD = arg minQ∈VS AS KL(Q||Π(.|N)) with

VS AS :=


Q =

∑

δ∈{0,1}K×K

γδQ f |δ,
∑

δ

γδ = 1, γδ > 0, ∀δ

.

The following result is adapted from Theorem 3.6 in Ohn and Lin [2021] and directly holds under the same assump-
tions as Proposition 3.8.
Proposition 3.9. Let N be a Hawkes process with link functions φ = (φk)k, parameter f0 = (ν0, h0) such that (φ, f0)
verify Assumption 3.1, and connectivity graph δ0. Let εT = o(1/

√
κT ) be a positive sequence verifying log3 T = O(T ε2

T )
and Π be a distribution on F satisfying (A0’) and (A1). Then, for the adaptive variational posterior (14), we have
that

Q̂AD

(
‖ f − f0‖1 > MT

√
κT εT

)
−−−−→
T→∞

0 �0 − a.s.

4 Adaptive mean-field variational algorithms in the sigmoid model

In this section, we consider the Hawkes model with sigmoid link functions, for which an efficient mean-field variational
methodology based on data augmentation and Gaussian priors has been previously proposed Malem-Shinitski et al.
[2021], Zhou et al. [2021a, 2022]. Here, we consider the following parametrisation of this model with link functions

φk(x) = θkσ̃(x), σ̃(x) = σ (α(x − η)) , σ(x) = (1 + e−x)−1, α, η, θk > 0, k ∈ [K]. (15)

We note that for α = 0.1, η = 10 and θk = 20, the nonlinearity φk is similar to the ReLU and softplus functions
on [−∞, 20] (see Figure 1 in Section 5). For this model, we first prove new concentration results for the posterior
distribution, when the true scale parameter, denoted θ0 = (θ0

k )k, is unknown. Secondly, we describe the latent variable
augmentation scheme which allows to obtain a conjugate form of a variational posterior distribution, and, building
on prior work, we propose a novel adaptive and sparsity-inducing mean-field variational method. In particular, our
approach consists in reducing the dimensionality of the problem by inferring the connectivity graph parameter using
the graph selection approach described in Section 3.2.2.

4.1 Posterior concentration rates with unknown scale parameter

First, we state a lemma that ensures the identifiability of the sigmoid Hawkes model with link functions (15) and
unknown scale. We will use the following assumption.
Assumption 4.1. For f = (ν, h), we assume that

∀k ∈ [K], ∃l ∈ [K], ∃x2 > x1 > 0, ∃c∗ > 0, ∀x ∈ [x1, x2], h+
lk(x) > c∗.
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Remark 4.2. Assumption 4.1 requires that every component Nk receives some excitation effect from at least one other
component. This assumption ensures that the intensity function λk

t ( f ) can approach its upper bound θk with non-zero
probability.
Lemma 4.3. Let N be a sigmoid Hawkes process with link functions (φk)k defined in (15), scale θ, and parameter
f = (ν, h) satisfying Assumption 4.1. If N′ is a sigmoid Hawkes process with scale θ′, parameter f ′ = (ν′, h′) satisfying
Assumption 4.1, then

N L
= N′ =⇒ ν = ν′ and h = h′ and θ = θ′.

The proof of this lemma is reported in Appendix B. We now consider the problem of estimating both f = (ν, h) and
the scale parameter θ of the link functions (15), and study the concentration properties of the posterior distribution on
( f , θ). In this context, we define a bounded parameter space as, for B > 0,

F ′ =
{
f = (ν, h); νk ∈ [−B, B]K , ‖hlk‖∞ < B, ∀l, k

}
,

and our parameter space is now F ′×Θ with Θ = (�+\{0})K . With a slight abuse of notation, we will use F for F ′. We
note that for the sigmoid model, we do not need the background rates (νk) to be positive. With Π a prior distribution
on F × Θ, the posterior distribution is defined as

Π(O|N) =

∫
B exp(LT ( f ))dΠ( f , θ)

∫
F×Θ

exp(LT ( f , θ))dΠ( f , θ)
, O ⊂ F × Θ. (16)

We assume that f0 ∈ F and define the L2-neighbourhoods around ( f0, θ0) as

B̃2(εT , B) =

{
( f , θ) ∈ F × Θ; max

k
|νk − ν0

k | 6 εT ,max
k
|θk − θ0

k | 6 εT , max
l,k
‖hlk − h0

lk‖2 6 εT

}
.

Remark 4.4. We introduce a bounded parameter space for the sigmoid function to satisfy the Lipschitz condition on
the inverse of the link functions in Assumption 3.1. In fact, the sigmoid inverse, i.e., the logit function σ−1(x) = log x

x−1 ,
is not Lipschitz on (0, 1). Therefore, this assumption does not hold in the sigmoid Hawkes model, unless the parameter
space is bounded in supremum norm so that one can obtain the Lipschitz condition on a bounded domain (since, in
this case, the linear intensity λ̃t( f ) defined in (2) is also bounded).

We now state our concentration result on the posterior distribution (16).
Proposition 4.5. Let N be a sigmoid Hawkes process with link functions (φk)k defined in (15), scale parameter θ0, and
parameter f0 = (ν0, h0) such that f0 satisfies Assumption 4.1. Let κT = 10(log log T ) log T and εT = o(1/

√
κT ) be a

positive sequence verifying log3 T = O(T ε2
T ). Let Π = Πν ×Πθ ×Πh be a prior distribution on F ×Θ. We assume that

for T large enough, the following assumptions hold.

(A0”) There exists c1 > 0 such that Π(B̃2(εT , B)) > e−c1T ε2
T .

(A1) There existHT ⊂ H , ζ0 > 0, x0 > 0, such that Πh(Hc
T ) = o(e−(κT +c1)T ε2

T ) and logN (ζ0εT ,HT , ||.||1) 6 x0T ε2
T .

Then, for any MT → ∞, we have that

�0

[
Π
(‖ f − f0‖1,B + ‖θ − θ0‖1 > MT

√
κT εT

∣∣∣N)]
= o(1). (17)

The previous result is an extension of Theorem 3.2 of Sulem et al. [2021], and provides guarantess for Bayesian
methods that estimate the scale parameter in the sigmoid model. Moreover, from Proposition 4.5, the concentration
rates of a variational posterior on ( f , θ) can then be deduced, using similar construction and arguments as for Theorem
3.2. The proof of Proposition 4.5 is reported in Appendix A.3.

4.2 Augmented mean-field variational inference

In this section, we recall existing latent variable augmentation strategy in the sigmoid Hawkes model, and the definition
of the augmented mean-field variational distribution in this context Malem-Shinitski et al. [2021], Zhou et al. [2021a].
From now on, we consider that the scale parameter θ is known, however, our methodology can be directly extended to
estimate an unknown θ.

The first step consists in re-writing the sigmoid function as a mixture of Polya-Gamma random variables Polson et al.
[2012], i.e.,

σ(x) = �ω∼pPG(.;1,0)

[
eg(ω,x)

]
=

∫ +∞

0
eg(ω,x) pPG(ω; 1, 0)dω, g(ω, x) = −ωx2

2
+

x
2
− log 2, (18)
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with pPG(.; 1, 0) the Polya-Gamma density. We recall that pPG(.; 1, 0) is the density of the random variable

1
2π2

∞∑

k=1

gk

(k − 1/2)2 , gk
i.i.d.∼ Gamma(1, 1),

and that the tilted Polya-Gamma distribution is defined as

pPG(ω; 1, c) = cosh
( c
2

)
exp

{
−c2ω

2

}
pPG(ω; 1, 0), c > 0,

where cosh denotes the hyperbolic cosine function. With a slight abuse of notation, we re-define the linear intensity
(2) as

λ̃k
t ( f ) = 0.1

νk +

K∑

l=1

∫ t−

−∞
hlk(t − s)dN l

s − 10.0

 ,

so that we have λk
t ( f ) = θkσ(λ̃k

t ( f )), t ∈ �. For any k ∈ [K], let Nk := Nk[0,T ] and T k
1 , . . . ,T

k
Nk
∈ [0,T ] be the times of

events at component Nk. Now, let ω = (ωk
i )k∈[K],i∈[Nk] be a set of latent variables such that

ωk
i

i.i.d.∼ pPG(ωk
i ; 1, 0), i ∈ [Nk], k ∈ [K].

Then, using (18), an augmented log-likelihood function can be defined as

LT ( f , ω; N) =
∑

k∈[K]


∑

i∈[Nk]

(
log θk + g(ωk

i , λ̃T k
i
( f )) + log pPG(ωk

i ; 1, 0)
)
−

∫ T

0
θkσ(λ̃k

t ( f ))dt



=
∑

k∈[K]


∑

i∈[Nk]

(
log θk + g(ωk

i , λ̃T k
i
( f )) + log pPG(ωk

i ; 1, 0)
)
−

∫ T

0

∫ ∞

0
θkeg(ω̄,λ̃k

t ( f )) pPG(ω̄; 1, 0)dω̄dt

 . (19)

Secondly, Campbell’s theorem Daley and Vere-Jones [2007], Kingman [1993] is used to re-write the integral term on
the RHS in (19). We first recall here its general formulation. For a Poisson point process N̄ on a space X with intensity
measure Λ : X → �+, and for any function ζ : X → �, it holds true that

�


∏

x∈N̄

eζ(x)

 = exp
{
(eζ(x) − 1)Λ(dx)

}
. (20)

Therefore, using that σ(x) = 1 − σ(−x), and considering for each k a marked Poisson point process N̄k on X =
([0,T ],�+) with intensity measure Λk(t, ω) = θk pPG(ω; 1, 0), and distribution �N̄ , applying Campbell’s theorem with
ζ(t, ω) := g(ω,−λ̃k

t ( f )), one obtains that

�


∏

(T̄ k
j ,ω̄

k
j)∈N̄k

e
g(ω̄k ,−λ̃k

T̄ j
( f ))

 = exp
{∫ T

0

∫ ∞

0
θk

(
eg(ω̄,−λ̃k

t ( f )) − 1
)

pPG(ω̄; 1, 0)dω̄dt
}
.

Conditionally on N, let N̄ := (N̄1, . . . , N̄K) be an observation of the previous Poisson process on [0,T ]. We denote
N̄k := N̄k[0,T ] and (T̄ k

1 , ω̄
k
1), . . . , (T̄ k

1 , ω̄
k
N̄k

) ∈ [0,T ] × �+ the times and marks of N̄k for each k. Then, a doubly
augmented log-likelihood function can be defined as

LT ( f , ω, N̄; N) =
∑

k∈[K]


∑

i∈[Nk]

[
log θk + g(ωk

i , λ̃T k
i
( f )) + log pPG(ωk

i ; 1, 0)
]

+
∑

j∈[N̄k]

[
log θk + g(ω̄k

j ,−λ̃T̄ j ( f )) + log pPG(ω̄k
j; 1, 0) − θkT

]

.

This construction allows to define augmented posterior distribution as

Π( f , ω, N̄ |N) ∝
∏

k


∏

i∈[Nk]

θke
g(ωk

i ,λ̃Tk
i

( f ))
pPG(ωk

i ; 1, 0) ×
∏

j∈[N̄k]

θkeg(ω̄k
j ,−λ̃T̄ j

( f )) pPG(ω̄k
j; 1, 0)


× Π( f ). (21)

Then, in this context, an augmented mean-field variational family can be defined as

VAMF =
{
Q; dQ( f , ω, N̄) = dQ1( f )dQ2(ω, N̄)

}
, (22)
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leading to the following variational posterior

Q̂AMF( f , ω, N̄) = arg min
Q∈VAMF

KL
(
Q( f , ω, N̄)||Π( f , ω, N̄ |N)

)
= Q̂1( f )Q̂2(ω, N̄).

Using (6), it then holds that

Q̂1( f ) ∝ exp
{
�Q̂2

[log p( f , ω, N̄,N)]
}
, (23)

Q̂2(ω, N̄) ∝ exp
{
�Q̂1

[log p( f , ω, N̄,N)]
}
. (24)

For certain families of Gaussian priors, the variational factors Q̂1 and Q̂1 of the augmented mean-field distribution are
conjugate to the prior Π and augmented distribution �A = pPG(.|1, 0)×�N̄ , which allows to design iterative algorithms
with closed-forms updates of (23) and (24). In the next section, we derive a mean-field variational inference algorithm
for a fixed dimensionality of the parameter f , a method related to the algorithm of Zhou et al. [2021a].

4.3 Fixed-dimension mean-field variational algorithm

We consider a modification of the random histogram prior family, where the graph parameter δ = (δlk)l,k ∈ {0, 1}K×K

and the size of the partition J = 2D are fixed, with D > 0 the partition’s depth. We denote s = (δ,D) and call D the
dimensionality of h. We recall our notation from Section 3.2.1 of the basis functions on (0, A],

e j(x) =
J
A
1I j (x), I j =

[ J
A

( j − 1),
J
A

j
)
, j ∈ [J].

We also define

HD
histo =


h = (hlk)l,k ∈ H ; hlk(x) =

J∑

j=1

h j
lke j(x), x ∈ [0, A], hD

lk = (h1
lk, . . . , h

J
lk) ∈ �J , ∀l, k ∈ [K]


.

For each l, k ∈ [K] such that δlk = 1, we consider a normal prior for the distribution on hD
lk, with mean vector µD and

covariance matrix ΣD, i.e.,

hD
lk ∼ N(µD,ΣD).

For each l, k such that δlk = 0, we set hD
lk = 0J , and define µs = (δlkµD)l,k ∈ �JK2

and Σs = Diag((δlkΣD)l,k) ∈ �JK2×JK2
.

We also consider a normal prior on the background rates, i.e., νk ∼ N(µν, σ2
ν), k ∈ [K]. We denote fs := ( f s

k )k ∈ Fs
where for each k,

f s
k = (νk, hD

1k, . . . , h
D
Kk) ∈ �KJ+1.

We then consider the data augmentation strategy described in Section 4.2 and an augmented mean-field variational
family with fixed s = (δ,D), i.e.,

Vs
AMF =

{
Q = Q fs |δ,s : Fs → [0, 1]; dQ( f , ω, N̄) = dQ1( fs)dQ2(ω, N̄)

}
,

and we denote Q̂s( fs, ω, N̄) = Q̂1s( fs)Q̂2s(ω, N̄) the corresponding variational posterior. Following the same strategy
as Donner and Opper [2019], Zhou et al. [2021a], Malem-Shinitski et al. [2021], we can derive analytic forms for Q̂1s
and Q̂2s.

Introducing the notation H(t) = (H0(t),H1(t), . . . ,HK(t)) ∈ �KJ+1, where H0(t) = 1 and for k ∈ [K], Hk(t) =
(Hk

j (t)) j=1,...,J with

Hk
j (t) :=

∫ t

t−A
e j(t − s)dNk

s , j ∈ [J], (25)

we can prove that with Q̂1s( fs) =
∏

k Q̂k
1s( f s

k ), for each k, Q̂k
1s( f s

k ) is a normal distribution with mean vector µ̃s
k ∈ �KJ+1

and covariance matrix Σ̃s
k ∈ �(KJ+1)×(KJ+1) given by

Σ̃s
k =

α
2

∑

i∈[Nk]

�Q̂k
2s

[ωk
i ]H(T k

i )H(T k
i )T + α2

∫ T

0

∫ +∞

0
ω̄k

t H(t)H(t)T Λk(t, ω̄)dω̄dt + Σ−1
s


−1

,

µ̃s
k =

1
2

Σ̃s
k

α
∑

i∈[Nk]

(2�Q̂k
2s

[ωk
i ]αη + 1)H(T k

i ) + α

∫ T

0

∫ +∞

0

(
2ω̄kαη − 1

)
H(t)Λk(t, ω̄)dω̄dt + 2Σ−1

s µs

 ,
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where

Λk(t, ω̄) := θk

exp
{
− 1

2�Qk
1s

[λ̃k
t ( f s

k )]
}

2 cosh (ck
t )2

2

pPG(ω̄|1, ck
t ), ck

t :=
√
�Qk

1s
[λ̃k

t ( f )2].

Besides, Q̂2s(ω, N̄) = Q̂21s(ω)Q̂22s(N̄) where

Q̂21s(ω) =
∏

k

∏

i∈[Nk]

pPG(ωk
i |1, ck

T k
i
),

and Q̂22s =
∏

k Q̂k
22s where for each k, Q̂k

22s is the probability distribution of a marked Poisson point process on
[0,T ] ×�+ with intensity measure Λk(t, ω̄). The derivation of these formulas is reported in Appendix C.1.

Therefore, given an estimate of Q̂1s, one can compute Q̂2s, and reciprocally, and the variational posterior distribution
can be computed by updating each factor iteratively. This procedure is reported in Algorithm 1. We note that in the
updates of µ̃s

k and Σ̃s
k, we need to compute an integral, which we perform using the Gaussian quadrature Golub and

Welsch [1969] with nGQ points in our implementation. We also note that in this algorithm, the outer “for” loop that
computes each factor Q̂s

k could be run in parallel.

We additionally note that, similarly to Zhou et al. [2021a], Malem-Shinitski et al. [2021], we can derive analytic forms
of the conditional distributions of the augmented posterior distribution (21) and design a Gibbs sampler to compute
the latter distribution (see Algorithm 4 in Appendix C.3).

Algorithm 1 Fixed-dimension mean-field variational inference algorithm

Input: N, δ, D, µD,ΣD, niter, nGQ.
Output: µ̃D, Σ̃D.

Precompute (H(T k
i ))i,k.

Precompute (pq, vq)q∈[nGQ] the points and weights of the Gaussian quadrature method, and (H(pq))q∈[nGQ] .
for k ← 1 to K do

Initialise µ̃s
k ← µs, Σ̃

s
k ← Σs.

for t ← 1 to niter do
for i← 1 to Nk do
�Q̂1s

[λ̃k
T k

i
( f s

k )2] = α
(
H(T k

i )T Σ̃s
kH(T k

i ) + (H(T k
i )T µ̃s

k)2 − 2ηH(T k
i )T µ̃s

k + η2
)

�Q̂2s
[ωk

i ]← tanh
(√
�Q̂1s

[λ̃k
T k

i
( f s

k )2]
)
/
(
2
√
�Q̂1s

[λ̃k
T k

i
( f s

k )2]
)

end for
for q← 1 to nGQ do
�Q̂1s

[λ̃k
pq

( f s
k )2] = α

(
H(pq)T Σ̃s

kH(pq) + (H(pq)T µ̃s
k)2 − 2ηH(pq)T µ̃s

k + η2
)

�Q̂2s
[ωk

q]← tanh
(√
�Q̂1s

[λ̃k
pq ( f s

k )2]
)
/
(
2
√
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k )2]
)

�Q̂1s
[λ̃k

pq
( f s
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(
(µ̃s

k)T H(pq) − η
)

end for

Σ̃s
k =

α2 ∑
i∈[Nk]
�Q̂2s

[ωk
i ]H(T k

i )H(T k
i )T + α2θk

∑
q∈[nGQ]

vq�Q̂2s
[ω̄k

q]
exp(− 1

2�Q̂1s
[λ̃k

pq ( f s
k )])

2 cosh 1
2�Q̂1s

[λ̃k
pq ( f s

k )2]
H(pq)H(pq)T + Σ−1

s


−1

.
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k = 1

2 Σ̃s
k

α
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i∈[Nk]
(2�Q̂2s

[ωk
i ]αη + 1)H(T k

i )T + αθk
∑

q∈[nGQ]
vq(2�Q̂2s

[ω̄k
q]αη − 1)

exp(− 1
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pq ( f s
k )])

2 cosh 1
2�Q̂1s

[λ̃k
pq ( f s

k )2]
H(pq)T + 2Σs]−1µs

 .

end for
end for

4.4 Adaptive mean-field variational algorithms

Using the fixed-dimension approach from Section 4.2, we can now design an adaptive and sparsity-inducing variational
method, that infers the graph parameter δ and the dimensionality of h. In fact, we propose two algorithms. The first
one, Algorithm 2, explores all s = (δ,D), and outputs an averaged or mode variational posterior analog to (14) and
(9). However, considering the 2K graphs δ is computationally expensive for moderate K. Therefore, we also propose a
more efficient two-step algorithm, Algorithm 3, which first estimates the graph δ̂, then computes an adaptive variational
posterior that is a mixture on the restricted set (δ̂,D)D.

15



4.4.1 Fully-adaptive mean-field variational algorithm

Given a maximum depth DT , we first define the set

ST = {s = (δ,D); δ ∈ {0, 1}K×K , 1 6 D 6 DT }.
For simplicity, given a graph δ, we assume that the depth is kept the same for all non-null hlk, therefore, |ST | ∼ 2K2

DT ,
and for any s = (δ,D) ∈ ST , |s| = (D + 1)

∑
l,k δlk + 1. Let Πs be a prior distribution on ST of the form Πs(s) =

Πδ(δ)ΠD(D). Then, we define the averaged variational posterior as

Q̂AV =
∑

s∈ST

γ̂sQ̂s, (26)

where for each s, Q̂s is the variational posterior defined in Section 4.3, and γ̂s is the marginal probability on s defined
as

γ̃s = Πδ(δ)ΠD(D) exp
{
ELBO(Q̂s)

}
, γ̂s = γ̃s/

∑

s∈ST

γ̃s, (27)

with

ELBO(Q) := �Q

[
log

p( f , ω, N̄,N)
Q1( f )Q2(ω, N̄)

]
. (28)

We also define a mode variational posterior as

Q̂MV = Q̂ŝ, ŝ = arg max
s∈ST

ELBO(Q̂s). (29)

To obtain Q̂AV or Q̂MV , we then compute Q̂s for every s ∈ ST using Algorithm 1 and the corresponding ELBO
(see Appendix C.2 for the latter derivation). We call this procedure the fully-adaptive mean-field algorithm, which is
summarised in Algorithm 2.

Algorithm 2 Fully-adaptive mean-field variational inference

Input: N, ST , σ, niter, nGQ.
Output: Q̂AV (or Q̂MV )

for s = (δ,D) ∈ ST do
Compute the variational posterior Q̂s using Algorithm 1 with σ, niter and nGQ.
Compute γ̃s using (27).

end for
Compute {γ̂s}s∈ST and Q̂AV (or Q̂MV ) using (26) and (27) (or (29)).

4.4.2 Two-step adaptive mean-field algorithm

For the multivariate setting K > 1, we propose a variant of the previous algorithm that reduces the computational time
by avoiding to compute Q̂s for all possible s ∈ ST . We first define the set SδC

T as

SδC
T = {s = (δC ,D); 1 6 D 6 DT } ,

where δC = 11T is the complete graph. The first step of our method consists in computing the mode variational
distribution Q̂δC using Algorithm 2, replacing ST by SδC

T . Then, we use Q̂δC to estimate the norms (‖hlk‖1)l,k and the
graph parameter. We denote D̂C the selected dimensionality in Q̂δC and JC = 2DC . We then define S̃ = (S̃ lk)l,k ∈ �K×K

+ ,
where for any l, k,

S̃ lk = �Q̂δC
1

[‖hlk‖1] =

JC∑

j=1

�Q̂δC
1

[|h j
lk |]

=

JC∑

j=1

√
2
π

[ΣDC
lk ] j j exp

−
[µ̃DC

lk ]2
j

[ΣDC
lk ] j j

 − [µ̃DC
lk ] j


1 − 2Φ


− [µ̃DC

lk ] j√
[ΣDC

lk ] j j




,
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Given a pre-specified threshold η0, we then compute our graph estimator δ̂ = (δ̂lk)l,k as

δ̂lk = 1S̃ lk>η0
, ∀l, k. (30)

Secondly, with

Sδ̂T = {s = (δ̂,D); 1 6 D 6 DT },
we compute our two-step adaptive variational distribution Q̂TS A using Algorithm 2, replacing ST by Sδ̂T . This proce-
dure is summarised in Algorithm 3.

Moreover, our thresholding procedure to construct an estimator of the graph in (30) can be theoretically justified. From
our theory, we know that Q̂δC concentrates at the rate εT =

√
κT εT . Therefore, if there exists ε0 > 0 such that ∀l, k,∥∥∥h0

lk

∥∥∥
1 > ε0, then for any MT → ∞ and sequence of thresholds (ηT )T such that MTεT 6 ηT 6 ε0 − MTεT , we can show

that

�0

[
δ̂ = δ0

]
−−−−→
T→∞

1.

This comes from the fact that with

Q̂δC
(
{ f ;∃l, k, δ̂lk(ηT ) = 1 and δ0

lk = 0}
)

= Q̂δC
(
{ f ;∃l, k, ‖hlk‖1 > ηT and

∥∥∥h0
lk

∥∥∥
1 = 0}

)

6 Q̂δC
(
{ f ;∃l, k,

∥∥∥hlk − h0
lk

∥∥∥
1 > MTεT and δ0

lk = 0}
)

= o�0 (1).

Similarly, it holds that

Q̂δC
(
{ f ;∃l, k, δ̂lk(ηT ) = 0 and δ0

lk = 1}
)

= Q̂δC
(
{ f ;∃l, k, ‖hlk‖1 < ηT 6

∥∥∥h0
lk

∥∥∥
1 − MTεT }

)
= o�0 (1).

An alternative to setting a threshold η0 is to select it in a data-driven way after the first step of Algorithm 3. One
heuristic is to sort the entries of the matrix S̃ in increasing order of magnitude, to spot a “gap” in this list, and to
choose somewhere mid-way in this gap. The latter is visible in our simulation study, as can be seen in the plots in
Figure 20.

Algorithm 3 Two-step adaptive mean-field variational inference

Input: N, {(µD,ΣD)}D, niter, nGQ, η0.
Output: Q̂TS A

Compute Q̂δC using Algorithm 2 with input set SδC
T .

Compute δ̂ using (30).
Compute Q̂TS A using Algorithm 2 with input set Sδ̂T .

5 Numerical results

In this section, we perform a simulation study and evaluate (variational) Bayesian methods in the context of nonlinear
Hawkes processes. We first test a MCMC method in commonly used nonlinear models (Simulation 1), and then, our
adaptive variational algorithms derived for the sigmoid model (Simulations 2, 3 and 4). In each setting, we sample one
observation of a Hawkes process with dimension K, link functions (φk)k and parameter f0 = (ν0, h0) on [0,T ] using
the thinning algorithm Adams et al. [2009]. In most settings, the true interaction functions (h0

lk)l,k will be piecewise-
constant and we will use the random histogram prior described in Section 4.3. For D > 1, we define

HD
histo =


h = (hlk)l,k; hlk(x) =

2D∑

j=1

w
j
lke j(x), x ∈ [0, A], l, k ∈ [K]


.

We report the following set of simulations:

• Simulation 1: MCMC method in univariate nonlinear Hawkes models. This experiment aims at eval-
uating a Metropolis-Hasting sampler (MH) in several nonlinear Hawkes models, with ReLU, sigmoid, and
softplus link functions, and in a setting where h0 ∈ HD0

histo and the dimensionality D0 is known. Since this
MCMC sampler is quite computationally expensive to run, we only test the univariate setting K = 1 in this
simulation.
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• Simulation 2: Comparison of MH sampler, Gibbs sampler, and fixed-dimension variational algorithm
in the univariate sigmoid model. In this simulation, we also consider a univariate setting where h0 ∈ HD0

histo
and the dimensionality D0 is known. We compare two MCMC methods, namely the MH sampler and a Gibbs
sampler (Algorithm 4), and the fixed-dimension mean-field variational inference algorithm (Algorithm 1).

• Simulation 3: Adaptive mean-field variational algorithm in the univariate and bivariate sigmoid mod-
els. In this experiment, we test our fully-adaptive variational algorithm (Algorithm 2) for sigmoid Hawkes
processes with K = 1 and K = 2, in nonparametric settings where the true interaction functions are piecewise-
constant functions or continuous.

• Simulation 4: Two-step variational algorithm for multivariate sigmoid models In this simulation, we test
our two-step adaptive mean-foeld algorithm (Algorithm 3) for sigmoid Hawkes processes with K = 2, 4, 8, 32,
in sparse settings of the true parameter h0.

In all simulations, we set A = 0.1. Additional details on these experiments are reported in Appendix D.

5.1 Simulation 1: MCMC method in univariate nonlinear Hawkes models

30 20 10 0 10 20 30
x

0

5

10

15

20

25

30

(x
)

Sigmoid
ReLU
Softplus

Figure 1: Link functions φ considered in Simulation 1, corresponding to our sigmoid, ReLU, and softplus Hawkes
models.

In this simulation, we set K = 1 and consider a link function φ of the form

φ(x) = θ + Λψ(α(x − η)), (31)

where ξ = (θ,Λ, α, η) and ψ : �→ �+ are known. We consider the following models:

• Sigmoid: ψ(x) = (1 + e−x)−1 and ξ = (0.0, 20.0, 0.2, 10.0);

• ReLU: ψ(x) = max(x, 0) and ξ = (0.001, 1.0, 1.0, 0.0);

• Softplus: ψ(x) = log(1 + ex) and ξ = (0.0, 40.0, 0.1, 20.0).

The corresponding link functions φ are plotted in Figure 1. In all models, we set ν0 = 6 and h0 = h0
11 ∈ HD0

histo
with D0 = 2, and consider three scenarios, namely Excitation only, Mixed effect, and Inhibition only, where h0 is
respectively non-negative, signed and non-positive (see Figure ?? for instance). In this simulation, we assume that D0

is known and consider a normal prior onHD0
histo on w11, w11 ∼ N(0, σ2I), and on ν1, ν1 ∼ N(0, σ2), with σ = 5.0. We

set T = 500 and report the number of events and excursions (see Lemma A.1 in Appendix A.1 for the definition of
this concept), observed in each simulation and model in Table 1. As expected, more events and less excursions are
observed in the Excitation only scenario than in the Mixed effect and Inhibition only scenarios.

We run a Metropolis-Hasting sampler implemented via the Python package PyMC41 with 4 chains, 40 000 iterations
and with a burn-in time of 4000 iterations. The log-likelihood is evaluated using the Gaussian quadrature method
Golub and Welsch [1969] for numerical integration, except in the ReLU model and Excitation only scenario where the
integral is computed exactly. The posterior distribution on f = (ν1, h11) in the three models and scenarios are plotted
in Figure 2, Figure 3, and Figure 4.

1https://www.pymc.io/welcome.html
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Figure 2: Posterior distribution on f = (ν1, h11) obtained with the MH sampler in the sigmoid model, in the three
scenarios of Simulation 1 (K = 1). The three columns correspond to the Excitation only (left), Mixed effect (center),
and Inhibition only (right) scenarios. The first row contains the marginal distribution on the background rate ν1, and
the second row represents the posterior mean (solid line) and 95% credible sets (colored areas) on the (self) interaction
function h11. The true parameter f0 is plotted in dotted green line.

We note that in almost all settings, the ground-truth parameter f0 is included in the 95% credible sets of the posterior
distribution, except in the Excitation scenario in the softplus model. Nonetheless, the posterior mean is sometimes
biased, in particular in the Excitation scenario, possibly due to the numerical integration errors. One conjecture is
that the estimation quality depends on the number of events and the number of excursions, which could explain the
differences between the Excitation, Mixed, and Inhibition scenarios. In particular, the credible sets seem consistently
smaller for the Mixed scenario, which realisations have more excursions than the Excitation scenario and more events
that the Inhibition scenario.

This simulation can be seen as an illustration of the theoretical results of Sulem et al. [2021] for general nonlinear
Hawkes models. Moreover, the MH sampler provides a baseline method to compare our variational algorithms in low-
dimensional settings, i.e., for K = 1 (Simulations 2 and 3) and K = 2 (Simulations 3). We note that we also tested a
Hamiltonian Monte-Carlo sampler in this simulation, and obtained similar posterior distributions, but in a much larger
computational time.

Scenario Sigmoid ReLU Softplus

Excitation only # events 5250 5352 4953
# excursions 1558 1436 1373

Mixed effect # events 3876 3684 3418
# excursions 1775 1795 1650

Inhibition only # events 3047 2724 2596
# excursions 1817 1693 1588

Table 1: Number of events and excursions in the simulated data of Simulation 1. The definition of the concept of
excursion in the Hawkes model is recalled in Lemma A.1 in Appendix A.1.

5.2 Simulation 2: Comparison of MH sampler, Gibbs sampler, and fixed-dimension mean-field variational
algorithm in the univariate sigmoid model

In this simulation, we consider the sigmoid Hawkes model with K = 1 and the three estimation scenarios of Simulation
1, where the dimensionality D0 is known. We compare the performance of the previous MH sampler, the Gibbs
sampler of the latent variable augmentation scheme (Algorithm 4 in Appendix C.3), and our fixed-dimension mean-
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Figure 3: Posterior distribution on f = (ν1, h11) obtained with the MH sampler in the ReLU model, in the three
scenarios of Simulation 1 (K = 1). The three columns correspond to the Excitation only (left), Mixed effect (center),
and Inhibition only (right) scenarios. The first row contains the marginal distribution on the background rate ν1, and
the second row represents the posterior mean (solid line) and 95% credible sets (colored areas) on the (self) interaction
function h11. The true parameter f0 is plotted in dotted green line.
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Figure 4: Posterior distribution on f = (ν1, h11) obtained with the MH sampler in the softplus model, in the three
scenarios of Simulation 1 (K = 1). The three columns correspond to the Excitation only (left), Mixed effect (center),
and Inhibition only (right) scenarios. The first row contains the marginal distribution on the background rate ν1, and
the second row represents the posterior mean (solid line) and 95% credible sets (colored areas) on the (self) interaction
function h11. The true parameter f0 is plotted in dotted green line.

field variational algorithm (Algorithm 1). We run 4 chains for 40 000 iterations for the MH sampler, 3000 iterations
of the Gibbs sampler, and 30 iterations of the mean-field variational algorithm.

The (variational) distributions on the parameter f = (ν1, h11) are plotted in Figure 5. We note that the variational
posterior mean is close to the posterior mean, nonetheless, the credible sets of the variational posterior are smaller than
the ones of the posterior distribution, which is a common empirical observation in mean-field variational inference.
Moreover, in spite of the small number of Gibbs iterations, the Gibbs sampler seems slightly more precise than the
other two algorithms; it is about 6 (resp. 40) times longer to run than the MH sampler (resp. our mean-field algorithm),
due to the expensive latent variable sampling scheme (see the computational times in Table 2). Besides, the three
algorithms seem to be similarly biased, e.g., in the Inhibition scenario. One could therefore test if this bias decreases
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with more data observations, i.e., larger T . Finally, we also compare the estimated intensity function on a sub-window
in Figure 6 and note that all three methods provide fairly equivalent estimates.

From this simulation, we conclude that, in the univariate and parametric sigmoid Hawkes model, the fixed-dimension
mean-field variational algorithm provides a good approximation of the posterior distribution. Moreover, we note that
although the Gibbs sampler is slightly better than MH, it is too slow to be applied to multivariate Hawkes processes
in practice. Therefore, in the next simulations, we only compare to the posterior distribution computed with the MH
sampler.

Scenario MH Gibbs MF-VI

Excitation only 2169 16 092 416
Mixed effect 2181 13 097 338

Inhibition only 2222 9 318 400

Table 2: Computational times (in seconds) of the Gibbs sampler (Algorithm 4), the fixed-dimension mean-field vari-
ational (MF-VI) algorithm (Algorithm 1), and the MH sampler in each scenario of Simulation 2 (with K = 1). The
Gibbs sampler is much slower than the MH sampler, which is also much slower than the MF-VI algorithm.
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Figure 5: Posterior and variational posterior distributions on f = (ν1, h11) in the sigmoid model and in the three
scenarios of Simulation 2 (K = 1), evaluated by the MH sampler, the fixed-dimension mean-field variational (MF-VI)
algorithm (Algorithm 1) and the Gibbs sampler (Algorithm 4). The three columns correspond to the Excitation only
(left), Mixed effect (center), and Inhibition only (right) scenarios. The first row contains the marginal distribution on
the background rate ν1, and the second row represents the (variational) posterior mean (solid line) and 95% credible
sets (colored areas) on the (self) interaction function h11. The true parameter f0 is plotted in dotted green line.

5.3 Simulation 3: Adaptive variational algorithm in the univariate and bivariate sigmoid models

# dimensions Scenario FA-MF-VI MH

K = 1 Excitation 2094 3430
Inhibition 1058 1046

K = 2 Excitation 3258 5777
Inhibition 2616 4679

Table 3: Computational times (in seconds) of Algorithm 2 (FA-MF-VI) and MCMC method in the well-specified
settings of Simulation 3.
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Figure 6: Intensity function on a subwindow of the observation window estimated via the variational posterior mean
(blue) or via the posterior mean, computed with the MH sampler (orange) or the Gibbs sampler (purple), in each
scenario of Simulation 2. The true intensity λ1

t ( f0) is plotted in dotted green line.

In this simulation, we test our fully-adaptive variational Bayes algorithm (Algorithm 2) in the one-dimensional (K = 1)
and two-dimensional (K = 2) sigmoid model. Here, we consider two nonparametric estimation settings:

1. Well-specified: h0 ∈ HD0
hist with D0 = 2. In this setting, we compare our variational posterior with the posterior

distribution obtained with a non-adaptive MH sampler run with the true s0 = (δ0,D0);

2. Mis-specified: h0 < HD0
hist, and for all l, k, h0

lk is a continuous function.

Here, D0 > 1 is unknown and we set T = 1500. In the bivariate model, we pick a graph parameter δ0 with one zero
entry (see Figure 12 (a)), i.e., three of the four interaction functions are non-null. We consider an Excitation scenario
where h0 is non-negative and a Self-inhibition scenario where h0

kk 6 0, k = 1, 2. We note that the self-inhibition
phenomenon is often observed in neuronal spiking data due to their refractory period Bonnet et al. [2021]. In our
algorithm, we set a maximum depth D1 = 5 for K = 1, so that |S| = 7 and D1 = 4 for K = 2, so that |S| = 76.

In Figure 7, we plot the marginal probabilities (γ̂s)s∈S1 in the univariate model and well-specified setting. In the
Excitation scenario, the largest marginal probability is on the truth s0 = (1, 2), i.e., γ̂ŝ = γ̂s0 , and all the other marginal
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probabilities are negligible. Therefore, in this case, the averaged variational posterior Q̂AV from (26) is essentially
equivalent to the mode variational posterior Q̂MV from (29). In the Self-inhibition scenario, we have ŝ = (1, 1), but γ̂s0

is close to γ̂ŝ, i.e., the marginal probability on s0 is the second largest. Therefore, in this case the averaged variational
posterior is essentially a mixture of the mode variational posterior Q̂MV , which is slightly over-regularising in this case,
and the variational distribution at the true s0, Q̂s0 . We also plot the estimated intensity based on the mode variational
posterior mean in Figure 10 and note that the variational posterior estimates is very close to the true intensity and the
non-adaptive MH estimates (see Figure 10).

In Figure 9, we compare the mode variational posterior Q̂MV with the posterior distribution obtained with the non-
adaptive MH sampler. We note that in the Excitation scenario, the variational posterior mean is very close to the
posterior mean, however its 95% credible bands are significantly smaller. In the Inhibition scenario, in spite of the
wrongly selected histogram depth, the estimated parameter is still not too far from the truth. In the mis-specified
setting, we note in Figure 8 that the marginal probabilities are also peaked on a single value ŝ. Moreover, we see on
Figure 11 that the true parameter is quite well estimated by Q̂ŝ. Nonetheless, the 95% credible bands are once again
slightly too narrow.

The previous observations can also be made in the two-dimensional model. In the well-specified settings, the largest
marginal probabilities are on the true s0 in both Excitation and Self-inhibition scenarios (see Figure 12 (b) and (c)).
Therefore, both the causality structure and the dimensionality are well recovered in this case. We also note from Fig-
ures 13 and 14, that the variational posterior mean on the interaction functions approximates well the posterior mean,
and thus leads to similar intensity estimates (see Figure 16). In the mis-specified setting, the continuous interaction
functions are also quite well estimated, although the under-coverage phenomenon of the credible regions also appears
(see Figure 15).

Finally, we note that the computational times of our fully-adaptive variational algorithm is lower than the one of the
non-adaptive MH sampler, although here the latter is not adaptive, in particular in the bivariate setting 2, as can be seen
in Table 3. This simulation therefore shows that our fully-adaptive variational algorithm enjoys several advantages in
Bayesian estimation for Hawkes processes: it can infer the causality structure and provides a good approximation of
the posterior mean, and is computationally efficient.

1 6
support index

0.0

0.2

0.4

0.6

0.8

1.0

s

Variational posterior probabilities on the models
true model

(a) Excitation scenario

1 6
support index

0.0

0.2

0.4

0.6

0.8

1.0

s

Variational posterior probabilities on the models
true model

(b) Inhibition scenario

Figure 7: Marginal probabilities (γ̂s)s∈S1 in the adaptive mean-field variational posterior, in the well-specified scenario
of Simulation 3 with K = 1. The left and right panels correspond to the Excitation (resp. Inhibition) setting where
h0 > 0 (resp. h0 6 0). The elements in S1 are indexed from 1 to 7, and correspond respectively to s = (0, 0), and
s = (1, d) with d = 0, . . . , 5. The marginal probability on the true s0 = (1, 2) is colored in orange.

5.4 Simulation 4: Two-step variational algorithm for multivariate sigmoid models

In this experiment, we test our two-step mean-field variational algorithm (Algorithm 3) in the multivariate sigmoid
model with K = 2, 4, 8, 32. We note that to the best of our knowledge, the only Bayesian nonparametric method that
has currently been tested in high-dimensional Hawkes processes is the Gaussian process model of Malem-Shinitski
et al. [2021] in a sigmoid Hawkes model with time-varying background rate. We consider a well-specified setting with
h0 ∈ HD0

hist and D0 = 1, and a sparse graph parameter δ0 with
∑

l,k δ
0
lk = 2K − 1 (see Figure 18). We also design an

Excitation scenario and a Self-inhibition scenario similar to Simulation 3. We only report the results for the former
in this section, and the ones for the latter can be found in Appendix D.2. We set T = 1000 and report the number of
events and excursions in each setting in Table 4. Here, we fix a threshold of η0 = 0.07 in Algorithm 3 - this choice will
be further discussed below.

2We further note that the current implementation of our algorithm has not been yet optimised.
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Figure 8: Marginal probabilities (γ̂s)s∈S1 in the adaptive mean-field variational posterior, in the mis-specified setting
of Simulation 3 with K = 1. The left and right panels correspond to the (mostly) Excitation (resp. Inhibition) setting.
The elements in S1 are indexed from 1 to 7, and correspond respectively to s = (0, 0), and s = (1, d) with D = 0, . . . , 5.
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Figure 9: Posterior and mode variational posterior distributions on f = (ν1, h11) in the univariate sigmoid model and
well-specified setting of Simulation 3, evaluated by the MH sampler and the fully-adaptive mean-field variational
(FA-MF-VI) algorithm (Algorithm 2). The two columns correspond to the Excitation (left) and Inhibition (right)
settings. The first row contains the marginal distribution on the background rate ν1, and the second row represents the
(variational) posterior mean (solid line) and 95% credible sets (colored areas) on the (self) interaction function h11.
The true parameter f0 is plotted in dotted green line.

In Table 5, we report the performance of our method, in terms of the L1-risk of the mode variational posterior on the
parameter defined as

rL1 (Q̂MV ) := �Q̂MV
[‖ν − ν0‖1] +

∑

l,k

�Q̂MV

[∥∥∥hlk − h0
lk

∥∥∥
1

]
. (32)

We note that the number of terms in the risk grows with K and the number of non-null interaction functions in h and
h0. In every setting, we obtain that ŝ = s0 = (δ0, 1), therefore our algorithm is able to recover the true graph δ0 and
dimensionality D0. Moreover, we note that the risk seems to grow linearly with K, which indicates that the estimation
does not deteriorate with larger K. This can be also visually checked in Figure 21, where we plot the variational
distribution Q̂ŝ on a subset of the parameter f2 for each K. We note that the 95% credible bands on the background
rate ν2 become larger for larger K, however, this phenomenon does not appear for the interaction functions.
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Figure 10: Intensity function on a subwindow of the observation window estimated via the variational posterior mean
and via the posterior mean computed with the MH sampler, in the well-specified setting of Simulation 3 on [0, 10],
using the fully-adaptive mean-field variational (FA-MF-VI) algorithm (Algorithm 2). The true intensity λ1

t ( f0) is
plotted in dotted green line.

In Figure 19, we also plot the L1-errors using Q̂δc , i.e., (�Q̂δc

[∥∥∥hlk − h0
lk

∥∥∥
1

]
)l,k in the form of a heatmap compared to the

true norms. We recall that Q̂δc is mode variational distribution obtained after the first step of Algorithm 3, and is used to
estimate the graph for the second step. We note that in all settings, these errors are relatively small, therefore allowing
us to select the true graph parameter for the second step. Indeed, in Figure 20, we plot the estimated L1-norms of the
interaction functions using Q̂δc , i.e., (�Q̂δc

[‖hlk‖1
]
)l,k in increasing order of magnitude and observe a gap between the

small and larger “signals”. Therefore, with our threshold of η0 = 0.07, our algorithm is able to discriminate between
the true signals and the noise, but in these settings, the threshold value could have been selected using the “gap”
heuristic (see Section 4.4.2). Similar observation can also be made for the Self-inhibition scenario, which results are
in Appendix D.2, although the estimation is slightly worse in this scenario. Finally, the computational times of our
algorithm seem to scale well with K and the number of events, as can be seen in Figure 17.

This simulation in low and moderately high-dimensional settings therefore shows that our two-step procedure is able
to select the causality structure and dimensionality of the process and allows to scale up variational Bayes approaches
to larger number of dimensions in sparse settings. Nonetheless, we note that the choice of the threshold and heuristic
approaches for this choice need to further explored.

6 Discussion

In this paper, we provided a theoretical study of variational Bayes methods in nonlinear Hawkes processes. We
obtained variational concentration rates under easily verifiable conditions on the prior and approximating family,
that we validated for estimation set-ups commonly used in practice. Our general theory holds in particular in the
sigmoid Hawkes model, for which we also developed adaptive variational mean-field algorithms, that can infer the
connectivity graph and the dimensionality of the parameter. Moreover, we demonstrated on simulated data that our
most computationally efficient algorithm is able to scale up to high-dimensional processes.

Nonetheless, our theory does not yet cover the high-dimensional setting with K → ∞, which is of practical interest
in applications of Hawkes processes in social network analysis and neuroscience. In this limit, previous works have
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Figure 11: Mode variational posterior distributions on f = (ν1, h11) in the univariate sigmoid model and mis-specified
setting of Simulation 3, evaluated by the fully-adaptive mean-field variational (FA-MF-VI) algorithm (Algorithm 2).
The two columns correspond to a (mostly) Excitation (left) and a (mostly) Inhibition (right) settings. The first row
contains the marginal distribution on the background rate ν1, and the second row represents the variational posterior
mean (solid line) and 95% credible sets (colored areas) on the (self) interaction function h11. The true parameter f0 is
plotted in dotted green line.
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Figure 12: True graph parameter δ0 (black=0, white=1) (a) and marginal probabilities (γ̂s)s∈S2 in the adaptive mean-
field variational posterior, in the well-specified setting of Simulation 3 with K = 2. The Excitation scenario (b)
corresponds to h0 > 0, while in the Self-inhibition scenario (c) , h0

11, h
0
22 6 0. The elements in S2 are indexed from 1

to 76 and the true model corresponds to s0 = (δ0, 2).

considered sparse models Cai et al. [2021], Bacry et al. [2020], Chen et al. [2017] and mean-field settings Pfaffelhuber
et al. [2022]. We would therefore be interested in extending our results to these models.

Moreover, our empirical study shows that the credible sets of variational distributions do not always have good cov-
erage, an observation that sometimes also holds for the posterior distribution. Therefore, it is left for future work to
study the property of (variational) posterior credible regions, and potentially design post-processing methods of the
latter to improve coverage in practice. Additionally, the thresholding approach for estimating the graph in our two-
step adaptive variational procedure could be further explored. In particular, designing “good” heuristics to choose the
threshold in a data-driven way would be of practical interest.

Finally, it would be of practical interest to develop variational algorithms beyond the sigmoid model, e.g., the ReLU
and softplus models. While in the sigmoid model, the conjugacy of the mean-field variational posterior using the
data augmentation strategy leads to particularly efficient algorithms, it is unlikely that such convenient forms could be
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Figure 13: Posterior and mode variational posterior distributions on f = (ν, h) in the bivariate sigmoid model, well-
specified setting, and Excitation setting of Simulation 3, evaluated by the non-adaptive MH sampler and the fully-
adaptive mean-field variational (FA-MF-VI) algorithm (Algorithm 2). The first row contains the marginal distribution
on the background rates (ν1, ν2), and the second and third rows represent the (variational) posterior mean (solid line)
and 95% credible sets (colored areas) on the four interaction function h11, h12, h21, h22. The true parameter f0 is plotted
in dotted green line.

# dimensions Scenario # events # excursions

2 Excitation 11 719 3295
Inhibition 8335 3590

4 Excitation 25 509 2362
Inhibition 17406 2948

8 Excitation 52 390 637
Inhibition 35530 1043

16 Excitation 108 185 24
Inhibition 71874 60

32 Excitation 217 320 0
Inhibition 144741 0

Table 4: Number of observed events and excursions in the multivariate settings of Simulation 4.

obtained for more general models. A potential approach for other models could be to parametrise variational families
with normalising flows, as it is for instance done for cut posteriors in Carmona and Nicholls [2022].
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Figure 14: Posterior and mode variational posterior distributions on f = (ν, h) in the bivariate sigmoid model, well-
specified setting, and Self-Inhibition setting of Simulation 3, evaluated by the MH sampler and the fully-adaptive
mean-field variational (FA-MF-VI) algorithm (Algorithm 2). The first row correspond two columns correspond to the
Excitation (left) and Inhibition (right) settings. The first row contains the marginal distribution on the background
rates (ν1, ν2), and the second and third rows represent the (variational) posterior mean (solid line) and 95% credible
sets (colored areas) on the four interaction function h11, h12, h21, h22. The true parameter f0 is plotted in dotted green
line.

# dimensions Scenario ŝ = s0 Risk

2 Excitation Yes 0.408
Inhibition Yes 0.277

4 Excitation Yes 0.697
Inhibition Yes 0.767

8 Excitation Yes 1.672
Inhibition Yes 2.312

16 Excitation Yes 4.692
Inhibition Yes 4.688

32 Excitation Yes 11.066
Inhibition Yes 12.074

Table 5: Performance of Algorithm 3 in the multivariate settings of Simulation 4. We report the risk rL1 (Q̂) defined in
(32) and if the model with largest marginal probability in Q̂ corresponds to the true one .
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Figure 15: Mode variational posterior distributions on f = (ν, h) in the bivariate sigmoid model, mis-specified setting,
and Excitation setting of Simulation 3, computed with the fully-adaptive mean-field variational (FA-MF-VI) algorithm
(Algorithm 2). The first row correspond two columns correspond to the Excitation (left) and Inhibition (right) settings.
The first row contains the marginal distribution on the background rates (ν1, ν2), and the second and third rows repre-
sent the (variational) posterior mean (solid line) and 95% credible sets (colored areas) on the four interaction function
h11, h12, h21, h22. The true parameter f0 is plotted in dotted green line.
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Figure 16: Estimated intensity function based on the (variational) posterior mean, in the well-specified and bivariate
setting of Simulation 3 on [0, 10], using the fully-adaptive mean-field variational (FA-MF-VI) algorithm (Algorithm
2). The true intensity λt( f0) is plotted in dotted green line.
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Figure 17: Computational times of our two-step mean-field variational algorithm (Algorithm 3) in the Excitation (exc)
and Self-inhibition (inh) scenarios and well-specified setting of Simulation 4, for K = 2, 4, 8, 16, 32.
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Figure 18: True graph parameter δ0 (black=0, white=1) in the multivariate settings of Simulation 4.
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Figure 19: Heatmaps of the L1-norms of the true parameter h0, i.e., the entries of the matrix S 0 = (S 0
lk)l,k = (

∥∥∥h0
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∥∥∥
1)l,k

(left column) and L1-risk, i.e., (�Q[
∥∥∥h0

lk − hlk

∥∥∥
1])l,k (right column) after the first step of Algorithm 3, in the Excitation

scenario of Simulation 4. The rows correspond to K = 2, 4, 8, 16, 32.
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Figure 20: Estimated L1-norms after the first step of Algorithm 3, plotted in increasing order, in the Excitation scenario
of Simulation 4, for the models with K = 2, 4, 8, 16, 32. The threshold in our algorithm η0 = 0.07 is plotted in dotted
red line.
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Figure 21: Mode variational posterior distributions on ν2 (left column) and interaction functions h22 and h32 (for K >
2)(second and third columns) in the Excitation scenario and multivariate sigmoid models of Simulation 4, computed
with our two-step mean-field variational (2S-MF-VI) algorithm (Algorithm 3). The different rows correspond to
different multivariate settings K = 2, 4, 8, 16, 32.
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A Proofs

In this section, we provide the proofs of our main theoretical results, Theorem 3.2 and Proposition 4.5. We first recall
a set of useful lemmas from Sulem et al. [2021].

A.1 Technical lemmas

In the first lemma, we recall the definition of excursions from Sulem et al. [2021], for stationary nonlinear Hawkes
processes verifying condition (C1) or (C2) . Then, Lemma A.2, corresponding to Lemma A.1 in Sulem et al. [2021],
provides a control on the main event Ω̃T considered in the proof of Theorem 3.2. Finally, Lemma A.3 (Lemma A.4 in
Sulem et al. [2021]) is a technical lemma for proving posterior concentration in Hawkes processes.

We also introduce the following notation. For any excursion index j ∈ [JT − 1], we denote (U(1)
j ,U

(2)
j ) the times of the

first two events after the j-th renewal time τ j, and ξ j := U(2)
j if U(2)

j ∈ [τ j, τ j+1) and ξ j := τ j+1 otherwise.

Lemma A.1 (Lemma 5.1 in Sulem et al. [2021]). Let N be a Hawkes process with monotone non-decreasing and
Lipschitz link functions φ = (φk)k and parameter f = (ν, h) such that (φ, f ) verify (C1) or (C2). Then the point process
measure Xt(.) defined as

Xt(.) = N |(t−A,t], (33)

is a strong Markov process with positive recurrent state ∅. Let {τ j} j>0 be the sequence of random times defined as

τ j =


0 if j = 0;
inf

{
t > τ j−1; Xt− , ∅, Xt = ∅

}
= inf

{
t > τ j−1; N |[t−A,t) , ∅, N |(t−A,t] = ∅

}
if j > 1.

Then, {τ j} j>0 are stopping times for the process N. For T > 0, we also define

JT = max{ j > 0; τ j 6 T }. (34)

The intervals {[τ j, τ j+1)}JT−1
j=0 ∪ [τJT ,T ] form a partition of [0,T ]. The point process measures (N|[τ j,τ j+1))16 j6JT−1 are

i.i.d. and independent of N |[0,τ1) and N |[τJT ,T ]; they are called excursions and the stopping times {τ j} j>1 are called
regenerative or renewal times.

Lemma A.2 (Lemma A.1 in Sulem et al. [2021]). Let Q > 0. We consider Ω̃T defined in Section A.2. For any
β > 0, we can choose Cβ and cβ in the definition of Ω̃T such that �0[Ω̃c

T ] 6 T−β. Moreover, for any 1 6 q 6 Q,

�0

[
1Ω̃c

T
maxl sup

t∈[0,T ]

(
N l[t − A, t)

)q
]
6 2T−β/2.

Lemma A.3 (Lemma 1.4 in Sulem et al. [2021]). For any f ∈ FT and l ∈ [K], let

Z1l =

∫ ξ1

τ1

|λl
t( f ) − λl

t( f0)|dt,

Under the assumptions of Theorem 3.2, for MT → ∞ such that MT > M
√
κT with M > 0 and for any f ∈ FT such

that ‖r − r0‖1 6 max(‖r0‖1 , C̃) with C̃ > 0, there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] > C( f0)(
∥∥∥r f − r0

∥∥∥
1 + ‖h − h0‖1),

with C( f0) > 0 a constant that depends only on f0 and (φk)k.
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A.2 Proof of Theorem 3.2

We recall that in this result, we consider a general Hawkes model with known link functions (φk)k. Let r0 = (r0
1, . . . , r

0
K)

with r0
k = φk(ν0

k). With Cβ, cβ > 0, we first define Ω̃T ∈ GT as

Ω̃T = ΩN ∩ΩJ ∩ΩU ,

ΩN =

{
max
k∈[K]

sup
t∈[0,T ]

Nk[t − A, t) 6 Cβ log T
}
∩


K∑

k=1

∣∣∣∣∣∣
Nk[−A,T ]

T
− µ0

k

∣∣∣∣∣∣ 6 δT

 ,

ΩJ = {JT ∈ JT } , ΩU =



JT−1∑

j=1

(U(1)
j − τ j) >

T
�0[∆τ1]‖r0‖1

1 − 2cβ

√
log T

T




,

JT =

J ∈ �>0;
∣∣∣∣∣
J − 1

T
− 1
�0[∆τ1]

∣∣∣∣∣ 6 cβ

√
log T

T

 ,

with JT the number of excursions as defined in (34), µ0
k := �0

[
λk

t ( f0)
]
,∀k, δT = δ0

√
log T

T , δ0 > 0 and {U(1)
j } j=1,...,JT−1

denoting the first events of each excursion (see Lemma A.1 for a precise definition). Secondly, we define A′T ∈ GT as

A′T =

{∫
eLT ( f )−LT ( f0)dΠ̃( f ) > e−C1Tε2

T

}
, Π̃(B) =

Π(B ∩ KT )
Π(KT )

, KT ⊂ F ,

with C1 > 0 and εT ,MT positive sequences such that Tε2
T → ∞ and MT → ∞. From Lemma A.2, we have that

�0

[
Ω̃c

T

]
= o(1). Thus, with AT = Ω̃T ∩ A′T , KT = B∞(εT ), and εT =

√
κT εT , we can obtain that

�0
[
Ac

T
]
6 �0

[
Ω̃c

T

]
+ �0

[
A′cT ∩ Ω̃T

]
= o(1) + �0

[{∫

KT

eLT ( f )−LT ( f0)dΠ( f ) 6 Π(KT )e−C1Tε2
T

}
∩ Ω̃T

]

6 o(1) + �0

[{
DT 6 Π(KT )e−C1Tε2

T
}
∩ Ω̃T

]
= o(1),

with C1 > 1, using (A0), i.e., Π(KT ) > e−c1Tε2
T , and the following intermediate result from the proof of Theorem 3.2 in

Sulem et al. [2021]

�0

[{
DT 6 Π(B∞(εT ))e−κT Tε2

T
}
∩ Ω̃T

]
= o(1).

Therefore, we can conclude that
�0 [AT ] −−−−→

T→∞
1.

We now define the stochastic distance d̃1T and stochastic neighborhoods around f0 as

d̃1T ( f , f ′) =
1
T

K∑

k=1

∫ T

0
1A2(T )(t)|λk

t ( f ) − λk
t ( f ′)|dt, A2(T ) =

JT−1⋃

j=1

[τ j, ξ j] (35)

Ad1 (ε) =
{
f ∈ F ; d̃1T ( f , f0) 6 ε

}
, ε > 0,

where for each j ∈ [JT ], U(2)
j is the first event after U(1)

j , and ξ j := U(2)
j if U(2)

j ∈ [τ j, τ j+1) and ξ j := τ j+1 otherwise.
Let ηT be a positive sequence and Q̂ be the variational posterior as defined in (5). Using Markov’s inequality, we have

�0

[
Q̂(Ad1 (ηT )c)

]
6 �0

[
Ac

T
]
+ �0

[
Q̂(Ad1 (ηT )c)1AT

]
. (36)

We first bound the second term on the RHS of (36) using the following technical lemma, which is an adaptation of
Theorem 5 of Ray and Szabó [2021] and Lemma 13 in Nieman et al. [2021].
Lemma A.4. Let BT ⊂ F , AT ∈ GT , and Q be a distribution on F . If there exist C, uT > 0 such that

�0
[
Π(BT |N)1AT

]
6 Ce−uT , (37)

then, we have that

�0
[
Q(BT )1AT

]
6

2
uT

(
�0

[
KL(Q||Π(.|N))1AT

]
+ Ce−uT /2

)
.
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Proof. We follow the proof of Ray and Szabó [2021] and use the fact that, for any g : F → � such that∫
F eg( f )dΠ( f |N) < +∞, it holds true that

∫

F
g( f )dQ 6 KL(Q||Π(.|N)) + log

∫

F
eg( f )Π( f |N).

Applying the latter inequality with g = 1
2 uT1BT , we obtain

1
2

uT Q(BT ) 6 KL(Q||Π(.|N)) + log(1 + e
1
2 uT Π(BT |N))

6 KL(Q||Π(.|N)) + e
1
2 uT Π(BT |N).

Then, multipying both sides of the previous inequality by 1A and taking expectation wrt to �0, using (37), we finally
obtain

1
2

uT�0
[
Q(BT )1AT

]
6 �0

[
KL(Q||Π(.|N))1AT

]
+ Ce−

1
2 uT .

�

We thus apply Lemma A.4 with BT = Ad1 (ηT )c, ηT = M′TεT , Q = Q̂, and uT = MT Tε2
T with M′T → ∞. We first check

that (37) holds, i.e., we show that there exists C,MT ,M′T > 0 such that

�0

[
1AT Π[d̃1T ( f , f0) > M′TεT |N]

]
6 C exp(−MT Tε2

T ). (38)

For any test φ, we have the following decomposition

�0

[
1AT Π[d̃1T ( f , f0) > M′TεT |N]

]
6 �0

[
φ1AT ]

]
︸       ︷︷       ︸

(I)

+�0
[
(1 − φ)1AT Π[Ad1 (M′TεT )c|N]

]
︸                                      ︷︷                                      ︸

(II)

.

Note that we have

(II) = �0
[
(1 − φ)1AT Π[Ad1 (M′TεT )c|N]

]
= �0


∫

Ad1 (MεT )c
1AT (1 − φ)

eLT ( f )−LT ( f0)

DT
dΠ( f )



6 Π(KT )eC1Tε2
T�0

 sup
f∈FT

� f

[
1Ad1 (MεT )c1AT (1 − φ)|G0

] , (39)

since on AT ,DT > Π(KT )eC1Tε2
T . Using the proof of Theorem 5.5 in Sulem et al. [2021], we can directly obtain that

for T large enough, there exist x1,M,M′ > 0 such that

(I) 6 2(2K + 1)e−x1 M′2Tε2
T

(II) 6 2(2K + 1)e−x1 M′2Tε2
T /2,

which imply that

�0

[
1AT Π[d̃1T ( f , f0) > M′TεT |N]

]
6 4(2K + 1)e−x1 M′2T Tε2

T /2,

and (38) with MT = x1M′2T /2 and C = 2(2K + 1). Applying Lemma A.4 thus leads to

�0

[
Q̂(Ad1 (ηT )c)1AT

]
6 2

KL(Q̂||Π(.|N)) + Ce−MT Tε2
T /2

MT Tε2
T

6 2Ce−MT Tε2
T /2 + 2

KL(Q̂||Π(.|N))
MT Tε2

T

.

Moreover, from (A2) and Remark 3.4, it holds that KL(Q̂||Π(.|N)) = O(Tε2
T ), therefore we obtain the following

intermediate result

�0

[
Q̂(Ad1 (ηT )c)

]
= o(1).

Now, with MT > M′T , we note that

�0

[
Q̂(‖ f − f0‖1 > MTεT )

]
= �0

[
Q̂(d̃1T ( f , f0) > M′TεT )

]
+ �0

[
Q̂(‖ f − f0‖1 > MTεT , d̃1T ( f , f0) < M′TεT )1AT

]
+ �0[Ac

T ].
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Therefore, it remains to show that

�0

[
Q̂(‖ f − f0‖1 > MTεT , d̃1T ( f , f0) < M′TεT )1AT

]
= �0

[
Q̂(AL1 (MT εT )c ∩ Ad1 (M′TεT ))1AT

]
= o(1).

For this, we apply again Lemma A.4 with BT = AL1 (MTεT )c ∩ Ad1 (M′TεT ) and uT = T M2
Tε

2
T . We have

�0
[
1AT Π(AL1 (MTεT )c ∩ Ad1 (M′TεT )|N)

]
6 Π(KT )eC1Tε2

T�0

[
� f

[
1AT1AL1 (MT εT )c∩Ad1 (M′T εT )|G0

]]
.

Let f ∈ AL1 (MTεT )c ∩ Ad1 (M′TεT ). For any j ∈ [JT − 1] and l ∈ [K], let

Z jl =

∫ ξ j

τ j

|λl
t( f ) − λl

t( f0)|dt, j ∈ [JT − 1], l ∈ [K]. (40)

Using Lemma A.3, for any f ∈ AL1 (MT εT )c, we have

� f

[
1AT1Ad1 (M′T εT )|G0

]
6 � f


JT−1∑

j=1

Z jl 6 T M′TεT |G0



6
∑

J∈JT

� f


J−1∑

j=1

Z jl − � f

[
Z jl

]
6 T M′T εT − T

2�0 [∆τ1]
C( f0)MT εT |G0



6
∑

J∈JT

� f


J−1∑

j=1

Z jl − � f

[
Z jl

]
6 − T

4�0 [∆τ1]
C( f0)MTεT |G0

 ,

for any MT > 4�0 [∆τ1] M′T . Similarly to the proof of Theorem 3.2 in Sulem et al. [2021]), we apply Bernstein’s
inequality for each J ∈ JT and obtain that

� f

[
1AT1Ad1 (M′T εT )|G0

]
6 exp{−c( f0)′T }, ∀ f ∈ AL1 (MTεT )c.

Therefore, we can conclude that

�0

[
Q̂

(
AL1 (MTεT )c ∩ Ad1 (M′TεT )

)
1AT

]
6

2
MT Tε2

T

�0

[
KL(Q̂||Π(.|N))

]
+ exp{−c( f0)′T/2}) = o(1),

since �0

[
KL(Q̂||Π(.|N))

]
= O(Tε2

T ) by assumption (A2). This leads to our final conclusion

�0

[
Q̂

(‖ f − f0‖1 > MTεT
)]

= o(1).

A.3 Proof of Proposition 4.5

We recall that in this result, we consider the sigmoid Hawkes model with link function φk(x) = θk(1 + e−x)−1, x ∈ �
for each k ∈ [K] with unknown scale parameter θ = (θk)k ∈ Θ. This proposition is an extension of Theorem 3.2 in
Sulem et al. [2021], and we prove it using the same strategy, based on the stochastic distance d̃1T ( f , f0) (35) and the
decomposition into excursions (see Lemma A.1).

We first define

ῩT = HT × [−B, B]K × ΘT = FT × ΘT ,

and note that, since Π(ν ∈ [−B, B]K) = 1,

Π(ῩT ) = Π(Hc
T ) + Π(Θc

T ).

Let σ(x) = (1 + e−x)−1, x ∈ �, M′T = M′
√
κT with M′ > 0 and κT = 10(log log T ) log T , and for i > 1,

S i =
{
( f , θ) ∈ F × Θ; KiεT 6 d̃1T ( f , f0) 6 K(i + 1)εT

}
.

We use the now standard decomposition of the posterior distribution

�0[Π(Ad1 (M′T εT )c|N)] 6 �0(Ω̃c
T ) + �0

(
{DT < e−κT T ε2

T Π(B̃2(εT , B))} ∩ Ω̃T

)
+ �0[φ1Ω̃T

]

+
eκT T ε2

T

Π(B̃2(εT , B))

Π(Υc
T ) +

+∞∑

i=M′T

∫

ΥT

�0

[
� f

[
1Ω̃T

1 f∈S i (1 − φ)]|G0

]]
dΠ( f )

 , (41)
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with φ ∈ [0, 1] a test function, Ω̃T defined in A.2, and DT from (4). Using previous computation, we know that

�0(Ω̃c
T ) = o(1) and �0

(
{DT < e−κT T ε2

T Π(B̃2(εT , B))} ∩ Ω̃T

)
= o(1).

We also note that using (A1),

eκT T ε2
T

Π(B̃2(εT , B))
Π(Υc

T ) 6 e(c1+κT )T ε2
T (Π(Θc

T ) + Π(Hc
T )) = o(1).

For the remaining terms, using the notation of Section A.2, for any ( f , θ) ∈ S i ∩ ΥT , we have that

Td̃1T ( f , f0) >
K∑

k=1

JT−1∑

j=1

∫ U(1)
j

τ j

∣∣∣λk
t ( f ) − λk

t ( f0)
∣∣∣ dt

>
K∑

k=1

∣∣∣θkσ(νk) − θ0
kσ(ν0

k)
∣∣∣

JT−1∑

j=1

(U(1)
j − τ j)

>
K∑

k=1

∣∣∣rk − r0
k

∣∣∣ T
2�0[∆τ1]‖r0‖1 ,

on Ω̃T . Therefore, for any k, with c( f0) = 1
2�0[∆τ1]‖r0‖1 , we have

r0
k −

K(i + 1)εT

c( f0)
6 rk 6 r0

k +
K(i + 1).εT

c( f0)
(42)

Since νk ∈ [−B, B] and 0 6 σ(νk) 6 1, we have from (42) that

θ0
kσ(ν0

k)
σ(B)

− K(i + 1)εT

c( f0)σ(B)
6 θk 6

θ0
kσ(ν0

k)
σ(−B)

+
K(i + 1).εT

c( f0)σ(−B)
.

Let

Ti =

( f , θ) ∈ ΥT ; 0 < rk 6
θ0

kσ(ν0
k)

σ(−B)
+

K(i + 1).εT

c( f0)σ(−B)
, ∀k

 . (43)

We separate the set of indices i into two cases.

Case 1: iεT 6 1. Then we have that for any ( f , θ) ∈ Ti,

θk 6
K

c( f0)σ(−B)
,

and the covering number denoted Ni of Ti by balls of radius ζεT with ζ = 1/(6N0) with N0 = 1 +
∑K

k=1 �0

[
λk

t ( f0)
]
,

verify

Ni 6
(
C0BK2

(ζiεT )2

)K

N(ζiεT /2,HT , ‖.‖1) 6 C′0e2K log T ex0T ε2
T ,

with C0,C′0 > 0 constants and using (A1).

Case 2: iεT > 1. In this case, we have that

Ni 6
(
C1K2iεT

(ζiεT )2

)K

N(ζiεT /2,HT , ‖.‖1) 6 C′1ex0T ε2
T ,

with C1,C′1 > 0 constants.

Then in both cases, using the same tests (φi)i>M as in the proof of Proposition 5.5 in Sulem et al. [2021], and φ =
maxi>M φi, we have that

�0

[
φ1Ω̃T

]
. e2K log T ex0T ε2

T



ε−1
T∑

i>M′T

e−x2Ti2ε2
T +

∑

i>ε−1
T

e−x2TiεT

 . e−x2 M′T T ε2
T /2

sup
f∈Ti

�0

[
� f

[
1Ω̃T

1 f∈S i (1 − φi)|G0

]]
6 (2K + 1)e−x2T (i2ε2

T∧iεT ),
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with x2 > 0, which leads to
+∞∑

i=M′T

∫

ΥT

�0

[
� f

[
1Ω̃T

1 f∈S i (1 − φ)]|G0

]]
dΠ( f ) . e−x2 M′T T ε2

T /2,

and finally to the intermediate result

�0

[
Π

(
d̃1T ( f , f0) > M′T εT |N

)]
−−−−→
T→∞

0,

with M′T = M′
√
κT with M′ large enough.

Extending Lemma A.4 of Sulem et al. [2021] to the context of sigmoid link with unknown shift, we can easily prove
that for ( f , θ) ∈ ΥT such that rk = θkσ(νk) 6 max(r0

k , c0), ∀k, with c0 > 0, there exists l ∈ [K] and C( f0) such that on
Ω̃T ,

� f [Z1l] > C( f0)(
∥∥∥r f − r0

∥∥∥
1 + ‖h − h0‖1).

Then, using the same steps as the proof of Theorem 3.2 in Sulem et al. [2021], we can obtain that

�0

[
Π

(
(
∥∥∥r f − r0

∥∥∥
1 + ‖h − h0‖1) > MT εT |N

)]
−−−−→
T→∞

0,

with MT = M
√
κT with M > M′. Re-defining the L1-neighborhood as

AL1 (ε) = {( f , θ) ∈ F × Θ, ‖θσ(ν) − θ0σ(ν0)‖1 + ‖h − h0‖1 < ε}, ε > 0,

the previous result can be re-written as �0
[
Π

(
AL1 (MT εT )c|N)]

= o(1).

We now separate ν and θ using a test similar to the proof of Proposition 3.5 in Sulem et al. [2021] for the shifted ReLU
model. For this, for any η > 0 and with θT = ec2T ε2

T , we define

Ak(T ) =
{
t ∈ [0,T ]; λk

t ( f0, θ0) > θ0
k − η

}
, 1 6 k 6 K,

ΩA = {|Ak(T )| > z0T, ∀k ∈ [K]},
with z0 > 0 a constant. We also define Ω̃′T = Ω̃T ∩ΩA and a neighborhood around θ0

Ā(R) := {θ ∈ Θ; ‖θ − θ0‖1 6 R}, R > 0.

Let M̃T = M̃
√
κT with M̃ > M. Using the standard decomposition of the posterior distribution Π(Ā(M̃T εT )c|N), with

A = Ā(M̃T εT )c, B = AL1 (MT εT ), and the subset Ω̃′T , we only need to construct a test function φ ∈ [0, 1] verifying

�0

[
φ1Ω̃′T

]
= o(1), sup

( f ,θ)∈AL1 (MT εT )∩(FT×Ā(M̃T εT )c∩ΘT )
�0

[
� f

[
(1 − φ)1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT +c1)T ε2

T ). (44)

We consider a parameter ( f1, θ1) ∈ AL1 (MT εT ) ∩ (FT × Ā(M̃T εT )c ∩ ΘT , and for any k ∈ [K], we define the following
subset of the observation window

I0
k ( f1, θ1) =

{
t ∈ [0,T ]; λk

t ( f1, θ1) > θ1
k − η, λk

t ( f0, θ0) > θ0
k − η

}
⊂ Ak(T ). (45)

To prove that |I0
k ( f1, θ1)| & T , we construct the following set of excursions E. From Assumption 4.1, let l ∈ [K] such

that h0+
lk (x) > c?, ∀x ∈ [x1, x2] and x′ = min(x1, x2 − x1/3). For any nk

1 ∈ �>0, let

El(nk
1) := { j ∈ [JT ]; N[τ j, τ j + x′) = N l[τ j, τ j + x′) = nk

1,N[τ j + δ′, τ j+1) = 0}, (46)

where the τ j’s are the regenerative times defined in Lemma A.1. For choosing the number of events nk
1, we separate

into two cases.

Case 1: θ0
k > θ

1
k . In this case, we define

nk
1 = b log(θ0

k/η − 1) + B
c?

c + 1.

Then, we can easily see that for j ∈ El(nk
1) and t ∈ [τ j + x + x1, τ j + x + x1 + x′], we have

λ̃k
t (ν0, h0) > log


θ0

k

η
− 1

 =⇒ λk
t ( f0, θ0) > θ0

k − η,

λ̃k
t (ν1, h1) > log


θ0

k

η
− 1

 =⇒ λk
t ( f1, θ1) > θ1

k −
θ1

k

θ0
k

η > θ1
k − η,
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therefore t ∈ I0
k ( f1, θ1).

Case 2: θ0
k 6 θ

1
k . In this case, we define

nk
1 = b log(θ1

k/η − 1) + B
c?

c + 1,

and we similarly have that t ∈ I0
k ( f1, θ1), ∀t[τ j + x + x1, τ j + x + x1 + x′], j ∈ El(nk

1).

Moreover, using a proof similar to the one of Lemma A.5 in Sulem et al. [2021], we can show that for η = ηT = c
√
κT εT

with c > 0 large enough, there exist p0, u0 > 0 such that

�0

[
|El(nk

1)| 6 p0T,∀k ∈ [K]
]

= o(e−u0T ε2
T ),

since εT & (log T )3T−1, and therefore nk
1 . log T . We can also see that |I0

k ( f1, θ1)| > x′|El(nk
1)|.

We now define our generic test function

φ( f1, θ1) := max
k∈[K]

1|Nk(I0
k ( f1,θ1))−Λ0

k (I0
k ( f1,θ1)|>vT

∨ 1|El(nk
1)|<p0T , (47)

where Λ0
k(I0

k ( f1, θ1)) =
∫ T

0 1I0
k ( f1,θ1)λ

k
t ( f0, θ0)dt > |I0

k ( f1, θ1)|(θ0
k − ηT ), vT = wT TεT , wT = w0

√
(κT + c1), with w0 > 0 a

constant chosen later. Using the same steps as in the proof of Lemma A.5 in Sulem et al. [2021], we can show that

�0
[
φ( f1, θ1)1Ω̃′

]
= o(e−u0T ε2

T ).

Moreover, using that

Λ0
k(I0

k ( f1, θ1)) =

∫

I0
k ( f1,θ1)

λk
t ( f1, θ1)dt +

∫

I0
k ( f1,θ1)

(λk
t ( f0, θ0) − λk

t ( f1, θ1))dt

>
∫

I0
k ( f1,θ1)

λk
t ( f1, θ1)dt + |I0

k ( f1, θ1)|(θ0
k − ηT − θ1

k )

>
∫

I0
k ( f1,θ1)

λk
t ( f1, θ1)dt + p0T (M̄T εT − ηT ) >

∫

I0
k ( f1,θ1)

λk
t ( f1, θ1)dt + p0T M̄T εT /2,

for T large enough, we have that, with Λ1
k(I0

k ( f1, θ1) :=
∫

I0
k ( f1,θ1) λ

k
t ( f1, θ1)dt

{
|Nk(I0

k ( f1, θ1)) − Λ0
k(I0

k ( f1, θ1)| < vT

}
⊂

{
Nk(I0

k ( f1, θ1)) − Λ1
k(I1

k ( f1, θ1) + p0T M̄T εT /2 < vT

}

⊂
{
Nk(I0

k ( f1, θ1)) − Λ1
k(I1

k ( f1, θ1) < −p0T M̄T εT /4
}
,

with M̄T = M
√
κT εT with M > 2w0 large enough. Therefore, like in Sulem et al. [2021], using inequality (7.7) of

Hansen et al. [2015], we can obtain that

� f

[
(1 − φk( f1, θ1))1Ω̃′T

]
6 � f

[{
|Nk(I0

k ( f1, θ1)) − Λk(I0
k ( f1, θ1), f0)| 6 vT

}
∩ Ω̃′T

]
= o(e−(κT +c1)T ε2

T ).

Then, to define our global test φ, we cover the space AL1 (MT εT ) ∩ FT × (Ā(M̃T εT )c ∩ ΘT ) with L1-balls {Bi}16i6N
of radius ζεT , with ζ > 0 and N ∈ � the covering number, and for each ball Bi centered at ( fi, θi), we consider the
elementary test φ( fi, θi) as in (47). Define φ := maxi∈N φ( fi, θi), we then obtain that

�0

[
φ1Ω̃′T

]
6 Ne−u0T ε2

T , sup
( f ,θ)∈AL1 (MT εT )∩FT×Ā(M̃T εT )c

�0

[
� f

[
(1 − φ)1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT +c1)T ε2

T ).

Moreover, we have that

N 6
(

2KBθT

(ζεT )2

)K

N(ζεT ,HT , ‖.‖1) . e−2K log εT ec2T ε2
T ex0T ε2

T

. e2K log T e(c2+x0)T ε2
T = o(eu0T ε2

T ),

for u0 large enough, which implies that �0

[
φ1Ω̃′T

]
= o(1) and terminates this proof.
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B Additional proofs

B.1 Proof of Lemma 4.3

Using the proof of Proposition 2.3 in Sulem et al. [2021], we can easily obtain that N =D N′ implies that

θk

θ′k
=
σ̃(ν′k)
σ̃(νk)

=
σ̃(h′lk)
σ̃(hlk)

, ∀l, k.

Now, using Assumption 4.1 and the proof of Proposition 2.3 in Sulem et al. [2021], one can show that

�[sup
t>0

λk
t ( f ) = θk] = 1

�[sup
t>0

λk
t ( f ′) = θ′k] = 1.

Then, one can conclude that θ = θ′, implying also that h = h′ and ν = ν′.

C Additional derivation in the sigmoid Hawkes model with data augmentation

C.1 Updates of the fixed-dimension mean-field variational algorithm

In this section, we derive the analytic forms of the conditional updates in Algorithm 1, the mean-field variational
algorithm with fixed dimensionality described in Section 4.3. For ease of exposition, we drop the indices k and s and
use the notation Q1,Q2 for the variational factors. In the following computation, we use the notation c to denote a
generic constant which value can vary from one line to the other. We also define α := 0.1 and η = 10.

From the definition of the augmented posterior (21), we first note that

log p( f ,N, ω, N̄) = log Π( f , ω, N̄ |N) + log p(N) = LT ( f , ω, N̄; N) + log Π( f ) + log p(N) + c

= log p(ω| f ,N) + log p(N̄| f ,N) + log Π( f ) + log p(N) + c. (48)

In the previous equality we have used the facts that p(ω| f ,N, N̄) = p(ω| f ,N) and p(N̄ | f ,N, ω) = p(N̄ | f ,N). We recall
our notation H(t) = (H0(t),H1(t), . . . ,HK(t)) ∈ �KJ+1, t ∈ �, where for k ∈ [K], Hk(t) = (Hk

j (t)) j=1,...,J and Hk
j defined

in (25). We have that

�Q2 [log p(ω| f ,N)] = �Q2


∑

i∈[N]

g(ωi, λ̃Ti ( f ))

 + c = �Q2


∑

i∈[N]

−ωiλ̃Ti ( f )2

2
+
λ̃Ti ( f )

2

 + c

= �Q2


∑

i∈[N]

−ωiα
2( f T H(Ti)H(Ti)T f − 2ηH(Ti)T f + η2)

2
+
αH(Ti)T f

2

 + c

= �Q2

−
1
2

∑

i∈[N]

{
ωiα

2 f T H(Ti)H(Ti)T f − α(2ωiαη + 1)H(Ti)T f + ωiα
2η2

}
 + c

= −1
2

∑

i∈[N]

{
�Q2 [ωi]α2 f T H(Ti)H(Ti)T f − α(2�Q2 [ωi]αη + 1)H(Ti)T f + �Q2 [ωi]α2η2

}
+ c.

Moreover, we also have that

�Q2 [log p(N̄ | f ,N)] = �Q2

−
1
2

∑

j∈[N̄]

{
ω̄ jα

2 f T H(T̄ j)H(T̄ j)T f − α(2ω̄ jαη − 1)H(T̄ j)T f + ω̄ jα
2η2

}
 + c

=

∫ T

0

∫ ∞

0

[
−1

2

(
ω̄α2 f T H(t)H(t)T f − α(2ω̄αη − 1)H(t)T f + ω̄α2η2

)]
Λ(t, ω̄)dω̄dt + c

= −1
2

[
f T

(
α2

∫ T

0

∫ ∞

0
ω̄H(t)H(t)T Λ(t, ω̄)dω̄dt

)
f + f T

(
α

∫ T

0

∫ ∞

0
(2ω̄αη − 1)H(t)T Λ(t, ω̄)dω̄dt

)]
+ c.
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Besides, we have �Q2 [log Π( f )] = − 1
2 f T Σ−1 f + f T Σ−1µ + c. Therefore, using (23), we obtain that

log Q1( f ) = −1
2

 f T

α
2
∑

i∈[N]

�Q2 [ωi]H(Ti)H(Ti)T + α2
∫ T

0

∫ ∞

0
ω̄H(t)H(t)T Λ(t, ω̄)dω̄dt + Σ−1

 f

− f T

α
∑

i∈[N]

(2�Q2 [ωi]αη + 1)H(Ti)T + α

∫ T

0

∫ ∞

0
(2ω̄αη − 1)H(t)T Λ(t, ω̄)dω̄dt + 2Σ−1µ



 + c

=: −1
2

( f − µ̃)T Σ̃−1( f − µ̃) + c,

therefore Q1( f ) is a normal distribution with mean vector µ̃ and covariance matrix Σ̃ given by

Σ̃−1 = α2
∑

i∈[N]

�Q2 [ωi]H(Ti)H(Ti)T + α2
∫ T

0

∫ ∞

0
ω̄H(t)H(t)T Λ(t, ω̄)dω̄dt + Σ−1, (49)

µ̃ =
1
2

Σ̃

α
∑

i∈[N]

(2�Q2 [ωi]αη + 1)H(Ti)T + α

∫ T

0

∫ ∞

0
(2ω̄αη − 1)H(t)T Λ(t, ω̄)dω̄dt + 2Σ−1µ

 . (50)

For Q2(ω, N̄), we first note that using (24) and (48), we have Q2(ω, N̄) = Q21(ω)Q22(N̄). Using the same computation
as Donner and Opper [2019]) Appendices B and D, one can then show that

Q21(ω) =
∏

i∈[N]

pPG(ωi|1, λTi
),

λt =

√
�Q1 [λ̃t( f )2] = α2

√
H(t)T Σ̃H(t) + (H(t)T µ̃)2 − 2ηH(t)T µ̃ + η2, ∀t ∈ [0,T ],

and that Q22 is a marked Poisson point process measure on [0,T ] ×�+ with intensity

Λ(t, ω̄) = θe�Q1 [g(ω̄,−λ̃t( f )] pPG(ω̄; 1, 0) = θ
exp(− 1

2�Q1 [λ̃t( f )])

2 cosh λt( f )
2

pPG(ω̄|1, λt( f ))

= θσ(−λt) exp
{

1
2

(λt( f ) − �Q1 [λ̃t( f )])
}

pPG(ω̄|1, λt)

�Q1 [λ̃t( f )] = α(H(t)T µ̃ − η).

Therefore, we have that

�Q1 [ωi] =
1

2λTi

λTi
,∀i ∈ [N].

C.2 Analytic form of the ELBO

In this section, we provide the derivation of the ELBO(Q̂s) in our adaptive mean-field variational algorithm, Algorithm
2, for each s = (δ,D). For ease of expositions, we will drop the subscript s. From (28), we have

ELBO(Q̂) = �Q̂

[
log

p( f , ω, N̄,N)
Q̂1( f )Q̂2(ω, N̄)

]

= �Q̂2

[
− log Q̂2(ω, N̄)

]
+ �Q̂2

[
�Q̂1

[
log p( f , ω, N̄,N)

]]
+ �Q̂1

[− log Q̂1( f )].

Now using the notation of Section 4.3, we first note that defining K(t) := H(t)H(t)T , we have that

�Q̂1
[λ̃Ti ( f )2] = tr(K(t)Σ̃) + µ̃T K(t)µ̃

�Q̂1

[
logN( f ; µ,Σ)

]
= −1

2
tr(Σ−1Σ̃) − 1

2
µ̃T Σ−1µ̃ + µ̃T Σ−1µ − 1

2
µT Σ−1µ − 1

2
log |2πΣ|.

Moreover, we have

�Q̂1
[log Q̂1( f )] = −|m|

2
− 1

2
log |2πΣ̃|.
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Using that for any c > 0, pPG(ω; 1, c) = e−c2ω/2 cosh (c/2)pPG(ω; 1, 0), we also have

�Q̂2

[
− log Q̂2D(ω, N̄)

]
=

∑

k

∑

i∈[Nk]

−�Q̂2
[log pPG(ωk

i , 1, 0)] +
1
2
�Q̂2

[ωk
i ]�Q̂1

[λ̃Ti ( f )2] − log cosh
(
λTi

( f )

2

)

−
∫ T

t=0

∫ +∞

0
[log Λ(t, ω̄)]Λ(t, ω̄)dω̄dt +

∫ T

t=0

∫ +∞

0
Λ(t, ω̄)dω̄dt

=
∑

k

∑

i∈[Nk]

−�Q̂2
[log pPG(ωk

i , 1, 0)] +
1
2
�Q̂2

[ωk
i ]�Q̂1D

[λ̃Ti ( f )2] − log cosh
(
λTi

( f )

2

)

−
∫ T

t=0

∫ +∞

0

[
log θk − 1

2
�Q̂1

[λ̃Ti ( f )] − log 2 − log cosh
(
λTi

( f )

2

)
− 1

2
�Q̂1D

[λ̃Ti ( f )2]ω̄

+ log cosh
(

1
2
λTi

( f )
)

+ log pPG(ω̄; 1, 0) − 1
]
Λk(t)pPG(ω̄; 1, λTi

( f ))dtdω̄

=
∑

k

∑

i∈[Nk]

−�Q̂2
[log pPG(ωk

i , 1, 0)] +
1
2
�Q̂2

[ωk
i ]�Q̂1D

[λ̃Ti ( f )2] − log cosh
(
λTi

( f )

2

)

−
∫ T

t=0

[
log θk − 1

2
�Q̂1

[λ̃Ti ( f )] − log 2 − 1
2
�Q̂1

[λ̃Ti ( f )2]�Q̂2
[ω̄] − 1

]
Λk(t)dt

−
∫ T

t=0

∫ +∞

0
log pPG(ω; 1, 0)Λk(t)pPG(ω; 1, λTi

( f ))dωdt.

with Λk(t) = θk
∫ ∞

0 Λk(t, ω̄)dω̄ = e
− 1

2 �Q̂1
[λ̃Ti

( f )]

2 cosh
λTi

( f )

2

.

�Q̂2

[
�Q̂1

[
log p( fk, ω, N̄,N)

]]
=

∑

k

∑

i∈[Nk]

{
log θk + �Q̂2

[
�Q̂1

[
g(ωk

i , λ̃Ti ( f ))
]

+ log pPG(ωk
i ; 1, 0)

]}

+
∑

k

log θk + �Q̂2

[
�Q̂1

[
g(ω̄t,−λ̃Ti ( f )))

]
+ log pPG(ω̄t; 1, 0)

]
+ �Q̂1

[
logN( fk; µk,Σk)

]

=
∑

k

∑

i∈[Nk]

log θk − log 2 − 1
2
�Q̂1

[
λ̃Ti ( f )2

]
�Q̂2

[
ωk

i

]
+

1
2
�Q̂1

[
λ̃Ti ( f )

]
+ �Q̂2

[
log pPG(ωk

i ; 1, 0)
]

+

∫ T

0

∫ +∞

0

[
log θk − log 2 − 1

2
�Q̂1

[
λ̃Ti ( f )2

]
ω̄ − 1

2
�Q̂1

[
λ̃Ti ( f )

]
+ log pPG(ω̄; 1, 0)

]
Λk(t)pPG(ω; 1, λTi

( f ))dωdt

+ �Q̂1

[
logN( fk; µk,Σk)

] − θkT

=
∑

k

∑

i∈[Nk]

log θk − log 2 − 1
2
�Q̂1

[
λ̃Ti ( f )2

]
�Q̂2

[
ωk

i

]
+

1
2
�Q̂1

[
λ̃Ti ( f )

]
+ �Q̂2

[
log pPG(ωk

i ; 1, 0)
]

+

∫ T

0

[
log θk − log 2 − 1

2
�Q̂1

[
λ̃Ti ( f )2

]
�Q̂2

[ω̄] − 1
2
�Q̂1

[
λ̃Ti ( f )

]]
Λk(t)dt

+

∫ T

0

∫ +∞

0
log pPG(ω̄; 1, 0)Λk(t)pPG(ω̄; 1, λTi

( f ))dω̄dt + �Q̂1

[
logN( fk; µk,Σk)

] − θkT.

Therefore, with c > 0 a constant that does not depend on the size of the model, with zero mean prior µ = 0,

ELBO(Q̂) =
|m|
2

+
1
2

log |2πΣ̃| − 1
2

tr(Σ−1Σ̃) − 1
2
µ̃T Σ−1µ̃ − 1

2
log |2πΣ|

+
∑

k

∑

i∈[Nk]

log θk − log 2 +
�Q̂1

[
λ̃k

Ti
( f )

]

2
− log cosh


λ̃k

Ti
( f )

2



+

∫ T

t=0

∫ +∞

0
Λ(t, ω̄)dω̄dt − θkT.

C.3 Gibbs sampler

From the augmented posterior ΠA( f , ω, |̄N) defined in (21) and using the Gaussian prior family described in Sec-
tion 4.2, similar computation as Appendix C.1 can provide analytic forms of the conditional posterior distributions
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ΠA( f |ω, N̄,N),ΠA(ω|N, f ) and ΠA(N̄| f ,N) . This allows to design a Gibbs sampler algorithm that sequentially sam-
ples the parameter f , the latent variables ω and Poisson process N̄. With the notation of Appendix C.1, such procedure
can be defined as

For every k ∈ [K],

(Sample latent variables) ωk
i |N, fk ∼ pPG(ωk

i ; 1, λ̃k
T k

i
( f )), ∀i ∈ [Nk]

N̄k | fk, a Poisson process on [0,T ] with intensity Λk(t, ω̄) = θkσ(−λ̃k
t ( f ))pPG(ω̄; 1, λ̃k

t ( f ))

(Update hyperparameters) Rk = N̄k[0,T ]

Hk = [HNk ,HN̄k ], [HNk ]id = H j(T k
i ), [HN̄k ] jd = Hb(T̄ k

j ), d = 0, . . . ,KJ, i ∈ [Nk], j ∈ [Rk]

Dk = Diag([ωk
i ]i∈[Nk], [ω̄k

j] j∈[Rk])

Σ̃k = [β2HkDk(Hk)T + Σ−1]−1

µ̃k = Σ̃k

(
Hk

[
βvk + β2ηuk

]
+ Σ−1µ

)
, vk = 0.5[1Nk ,−1Rk ], uk = [[ωk

i ]i∈[Nk], [ω̄k
j] j∈[Rk]]

(Sample parameter) fk |N, N̄k, ωk ∼ N( fk; m̃k, Σ̃k).

These steps are summarised in Algorithm 4. We note that in this algorithm, one does not need to perform a numerical
integration, however, sampling the latent Poisson process is computationally intensive. In our numerical experiments,
we use the Python package polyagamma3 to sample the Polya-Gamma variables and a thinning algorithm to sample
the inhomogeneous Poisson process.

Algorithm 4 Gibbs sampler in the sigmoid Hawkes model with data augmentation

Input: N, niter, µ,Σ.
Output: Samples S = ( fi)i∈[niter] from the posterior ΠA( f |N).

Precompute (Hk(T k
i ))i, k ∈ [K].

Initialise f ∼ N( f , µ,Σ) and S = [].
for t ← 1 to niter do

for k ← 1 to K do
for i← 1 to Nk do

Sample ωk
i ∼ pPG(ωk

i ; 1, λ̃k
T k

i
( f ))

end for
Sample (T̄ k

j ) j=1,Rk a Poisson temporal point process on [0,T ] with intensity θkσ(−λ̃k
t ( f ))

for j← 1 to Rk do
Sample ω̄k

j ∼ pPG(ω; 1, λ̃k
T̄ k

j
( f ))

end for
Update Σ̃k = [β2HkDk(Hk)T + Σ−1]−1

Update µ̃k = Σ̃k

(
Hk

[
βvk + β2ηuk

]
+ Σ−1µ

)

Sample fk ∼ N( fk; µ̃k, Σ̃k)
end for
Add f = ( fk)k to S .

end for

D Additional details and results of the simulation study

D.1 Hyperparameters

We approximate integrals using the Gaussian quadrature method with nGQ = 2D+1T/A points in the univariate settings
(Simulation 1,2 and 3). In Simulation 4, we set nGQ to reduce the computational time.

D.2 Self-inhibition scenarios of Simulation 4

3https://pypi.org/project/polyagamma/
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Figure 22: Heatmaps of the L1-norms of the true parameter h0, i.e., the entries of the matrix S 0 = (S 0
lk)l,k = (

∥∥∥h0
lk

∥∥∥
1)l,k

(left column) and L1-risk, i.e., (�Q[
∥∥∥h0

lk − hlk

∥∥∥
1])l,k (right column) after the first step of Algorithm 3, in the Inhibition

scenario of Simulation 4. The rows correspond to K = 2, 4, 8, 16, 32.
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Figure 23: Estimated L1-norms after the first step of Algorithm 3, plotted in increasing order, in the Inhibition scenario
of Simulation 4, for the models with K = 2, 4, 8, 16, 32. The threshold in our algorithm η0 = 0.07 is plotted in dotted
red line.
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Figure 24: Mode variational posterior distributions on ν2 (left column) and interaction functions h22 and h32 (for K >
2)(second and third columns) in the Inhibition scenario and multivariate sigmoid models of Simulation 4, computed
with our two-step mean-field variational (2S-MF-VI) algorithm (Algorithm 3). The different rows correspond to
different multivariate settings K = 2, 4, 8, 16, 32.

50



  
Statement of Authorship for joint/multi-authored papers for PGR thesis 

To appear at the end of each thesis chapter submitted as an article/paper 
  
 

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis 
publications. For each publication there should exist a complete statement that is to be filled out and signed by the 
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper 
itself). 
 

  
 
Title of Paper 
 

Scalable variational Bayes methods for Hawkes processes 

 
Publication Status 
 
 
 

  □Published                                  □ Accepted for Publication 

  □Submitted for Publication          x Unpublished and unsubmitted work written 
                         in a manuscript style 

 
Publication Details 
 
 
 

Joint work with Professor Judith Rousseau (University of Oxford) and Professor 
Vincent Rivoirard (Universite Paris-Dauphine).   

Student Confirmation 
 

 
Student Name: 
 

 
Deborah Sulem 

 
Contribution to the 
Paper 
 

I studied the asymptotic behaviour of the variational Bayes methods in the Hawkes 
model, proving concentration results on the variational posterior distribution. I proposed 
an adaptive algorithm with a computationally efficient variant that I implemented for the 
sigmoid model. I also tested and compared to MCMC methods, that I designed from 
the PyMC package.  

 
 
 

 

Signature    Deborah Sulem 
 
 

 
Date 

 
08/11/2022 

 

Supervisor Confirmation 

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the 
publication, and that the description described above is accurate. 
 

 
Supervisor name and title:  Professor Judith Rousseau 
 
 
 
Supervisor comments 
 
 
 
 
 
 
 

Signature  
 
 

 
Date 

 

 
 
This completed form should be included in the thesis, at the end of the relevant chapter. 



4 | Regularized spectral methods for clustering signed net-

works

This chapter corresponds to the following article:

Cucuringu, M., Singh, A. V., Sulem, D., & Tyagi, H. (2021). Regularized spectral methods

for clustering signed networks. Journal of Machine Learning Research, 22(264), 1-79.

175



Journal of Machine Learning Research volume (year) pages Submitted 11/20; Revised 05/21; Published date published

Regularized spectral methods for clustering signed networks

Mihai Cucuringu mihai.cucuringu@stats.ox.ac.uk
Department of Statistics and Mathematical Institute
University of Oxford
The Alan Turing Institute, London, UK

Apoorv Vikram Singh apoorv.singh@nyu.edu
Department of Computer Science and Engineering
New York University
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Abstract

We study the problem of k-way clustering in signed graphs. Considerable attention in
recent years has been devoted to analyzing and modeling signed graphs, where the affin-
ity measure between nodes takes either positive or negative values. Recently, Cucuringu
et al. (2019) proposed a spectral method, namely SPONGE (Signed Positive over Nega-
tive Generalized Eigenproblem), which casts the clustering task as a generalized eigenvalue
problem optimizing a suitably defined objective function. This approach is motivated by
social balance theory, where the clustering task aims to decompose a given network into
disjoint groups, such that individuals within the same group are connected by as many
positive edges as possible, while individuals from different groups are mainly connected
by negative edges. Through extensive numerical experiments, SPONGE was shown to
achieve state-of-the-art empirical performance. On the theoretical front, Cucuringu et al.
(2019) analyzed SPONGE, as well as the popular Signed Laplacian based spectral method
under the setting of a Signed Stochastic Block Model, for k = 2 equal-sized clusters, in the
regime where the graph is moderately dense.

In this work, we build on the results in Cucuringu et al. (2019) on two fronts for the
normalized versions of SPONGE and the Signed Laplacian. Firstly, for both algorithms,
we extend the theoretical analysis in Cucuringu et al. (2019) to the general setting of k ≥ 2
unequal-sized clusters in the moderately dense regime. Secondly, we introduce regularized
versions of both methods to handle sparse graphs – a regime where standard spectral
methods are known to underperform – and provide theoretical guarantees under the same
setting of a Signed Stochastic Block Model. To the best of our knowledge, regularized
spectral methods have so far not been considered in the setting of clustering signed graphs.
We complement our theoretical results with an extensive set of numerical experiments on
synthetic data, and three real world data sets standard in the signed networks literature.
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Keywords: signed clustering, graph Laplacians, stochastic block models, spectral meth-
ods, regularization techniques, sparse graphs.

1. Introduction

Signed graphs. The recent years have seen a significant increase in interest for analysis of
signed graphs, for tasks such as clustering (Chiang et al., 2014; Cucuringu et al., 2019), link
prediction (Leskovec et al., 2010; Kumar et al., 2016) and visualization (Kunegis et al., 2010).
Signed graphs are an increasingly popular family of undirected graphs, for which the edge
weights may take both positive and negative values, thus encoding a measure of similarity
or dissimilarity between the nodes. Signed social graphs have also received considerable
attention to model trust relationships between entities, with positive (respectively, negative)
edges encoding trust (respectively, distrust) relationships.

Clustering is arguably one of the most popular tasks in unsupervised machine learning,
aiming at partitioning the node set such that the average connectivity or similarity between
pairs of nodes within the same cluster is larger than that of pairs of nodes spanning different
clusters. While the problem of clustering undirected unsigned graphs has been thoroughly
studied for the past two decades (and to some extent, also that of clustering directed graphs
in recent years), a lot less research has been undertaken on studying signed graphs.

Spectral clustering and regularization. Spectral clustering methods have become a
fundamental tool with a broad range of applications in areas including network science, ma-
chine learning and data mining (von Luxburg, 2007). The attractivity of spectral clustering
methods stems, on one hand, from its computational scalability by leveraging state-of-the-
art eigensolvers, and on the other hand, from the fact that such algorithms are amenable to
a theoretical analysis under suitably defined stochastic block models that quantify robust-
ness to noise and sparsity of the measurement graph. Furthermore, on the theoretical side,
understanding the spectrum of the adjacency matrix and its Laplacians, is crucial for the
development of efficient algorithms with performance guarantees, and leads to a very math-
ematically rich set of problems. One such example from the latter class is that of Cheeger
inequalities for general graphs, which relate the dominant eigenvalues of the Laplacian to
edge expansion on graphs (Chung, 1996), extended to the setup of directed graphs (Chung,
2005), and more recently, to the graph Connection Laplacian arising in the context of the
group synchronization problem (Bandeira et al., 2013), and higher-order Cheeger inequal-
ities for multiway spectral clustering (Lee et al., 2014). There has been significant recent
advances in theoretically analyzing spectral clustering methods in the context of stochastic
block models; for a detailed survey, we refer the reader to the comprehensive recent survey
of Abbe (2017).

In general, spectral clustering algorithms for unsigned and signed graphs typically have a
common pipeline, where a suitable graph operator is considered (e.g., the graph Laplacian),
its (usually k) extremal eigenvectors are computed, and the resulting point cloud in Rk is
clustered using a variation of the popular k-means algorithm (Rohe et al., 2011). The main
motivation for our current work stems from the lack of statistical guarantees in the above
literature for the signed clustering problem, in the context of sparse graphs and large number
of clusters k ≥ 3. The problem of k-way clustering in signed graphs aims to find a partition
of the node set into k disjoint clusters, such that most edges within clusters are positive,
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while most edges across clusters are negative, thus altogether maximizing the number of
satisfied edges in the graph. Another potential formulation to consider is to minimize the
number of (unsatisfied) edges violating the partitions, i.e, the number of negative edges
within clusters and positive edges across clusters.

A regularization step has been introduced in the recent literature motivated by the ob-
servation that properly regularizing the adjacency matrix A of a graph can significantly
improve performance of spectral algorithms in the sparse regime. It was well known before-
hand that standard spectral clustering often fails to produce meaningful results for sparse
networks that exhibit strong degree heterogeneity (Amini et al., 2013; Jin, 2015). To this

end, Chaudhuri et al. (2012) proposed the regularized graph Laplacian Lτ = D
−1/2
τ AD

−1/2
τ ,

where Dτ = D+ τI, for τ ≥ 0. The spectral algorithm introduced and analyzed in Chaud-
huri et al. (2012) splits the nodes into two random subsets and only relies on the subgraph
induced by only one of the subsets to compute the spectral decomposition. Qin and Rohe
(2013) studied the more traditional formulation of a spectral clustering algorithm that uses
the spectral decomposition on the entire matrix (Ng et al., 2001), and proposed a regular-
ized spectral clustering which they analyze. Subsequently, Joseph and Yu (2016) provided
a theoretical justification for the regularization Aτ = A+ τJ , where J denotes the all ones
matrix, partly explaining the empirical findings of Amini et al. (2013) that the performance
of regularized spectral clustering becomes insensitive for larger values of regularization pa-
rameters, and show that such large values can lead to better results. It is this latter form
of regularization that we would be leveraging in our present work, in the context of clus-
tering signed graphs. Additional references and discussion on the regularization literature
are provided in Section 1.2.

Motivation & Applications. The recent surge of interest in analyzing signed graphs
has been fueled by a very wide range of real-world applications, in the context of clustering,
link prediction, and node rankings. Such social signed networks model trust relationships
between users with positive (trust) and negative (distrust) edges. A number of online social
services such as Epinions and Slashdot that allow users to express their opinions are nat-
urally represented as signed social networks (Leskovec et al., 2010). Banerjee et al. (2012)
considered shopping bipartite networks that encode like and dislike preferences between
users and products. Other domain specific applications include personalized rankings via
signed random walks (Jung et al., 2016), node rankings and centrality measures (Li et al.,
2019), node classification (Tang et al., 2016), community detection (Yang et al., 2007; Chu
et al., 2016), and anomaly detection, as in Kumar et al. (2014) which classifies users of an
online signed social network as malicious or benign. In the very active research area of syn-
thetic data generation, generative models for signed networks inspired by Structural Balance
Theory have been proposed in Derr et al. (2018). Learning low-dimensional representations
of graphs (network embeddings) have received tremendous attention in the recent machine
learning literature, and graph convolutional networks-based methods have also been pro-
posed for the setting of signed graphs, including Derr et al. (2018); Li et al. (2020), which
provide network embeddings to facilitate subsequent downstream tasks, including clustering
and link prediction.

A key motivation for our line of work stems from time series clustering (Aghabozorgi
et al., 2015), an ubiquitous task arising in many applications that consider biological gene
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expression data (Fujita et al., 2012), economic time series that capture macroeconomic vari-
ables (Focardi, 2005), and financial time series corresponding to large baskets of instruments
in the stock market (Ziegler et al., 2010; Pavlidis et al., 2006). Driven by the clustering
task, a popular approach in the literature is to consider similarity measures based on the
Pearson correlation coefficient that captures linear dependence between variables and takes
values in [−1, 1]. By construing the correlation matrix as a weighted network whose (signed)
edge weights capture the pairwise correlations, we cluster the multivariate time series by
clustering the underlying signed network. To increase robustness, tests of statistical sig-
nificance are often applied to individual pairwise correlations, indicating the probability of
observing a correlation at least as large as the measured sample correlation, assuming the
null hypothesis is true. Such a thresholding step on the p-value associated to each individual
sample correlation (Ha et al., 2015), renders the correlation network as a sparse matrix,
which is one of the main motivations of our current work which proposes and analyzes
algorithms for handling such sparse signed networks. We refer the reader to the popular
work of Smith et al. (2011) for a detailed survey and comparison of various methodologies
for turning time series data into networks, where the authors explore the interplay between
fMRI time series and the network generation process. Importantly, they conclude that, in
general, correlation-based approaches can be quite successful at estimating the connectivity
of brain networks from fMRI time series.

Paper outline. This paper is structured as follows. The remainder of this Section 1
establishes the notation used throughout the paper, followed by a brief survey of related
works in the signed clustering literature and graph regularization techniques for general
graphs, along by a brief summary of our main contributions. Section 2 lays out the problem
setup leading to our proposed algorithms in the context of the signed stochastic block model
we subsequently analyze. Section 3 is a high-level summary of our main results across the
two algorithms we consider. Section 4 contains the analysis of the proposed SPONGEsym
algorithm, for both the sparse and dense regimes, for general number of clusters. Similarly,
Section 5 contains the main theoretical results for the symmetric Signed Laplacian, under
both sparsity regimes as well. Section 6 contains detailed numerical experiments on various
synthetic and real world data sets, showcasing the performance of our proposed algorithms,
as we vary the number of clusters, the relative cluster sizes, the sparsity regimes, and the
regularization parameters. Finally, Section 7 is a summary and discussion of our main
findings, with an outlook towards potential future directions. We defer to the Appendix
additional proof details and a summary of the main technical tools used throughout.

1.1 Notation

We denote by G = (V,E) a signed graph with vertex set V , edge set E, and adjacency
matrix A ∈ {0,±1}n×n. We will also refer to the unsigned subgraphs of positive (resp.
negative) edges G+ = (V,E+) (resp. G− = (V,E−)) with adjacency matrices A+ (resp.
A−), such that A = A+−A−. More precisely, A+

ij = max {Aij , 0} and A−ij = max {−Aij , 0},
with E+ ∩ E−= ∅, and E+ ∪ E−= E. We denote by D = D+ + D− the signed degree
matrix, with the unsigned versions given by D+ := A+1 and D− := A−1. For a subset of
nodes C ⊂ V , we denote its complement by C = V \ C.
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For a matrix M ∈ Rm×n, ‖M‖ denotes its spectral norm ‖M‖2, i.e., its largest singular
value, and ‖M‖F denotes its Frobenius norm. When M is a n × n symmetric matrix, we
denote Vk(M) be the n×k matrix whose columns are given by the eigenvectors corresponding
to the k smallest eigenvalues, and letR(Vk(M)) denote the range space of these eigenvectors.
We denote the eigenvalues of M by (λj(M))nj=1, with the ordering

λn(M) ≤ λn−1(M) ≤ · · · ≤ λ1(M).

We also denote Mi∗ to be the i-th row of M . We denote 1 = (1, . . . , 1) (resp. 1k) the all
ones column vector of size n (resp. k) and χ1 = 1√

k
1k. Im denotes the square identity

matrix of size m and is shortened to I when m = n. Jmn is the m × n matrix of all ones.
Finally, for a, b ≥ 0, we write a . b if there exists a universal constant C > 0 such that
a ≤ b. If a . b and b . a, then we write a � b.

1.2 Related literature on signed clustering and graph regularization techniques

Signed clustering. There exists a very rich literature on algorithms developed to solve
the k-way clustering problem, with spectral methods playing a central role in the devel-
opments of the last two decades. Such spectral techniques optimize an objective function
via the eigen-decomposition of a suitably chosen graph operator (typically a graph Lapla-
cian) built directly from the data, in order to obtain a low-dimensional embedding (most
often of dimension k or k − 1). A clustering algorithm such as k-means or k-means++ is
subsequently applied in order to extract the final partition.

Kunegis et al. (2010) introduced the combinatorial Signed Laplacian L = D − A for
the 2-way clustering problem. For heterogeneous degree distributions, normalized exten-

sions are generally preferred, such as the random-walk Signed Laplacian Lrw = I −D−1
A,

and the symmetric Signed Laplacian Lsym = I − D
−1/2

AD
−1/2

. Chiang et al. (2012)
pointed out a weakness in the Signed Laplacian objective for k-way clustering with k > 2,
and proposed instead a Balanced Normalized Cut (BNC) objective based on the opera-

tor LBNC = D
−1/2

(D+ − A)D
−1/2

. Mercado et al. (2016) based their clustering algo-
rithm on a new operator called the Geometric Mean of Laplacians, and later extended
this method in (Mercado et al., 2019) to a family of operators called the Matrix Power
Mean of Laplacians. Previous work (Cucuringu et al., 2019) by a subset of the authors of
the present paper introduced the symmetric SPONGE objective using the matrix opera-
tor T = (L−sym + τ+I)−1/2(L+

sym + τ−I)(L−sym + τ+I)−1/2, using the unsigned normalized

Laplacians L±sym = I − (D±)−1/2A±(D±)−1/2 and regularization parameters τ+, τ− > 0.
This work also provides theoretical guarantees for the SPONGE and Signed Laplacian al-
gorithms, in the setting of a Signed Stochastic Block Model.

Mercado et al. (2016) and Mercado et al. (2019) study the eigenspaces - in expectations
and in probability - of several graph operators in a certain Signed Stochastic Block Model.
However, this generative model differs from the one proposed in Cucuringu et al. (2019)
that we analyze in this work. In the former, the positive and negative adjacency matrices
do not have disjoint support, contrary to the latter. Moreover, their analysis is performed
in the case of equal-size clusters. We will later show in our analysis that their result for the
symmetric Signed Laplacian is not applicable in our setting.
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Hsieh et al. (2012) proposed to perform low-rank matrix completion as a preprocessing
step, before clustering using the top k eigenvectors of the completed matrix. For k = 2,
Cucuringu (2015) showed that signed clustering can be cast as an instance of the group syn-
chronization (Singer, 2011) problem over Z2, potentially with constraints given by available
side information, for which spectral, semidefinite programming relaxations, and message
passing algorithms have been considered. In recent work, Cucuringu et al. (2021) proposed
a formulation for the signed clustering problem that relates to graph-based diffuse interface
models utilizing the Ginzburg-Landau functionals, based on an adaptation of the classic
numerical Merriman-Bence-Osher (MBO) scheme for minimizing such graph-based func-
tionals (Merkurjev et al., 2014). We refer the reader to Gallier (2013) for a recent survey
on clustering signed and unsigned graphs.

In a different line of work, known as correlation clustering, Bansal et al. (2004) considered
the problem of clustering signed complete graphs, proved that it is NP-complete, and pro-
posed two approximation algorithms with theoretical guarantees on their performance. On
a related note, Demaine et al. (2006) studied the same problem but for arbitrary weighted
graphs, and proposed an O(log n) approximation algorithm based on linear programming.
For correlation clustering, in contrast to k-way clustering, the number of clusters is not
given in advance, and there is no normalization with respect to size or volume.

Regularization in the sparse regime. In many applications, real-world networks are
sparse. In this context, regularization methods have increased the performance of traditional
spectral clustering techniques, both for synthetic Stochastic Block Models and real data sets
(Chaudhuri et al., 2012; Amini et al., 2013; Joseph and Yu, 2016; Le et al., 2015).

Chaudhuri et al. (2012) regularize the Laplacian matrix by adding a (typically small)

weight τ to the diagonal entries of the degree matrix Lτ = I − D−1/2
τ AD

−1/2
τ with Dτ =

D + τI. Amini et al. (2013) regularize the graph by adding a weight τ/n to every edge,

leading to the Laplacian L̃τ = I −D−1/2
τ AτD

−1/2
τ with Aτ = A+ τ/n11T and Dτ = Aτ1.

Le et al. (2017) prove that this technique makes the adjacency and Laplacian matrices
concentrate for inhomogeneous Erdős-Rényi graphs. Zhang and Rohe (2018) show that
this technique prevents spectral clustering from overfitting through the analysis of dangling
sets. In (Le et al., 2017), Le et al. propose a graph trimming method in order to reduce the
degree of certain nodes. This is achieved by reducing the entries of the adjacency matrix
that lead to high-degree vertices. Zhou and Amini (2018) add a spectral truncation step
after this regularization method, and prove consistency results in the bipartite Stochastic
Block Model.

Very recently, regularization methods using powers of the adjacency matrix have been
introduced. Abbe et al. (2020) transform the adjacency matrix into the operator Ar =
1 {(I +A)r ≥ 1}, where the indicator function is applied entrywise. With this method,
spectral clustering achieves the fundamental limit for weak recovery in the sparse setting.
Very similarly, Stephan and Massoulié (2019) transform the adjacency matrix into a distance
matrix of outreach l, which links pairs of nodes that are l far apart w.r.t the graph distance.

1.3 Summary of our main contributions

This work extends the results obtained in Cucuringu et al. (2019) by a subset of the authors
of our present paper. This previous work introduced the SPONGE algorithm, a princi-
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pled and scalable spectral method for the signed clustering task that amounts to solving a
generalized eigenvalue problem. Cucuringu et al. (2019) provided a theoretical analysis of
both the newly introduced SPONGE algorithm and the popular Signed Laplacian-based
method (Kunegis et al., 2010), quantifying their robustness against the sampling sparsity
and noise level, under the setting of a Signed Stochastic Block Model (SSBM). These were
the first such theoretical guarantees for the signed clustering problem under a suitably
defined stochastic graph model. However, the analysis in Cucuringu et al. (2019) was re-
stricted to the setting of two equally-sized clusters, which is less realistic in light of most real
world applications. Furthermore, the same previous line of work considered the moderately
dense regime in terms of the edge sampling probability p, in particular, it operated in the
setting where E[Djj ] & lnn, i.e., p & lnn

n . Many real world applications involve large but
very sparse graphs, with p = Θ

(
1
n

)
, which provides motivation for our present work.

We summarize below our main contributions, and start with the remark that the the-
oretical analysis in the present paper pertains to the normalized version of SPONGE
(denoted as SPONGEsym) and the symmetric Signed Laplacian, while Cucuringu et al.
(2019) analyzed only the un-normalized versions of these signed operators. The experi-
ments reported in Cucuringu et al. (2019) also consider such normalized matrix operators,
and show their superior performance over their respective un-normalized versions, further
providing motivational ground for our current work.

(i) Our first main contribution is to analyze the two above-mentioned signed operators,
namely SPONGEsym and the symmetric Signed Laplacian, in the general SSBM
model with k ≥ 2 and unequal-cluster sizes, in the moderately dense regime. In
particular, we evaluate the accuracy of both signed clustering algorithms by bounding
the mis-clustering rate of the entire pipelines, as achieved by the popular k-means
algorithm.

(ii) Our second contribution is to introduce and analyze new regularized versions of both
SPONGEsym and the symmetric Signed Laplacian, under the same general SSBM
model, but in the sparse graph regime E[Djj ] & 1, a setting where standard spectral
methods are known to underperform. To the best of our knowledge, this sparsity
regime has not been previously considered in the literature of signed networks; such
regularized spectral methods have so far not been considered in the setting of clus-
tering signed networks, or more broadly in the signed networks literature, where such
regularization could prove useful for other related downstream tasks. One important
aspect of regularization techniques is the choice of the regularization parameters. We
show that our proposed algorithms can benefit from careful regularization and at-
tain a higher level of accuracy in the sparse regime, provided that the regularization
parameters scale as an adequate power of the average degree in the graph. These
findings are supported by our experiments on real-world datasets.

2. Problem setup

This section details the two algorithms for the signed clustering problem that we will analyze
subsequently, namely, SPONGEsym(Symmetric Signed Positive Over Negative Generalized
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Eigenproblem) and the symmetric Signed Laplacian, along with their respective regularized
versions.

2.1 Clustering via the SPONGEsym algorithm

The symmetric SPONGE method, denoted as SPONGEsym, aims at jointly minimizing
two measures of badness in a signed clustering problem. For an unsigned graph G and
X,Y ⊂ V , we define the cut function CutG(X,Y ) :=

∑
i∈X,j∈Y Aij , and denote the volume

of X by VolG(X) :=
∑

i∈X
∑n

j=1Aij .

For a given cluster set C ⊂ V , CutG(C,C) is the total weight of edges crossing from C to
C and VolG(C) is the sum of (weighted) degrees of nodes in C. With this notation in mind
and motivated by the approach of Cucuringu et al. (2016) in the context of constrained
clustering, the symmetric SPONGE algorithm for signed clustering aims at minimizing the

following two measures of badness given by
CutG+ (C,C)

VolG+ (C) and
(

CutG− (C,C)

VolG− (C)

)−1
=

VolG− (C)

CutG− (C,C)
.

To this end, we consider “merging” the objectives, and aim to solve

min
C⊂V

CutG+ (C,C)

VolG+ (C) + τ−

CutG− (C,C)

VolG− (C) + τ+
,

where τ+ > 0, τ− ≥ 0 denote trade-off parameters. For k-way signed clustering into disjoint
clusters C1, . . . , Ck, we arrive at the combinatorial optimization problem

min
C1,...,Ck

k∑

i=1




CutG+ (Ci,Ci)

VolG+ (Ci)
+ τ−

CutG− (Ci,Ci)

VolG− (Ci)
+ τ+


 . (1)

Let D+, L+ denote respectively the degree matrix and un-normalized Laplacian associ-
ated with G+, and L+

sym = (D+)−1/2L+(D+)−1/2 denote the symmetric Laplacian matrix
for G+ (similarly for L−sym, D

−, L−). For a subset Ci ⊂ V , denote 1Ci to be the indicator
vector for Ci so that (1Ci)j equals 1 if j ∈ Ci, and is 0 otherwise. Now define the normalized
indicator vector xCi ∈ Rn where

xCi =

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1/2
1√

VolG+(Ci)
(D+)1/21Ci .

In light on this, one can verify that

x>CixCi =

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1
1>CiD

+1Ci

VolG+(Ci)
=

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1

,

x>CiL
+
symxCi =

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1
1>CiL

+1Ci

VolG+(Ci)

=

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1
CutG+(Ci, Ci)

VolG+(Ci)
.
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Hence (1) is equivalent to the following discrete optimization problem

min
C1,...,Ck

k∑

i=1

x>Ci(L
+
sym + τ−I)xCi (2)

which is NP-Hard. A common approach to solve this problem is to drop the discreteness
constraints, and allow xCi to take values in Rn. To this end, we introduce a new set of vectors
z1, . . . , zk ∈ Rn such that they are orthonormal with respect to the matrix L−sym + τ+I, i.e.,

z>i (L−sym + τ+I)zi′ = δii′ . This leads to the continuous optimization problem

min
z>i (L−sym+τ+I)zi′=δii′

k∑

i=1

z>i (L+
sym + τ−I)zi. (3)

Note that the above choice of vectors z1, ..., zk is not really a relaxation of (2) since
xC1 , . . . , xCk are not necessarily (L−sym+τ+I)-orthonormal, but (3) can be conveniently for-
mulated as a suitable generalized eigenvalue problem, similar to the approach in Cucuringu
et al. (2016). Indeed, denoting yi = (L−sym + τ+I)1/2zi, and Y = [y1, . . . , yk] ∈ Rn×k, (3)
can be rewritten as

min
Y >Y=I

Tr
(
Y >(L−sym + τ+I)−1/2(L+

sym + τ−I)(L−sym + τ+I)−1/2Y
)
,

the solution to which is well known to be given by the smallest k eigenvectors of

T = (L−sym + τ+I)−1/2(L+
sym + τ−I)(L−sym + τ+I)−1/2,

see for e.g. (Sameh and Tong, 2000, Theorem 2.1). However this is not practically viable
for large scale problems, since computing T itself is already expensive. To circumvent
this issue, one can instead consider the embedding in Rk corresponding to the smallest k
generalized eigenvectors of the symmetric definite pair (L+

sym + τ−I, L−sym + τ+I). There
exist many efficient solvers for solving large scale generalized eigenproblems for symmetric
definite matrix pairs. In our experiments, we use the LOBPCG (Locally Optimal Block
Preconditioned Conjugate Gradient method) solver introduced in Knyazev (2001).

One can verify that (λ, v) is an eigenpair1 of T iff (λ, (L−sym+τ+I)−1/2v) is a generalized
eigenpair of (L+

sym + τ−I, L−sym + τ+I). Indeed, for symmetric matrices A,B with A � 0, it

holds true for w = A−1/2v that

A−1/2BA−1/2v = λv ⇐⇒ Bw = λAw.

Therefore, denoting Vk(T ) ∈ Rn×k to be the matrix consisting of the smallest k eigenvectors
of T , and Gk(T ) ∈ Rn×k to be the matrix of the smallest k generalized eigenvectors of
(L+

sym + τ−I, L−sym + τ+I), it follows that

Gk(T ) = (L−sym + τ+I)−1/2Vk(T ). (4)

Hence upon computing Gk(T ), we will apply a suitable clustering algorithm on the rows
of Gk(T ) such as the popular k-means++ (Arthur and Vassilvitskii, 2007), to arrive at the
final partition.

1With λ denoting its eigenvalue, and v the corresponding eigenvector.

9



Cucuringu, Singh, Sulem, and Tyagi

Remark 1 In Cucuringu et al. (2019), similar arguments as above were shown for the
SPONGE algorithm which led to computing the k smallest generalized eigenvectors of the
matrix pair (L+ + τ−D−, L− + τ+D+). SPONGEsym was proposed in Cucuringu et al.
(2019) but no theoretical results were provided.

Clustering in the sparse regime. We also provide a version of SPONGEsym for the
case where G is sparse, i.e., the graph has very few edges and is typically disconnected. In
this setting, we consider a regularized version of SPONGEsym wherein a weight is added
to each edge (including self-loops) of the positive and negative subgraphs, respectively.

Formally, for regularization parameters γ+, γ− ≥ 0, let us define A±
γ± := A±+ γ±

n 11
> to be

the regularized adjacency matrices for the unsigned graphs G+, G− respectively. Denoting
D±
γ± to be the degree matrix of A±

γ± , the normalized Laplacians corresponding to A±
γ± are

given by
L±
sym,γ± = I − (D±

γ±)−1/2A±
γ±(D±

γ±)−1/2.

Given the above modifications, let Vk(Tγ+,γ−) ∈ Rn×k denote the matrix consisting of the
smallest k eigenvectors of

Tγ+,γ− = (L−
sym,γ− + τ+I)−1/2(L+

sym,γ+
+ τ−I)(L−

sym,γ− + τ+I)−1/2 .

For the same reasons discussed earlier, we will consider the embedding given by the smallest
k generalized eigenvectors of the matrix pencil (L+

sym,γ+
+ τ−I, L−

sym,γ− + τ+I), namely

Gk(Tγ+,γ−) where

Gk(Tγ+,γ−) = (L−
sym,γ− + τ+I)−1/2Vk(Tγ+,γ−),

as in (44). The rows of Gk(Tγ+,γ−) can then be clustered using an appropriate clustering
procedure, such as k-means++.

Remark 2 Regularized spectral clustering for unsigned graphs involves adding γ
n11

> to the
adjacency matrix, followed by clustering the embedding given by the smallest k eigenvectors
of the normalized Laplacian (of the regularized adjacency), see for e.g. Amini et al. (2013);
Le et al. (2017). To the best of our knowledge, regularized spectral clustering methods have
not been explored thus far in the context of sparse signed graphs.

2.2 Clustering via the symmetric Signed Laplacian

The rationale behind the use of the (un-normalized) Signed Laplacian L for clustering is
justified by Kunegis et al. (2010) using the signed ratio cut function. For C ⊂ V ,

sRCut(C,C) =
(
2CutG+(C,C) + CutG−(C,C) + CutG−(C,C)

)( 1

|C| +
1

|C|

)
. (5)

For 2-way clustering, minimizing this objective corresponds to minimizing the number of
positive edges between the two classes and the number of negative edges inside each class.
Moreover, (5) is equivalent to the following optimization problem

min
u∈U

u>Lu,
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where U ∈ Rn is the set of vectors of the form ∀i ∈ [n], ui = ±1
2

(√
|C|
|C| +

√
|C|
|C|

)
.

However, Gallier (2016) noted that this equivalence does not generalize to k > 2, and
defined a new notion of signed cut, called the signed normalized cut function. For a partition
C1, . . . , Ck with membership matrix X ∈ {0, 1}n×k,

sNCut(C1, . . . , Ck) =

k∑

i=1

CutG(Ci, Ci)

VolG(Ci)
+ 2

CutG−(Ci, Ci)

VolG(Ci)
=

k∑

i=1

(Xi)>LXi

(Xi)>DXi
,

with Xi the i-th column of X. Compared to (5), this objective also penalizes the number of
negative edges across two subsets, which may not be a desirable feature for signed clustering.
Minimizing this function with a relaxation of the constraint that Xi ∈ {0, 1}n leads to the
following problem

min
Y >Y=I

Tr
(
Y >LsymY

)
.

The minimum of this problem is obtained by stacking column-wise the k eigenvectors of
Lsym corresponding to the smallest eigenvalues, i.e. Vk(Lsym). Therefore, one can apply
a clustering algorithm to the rows of the matrix Vk(Lsym) to find a partition of the set of
nodes V .

In fact, we will consider using only the k− 1 smallest eigenvectors of Lsym and applying
the k-means++ algorithm on the rows of Vk−1(Lsym). This will be justified in our analysis
via a stochastic generative model, namely the Signed Stochastic Block Model (SSBM),
introduced in the next subsection. Under this model assumption, we will see later that
the embedding given by the k − 1 smallest eigenvectors of the symmetric Signed Laplacian
of the expected graph has k distinct rows (with two rows being equal if and only if the
corresponding nodes belong to the same cluster).

Clustering in the sparse regime. When G is sparse, we propose a spectral clustering
method based on a regularization of the signed graph, leading to a regularized Signed
Laplacian. To this end, for γ+, γ− ≥ 0, recall the regularized adjacency matrices A±

γ± , with

degree matrices D±
γ± , for the unsigned graphs G+, G− respectively. In light of this, the

regularized signed adjacency and degree matrices are defined as follows

Aγ := A+
γ+
−A−

γ− = A+
γ+ − γ−

n
11>,

Dγ := D+
γ+

+D−
γ− = D+ + γ+I +D− + γ−I = D + (γ+ + γ−)I = D + γI,

with γ := γ+ + γ−. Our regularized Signed Laplacian is the symmetric Signed Laplacian
on this regularized signed graph, i.e.

Lγ := I − (Dγ)−1/2Aγ(Dγ)−1/2. (6)

Similarly to the symmetric Signed Laplacian, our clustering algorithm in the sparse case
finds the k − 1 smallest eigenvectors of Lγ and applies the k-means algorithm on the rows
of Vk−1(Lγ).

11
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Remark 3 For the choice γ+ = γ−, the regularized Laplacian becomes

Lγ := I − (Dγ)−1/2A(Dγ)−1/2,

with Dγ = D+(γ++γ−)I. This regularization scheme is very similar to the degree-corrected
normalized Laplacian defined in Chaudhuri et al. (2012).

2.3 Signed Stochastic Block Model (SSBM)

Our work theoretically analyzes the clustering performance of SPONGEsym and the sym-
metric Signed Laplacian algorithms under a signed random graph model, also considered
previously in (Cucuringu et al., 2019; Cucuringu et al., 2021). We recall here its definition
and parameters.

• n: the number of nodes in network;

• k: the number of planted communities;

• p: the probability of an edge to be present;

• η: the probability of flipping the sign of an edge;

• C1, . . . , Ck: an arbitrary partition of the vertices with sizes n1, . . . , nk.

We first partition the vertices (arbitrarily) into clusters C1, . . . , Ck where |Ci| = ni. Next,
we generate a noiseless measurement graph from the Erdős-Rényi model G(n, p), wherein
each edge takes value +1 if both its endpoints are contained in the same cluster, and −1
otherwise. To model noise, we flip the sign of each edge independently with probability
η ∈ [0, 1/2). This results in the realization of a signed graph instance G from the SSBM
ensemble.

Let A ∈ {0,±1}n×n denote the adjacency matrix of G, and note that (Ajj′)j≤j′ are
independent random variables. Recall that A = A+ − A−, where A+, A− ∈ {0, 1}n×n are
the adjacency matrices of the unsigned graphs G+, G− respectively. Then, (A+

jj′)j≤j′ are

independent, and similarly (A−jj′)j≤j′ are also independent. But for given j, j′ ∈ [n] with

j 6= j′, A+
jj′ and A−jj′ are dependent. Let d±i denote the degree of a node in cluster i, for

i ∈ [k] in the graph E[A±]. Moreover, under this model, the expected signed degree matrix
is the scaled identity matrix ED = dI, with d = p(n− 1).

Remark 4 Contrary to stochastic block models for unsigned graphs, we do not require (for
the purpose of detecting clusters) that the intra-cluster edge probabilities to be different
from those of inter-cluster edges, since the sign of the edges already achieves this purpose
implicitly. In fact, it is the noise parameter η that is crucial for identifying the underlying
latent cluster structure.

To formulate our theoretical results we will also need the following notations. Let
si = ni/n denote the fraction of nodes in cluster i, with l (resp. s) denoting the fraction for
the largest (resp. smallest) cluster. Hence, the size of the largest (resp. smallest) cluster
is nl (resp. ns). Following the notation in Lei and Rinaldo (2015), we will denote Mn,k

12
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to be the class of “membership” matrices of size n × k, and denote Θ̂ ∈ Mn,k to be the
ground-truth membership matrix containing k distinct indicator row-vectors (one for each
cluster), i.e., for i ∈ [k] and j ∈ [n],

Θ̂ji =

{
1 if node j ∈ cluster Ci,

0 otherwise.

We also define the normalized membership matrix Θ corresponding to Θ̂, where for i ∈ [k]
and j ∈ [n],

Θji =

{
1/
√
ni if node j ∈ cluster Ci,

0 otherwise.

3. Summary of main results

We now summarize our theoretical results for SPONGEsym and the symmetric Signed
Laplacian methods, when the graph is generated from the SSBM ensemble.

3.1 Symmetric SPONGE

We begin by describing conditions under which the rows of the matrix Gk(T ) approximately
preserve the ground truth clustering structure. Before explaining our results, let us denote
the matrix T to be the analogue of T for the expected graph, i.e.,

T = (L−sym + τ+I)−1/2(L+
sym + τ−I)(L−sym + τ+I)−1/2 ,

where L±sym = I − (E[D±])−1/2 E[A±](E[D±])−1/2. We first show that for suitable values
of τ+ > 0, τ− ≥ 0 (with n large enough), the smallest k eigenvectors of T , denoted by
Vk(T ), are given by Vk(T ) = ΘR, for some k × k rotation matrix R. Hence, the rows of
Vk(T ) have the same clustering structure as that of Θ. Denoting Gk(T ) ∈ Rn×k to be the

matrix consisting of the k smallest generalized eigenvectors of (L+
sym + τ−I, L−sym + τ+I),

and recalling (4), we can relate Gk(T ) and Vk(T ) via

Gk(T ) = (L−sym + τ+I)−1/2Vk(T ). (7)

It turns out that when Vk(T ) = ΘR, and in light of the expression for L−sym + τ+I from
(24), we arrive at Gk(T ) = Θ(C−)−1/2R, where C− � 0 is as in (18). Since (C−)−1/2R is
invertible, it follows that Gk(T ) has k distinct rows, with the rows that belong to the same
cluster being identical. The remaining arguments revolve around deriving concentration
bounds on

∥∥T − T
∥∥, which imply (for p large enough) that the distance between the column

spans of Vk(T ) and Vk(T ) is small, i.e., there exists an orthonormal matrix O such that∥∥Vk(T )− Vk(T )O
∥∥ is small. Finally, the expressions in (4) and (7) altogether imply that∥∥Gk(T )−Gk(T )O
∥∥ is small, which is an indication that the rows of Gk(T ) approximately

preserve the clustering structure encoded in Θ.

The above discussion is summarized in the following theorem, which is our first main
result for SPONGEsym in the moderately dense regime.

13



Cucuringu, Singh, Sulem, and Tyagi

Theorem 5 (Restating Theorem 29) (Eigenspace alignment of SPONGEsym in

the dense case) Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, suppose that τ+ > 0, τ− ≥ 0 are

chosen to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}

where β, η satisfy one of the following conditions

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R, where R is a rotation matrix, and C− � 0
is as defined in (18). Moreover, for any ε, δ ∈ (0, 1), there exists a constant c̃ε > 0 such
that the following is true. If p satisfies

p ≥ max

{
c̃εC2(s, η, l),

256C4
1 (τ+, τ−)(2 + τ+)4

δ4(1 + τ−)4(1− β)4
C2(s, η, l),

81

(1− l)δ4

}
ln(4n/ε)

n

with C1(·), C2(·) as in (45), then with probability at least 1− 2ε, there exists an orthogonal
matrix O ∈ Rk×k such that

∥∥Vk(T )− Vk(T )O
∥∥ ≤ δ, and

∥∥Gk(T )−Gk(T )O
∥∥ ≤ δ√

τ+
+

δ

(τ+)2
.

Let us now interpret the scaling of the terms n, p, τ+ and τ− in Theorem 5, and provide
some intuition.

1. In general, when no assumption is made on the noise level η, we have β = 4η
s(1−2η)+4η

and the requirement on n is n & max
{

1
s(1−2η) ,

η
1−l

}
. Then a sufficient set of conditions

on τ+ > 0, τ− ≥ 0 are

τ+ & 1 +
η

s(1− 2η)
, τ− . η

s(1− 2η) + 2η
. (8)

Moreover, we see from (45) that C1(τ+, τ−) . 1/τ+, and thus (2+τ+)C1(τ+,τ−)
1+τ− . 1.

Hence, a sufficient condition on p is

p & 1

δ4

(
1 +

η

s(1− 2η)

)4

C2(s, η, l)
lnn

n
.

2. In the “low-noise” regime where η ≤ s
2s+4 , the condition on τ− in (8) becomes strict,

especially as η → 0. In this regime, the second condition in Theorem 5 allows for a
wider range of values for τ−; in particular, the following set of conditions suffice

τ+ & 1, τ− . s(1− 2η)

s(1− 2η) + 2η
.

Moreover, we then obtain that the condition p & 1
δ4
C2(s, η, l) lnn

n is sufficient.
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3. When τ+ →∞, then
∥∥Gk(T )−Gk(T )O

∥∥→ 0, which might lead one to believe that
the clustering performance improves accordingly. This is not the case however, since
when τ+ is large, then Gk(T ) ≈ 1√

τ+
Vk(T ) and Gk(T ) ≈ 1√

τ+
Vk(T ), which means that

clustering the rows of Gk(T ) (resp. Gk(T )) is roughly equivalent to clustering the rows
of Vk(T ) (resp. Vk(T )). Moreover, note that for large τ+, we have T ≈ 1

τ+
(L+

sym+τ−I)

and T ≈ 1
τ+

(L+
sym+τ−I) and thus the negative subgraph has no effect on the clustering

performance.

SPONGEsym in the sparse regime. Notice that the above theorem required the spar-
sity parameter p = Ω(lnn/n), when n is large enough. This condition on p is essentially

required to show concentration bounds on
∥∥∥L±sym − L±sym

∥∥∥ in Lemma 27, which in turn im-

plies a concentration bound on
∥∥T − T

∥∥ (see Lemma 28). However, in the sparse regime
p is of the order o(lnn)/n, and thus Lemma 27 does not apply in this setting. In fact,

it is not difficult to see that the matrices L±sym will not concentrate2 around L±sym in the
sparse regime. On the other hand, by relying on a recent result in (Le et al., 2017, Theorem
4.1) on the concentration of the normalized Laplacian of regularized adjacency matrices of
inhomogeneous Erdős-Rényi graphs in the sparse regime (see Theorem 31), we show con-

centration bounds on
∥∥∥L+

sym,γ+
− L+

sym

∥∥∥ and
∥∥∥L−sym,γ− − L

−
sym

∥∥∥, which hold when p & 1/n

and γ+, γ− � (np)6/7 (see Lemma 32). As before, these concentration bounds can then be
shown to imply a concentration bound on

∥∥Tγ+,γ− − T
∥∥ (see Lemma 33). Other than these

technical differences, the remainder of the arguments follow the same structure as in the
proof of Theorem 5, thus leading to the following result in the sparse regime.

Theorem 6 (Restating Theorem 34 ) Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−η)(1−l)

}
, sup-

pose τ+ > 0, τ− ≥ 0 are chosen to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}

where β, η satisfy one of the following conditions

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R, where R is a rotation matrix, and C− � 0
is as defined in (18). Moreover, there exists a constant C > 0 such that for r ≥ 1 and
δ ∈ (0, 1), if p satisfies

p ≥ max

{
1,

(
4C1(τ+, τ−)(2 + τ+)

3(τ+)2(1− β)(1 + τ−)

)28
}
C14

4 (r, s, η, l)

δ28(1− η)n
,

and γ+, γ− = [np(1− η)]6/7, then with probability at least 1− 2e−r, there exists a rotation
O ∈ Rk×k so that
∥∥Vk(Tγ+,γ−)− Vk(T )O

∥∥ ≤ δ, and
∥∥Gk(Tγ+,γ−)−Gk(T )O

∥∥ ≤ δ√
τ+

+
δ

(τ+)2
.

2See for e.g., Le et al. (2017).
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Here, C4(r, s, η, l) := 25/2Cr2 + 3
√

2C2(s, η, l), with C2(s, η, l) as defined in (45).

The following remarks are in order.

1. It is clear that γ+, γ− can neither be too small (since this would imply lack of concen-
tration), nor too large (since this would destroy the latent geometries of G+, G−). The

choice γ+, γ− � (np)6/7 provides a trade-off, and leads to the bounds
∥∥∥L+

sym,γ+
− L+

sym

∥∥∥,∥∥∥L−sym,γ− − L
−
sym

∥∥∥ = O((np)−1/14) when p & 1/n (see Lemma 32).

2. In general, for η ∈ (0, 1/2), it suffices that τ+, τ− satisfy (8) and n & max
{

1
s(1−2η) ,

η
1−l

}
.

As discussed earlier, (2+τ+)C1(τ+,τ−)
1+τ− . 1, and hence it suffices that p & C14

4 (r,s,η,l)
δ28n

.

Mis-clustering error bounds. Thus far, our analysis has shown that under suitable
conditions on n, p, τ+ and τ−, the matrix Gk(T ) (or Gk(Tγ+,γ−) in the sparse regime)
is close to Gk(T )O for some rotation O, with the rows of Gk(T ) preserving the ground
truth clustering. This suggests that by applying the k-means clustering algorithm on the
rows of Gk(T ) (or Gk(Tγ+,γ−)) one should be able to approximately recover the underlying
communities. However, the k-means problem for clustering points in Rd is known to be
NP-Hard in general, even for k = 2 or d = 2 (Aloise et al., 2009; Dasgupta, 2008; Mahajan
et al., 2012). On the other hand, there exist efficient (1 + ξ)-approximation algorithms (for
ξ > 0), such as, for e.g., the algorithm of Kumar et al. (2004) which has a running time of

O(2(k/ξ)O(1)
nd).

Using standard tools (Lei and Rinaldo, 2015, Lemma 5.1), we can bound the mis-
clustering error when a (1 + ξ)-approximate k-means algorithm is applied on the rows of
Gk(T ) (or Gk(Tγ+,γ−)), provided the estimation error bound δ is small enough. In the
following theorem, the sets Si, i = 1, . . . , k contain those vertices in Ci for which we cannot
guarantee correct clustering.

Theorem 7 (Re-Stating Theorem 36) Under the notation and assumptions of Theo-
rem 5, let (Θ̃, X̃) ∈Mn×k×Rk×k be a (1 + ξ)-approximate solution to the k-means problem
minΘ∈Mn×k,X∈Rk×k ‖ΘX −Gk(T )‖2F . Denoting

Si =



j ∈ Ci :

∥∥∥(Θ̃X̃)j∗ − (Θ(C−)−1/2RO)j∗
∥∥∥ ≥ 1

2
√
ni(τ+ + 2

1−l )





it holds with probability at least 1− 2ε that

k∑

i=1

|Si|
ni
≤ δ2(64 + 32ξ)k

(
τ+ +

2

1− l

)(
(τ+)3 + 1

(τ+)4

)
. (9)

In particular, if δ satisfies

δ <
(τ+)2

√
(64 + 32ξ)k(τ+ + 2

1−l )((τ
+)3 + 1)
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then there exists a k×k permutation matrix π such that Θ̃G = Θ̂Gπ, where G = ∪ki=1(Ci\Si).
In the sparse regime, the above statement holds under the notation and assumptions of

Theorem 6 with Gk(T ) replaced with Gk(Tγ+,γ−), and with probability at least 1− 2e−r.

We remark that when τ+ → ∞, the bound on δ becomes independent of τ+ and is of the
form δ . 1√

k
. This is also true for the mis-clustering bound in (9), which is of the form

∑k
i=1

|Si|
ni

. δ2k.

3.2 Symmetric Signed Laplacian

We now describe our results for the symmetric Signed Laplacian. We recall that E[A] =
E[A+]− E[A−] and E[D] denote the adjacency and degree matrices of the expected graph,
under the SSBM ensemble. We define

Lsym = In − (E[D])−1/2E[A](E[D])−1/2, (10)

to be the normalized Signed Laplacian of the expected graph. Moreover, ρ = s
l ≤ 1 denotes

the aspect ratio, measuring the discrepancy between the smallest and largest cluster sizes
in the SSBM.

We will first show that for ρ large enough, the smallest k − 1 eigenvectors of Lsym,
denoted by Vk−1(Lsym), are given by Vk−1(Lsym) = ΘRk−1, with Rk−1 ∈ Rk×(k−1) a matrix
whose columns are the k−1 smallest eigenvectors of a k×k matrix C defined in Lemma 37.
We will then prove that the rows of Vk−1(Lsym) impart the same clustering structure as
that of Θ. The remaining arguments revolve around deriving concentration bounds on∥∥Lsym − Lsym

∥∥, which imply, for n, p and ρ large enough, that the distance between the
column spans of Vk−1(Lsym) and Vk−1(Lsym) is small, i.e. there exists a unitary matrix
O such that

∥∥Vk−1(Lsym)− Vk−1(Lsym)O
∥∥ is small. Altogether, this allows us to conclude

that the rows of Vk−1(Lsym) approximately encode the clustering structure of Θ. The above
discussion is summarized in the following theorem, which is our first main result for the
symmetric Signed Laplacian, in the moderately dense regime.

Theorem 8 (Eigenspace alignment in the dense case) Assuming η ∈ [0, 1/2), k ≥
2, n ≥ 10, suppose the aspect ratio satisfies

√
ρ > 1− 1

4k(2 +
√
k)
, (11)

and suppose that, for δ ∈ (0, 1
2), it holds true that

p > C(k, η, δ)
lnn

n
with C(k, η, δ) =

(
2Ck

δ(1− 2η)

)2

and C < 43, (12)

Then there exists a universal constant c > 0, such that with probability at least 1 − 2
n −

n exp (−npc ), there exists an orthogonal matrix O ∈ R(k−1)×(k−1) such that

‖Vk−1(Lsym)−ΘRk−1O‖ ≤ 2δ,

where Rk−1 ∈ Rk×(k−1) is a matrix whose columns are the (k − 1) smallest eigenvectors of
the matrix C defined in Lemma 37.
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Remark 9 (Related work) As previously explained, for the special case where k = 2 and
with equal-size clusters, a similar result was proved in (Cucuringu et al., 2019, Theorem
3). Under a different SSBM model, the Signed Laplacian clustering algorithm was analyzed
by Mercado et al. (2019) for general k. Although their generative model is more general
than our SSBM, their results on the symmetric Signed Laplacian do not apply here. More
precisely, one assumption of Theorem 3 of Mercado et al. (2019) translates into our model
as p(k − 2)(1− 2η) < 0, which does not hold for η < 1

2 and k ≥ 2.

Remark 10 (Assumptions) The condition on the aspect ratio (11) is essential to apply
a perturbation technique, where the reference is the setting with equal-size clusters, i.e.
ni = n

k , ∀i ∈ [k] (see Lemma 39). In the sparsity condition (12), we note that the constant
C(k, η, δ) scales quadratically with the number of classes k and as δ−2 with δ > 0 the error
on the eigenspace. However, we conjecture that this assumption is only an artefact of the
proof technique, and that the result could hold for more general graphs with very unbalanced
cluster sizes.

Regularized Signed Laplacian. We now consider the sparse regime p = o(lnn)/n and
show that we can recover the ground-truth clustering structure up to some small error using
the regularized Signed Laplacian Lγ , provided that n, p and ρ are large enough, and that
the regularization parameters γ+, γ− are well-chosen. We denote Lγ to be the equivalent
of the regularized Laplacian for the expected graph in our SSBM, i.e.

Lγ = I − (E[Dγ ])−1/2E[Aγ ](E[Dγ ])−1/2,

with E[Aγ ], resp. E[Dγ ], denoting the adjacency matrix, resp. the degree matrix, of the
expected regularized graph. The next theorem is an intermediate result, which provides a
high probability bound on ‖Lγ − Lγ‖ and ‖Lγ − Lsym‖.

Theorem 11 (Error bound for the regularized Signed Laplacian) Assuming η ∈ [0, 1/2),
k ≥ 2, and regularization parameters γ+, γ− ≥ 0, γ := γ+ + γ−, it holds true that for any
r ≥ 1, with probability at least 1− 7e−2r, we have

‖Lγ − Lγ‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r√
γ

+
8√
d
, (13)

with C > 1 an absolute constant. Moreover, it also holds true that

‖Lγ − Lsym‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r√
γ

+
8√
d

+
γ

d+ γ
. (14)

In particular, for the choice γ = d
7/8

, if p ≥ 2/n, we obtain

‖Lγ − Lsym‖ ≤
(
128Cr2 + 1

)
(d)−

1
8 .

Remark 12 The above theorem shows the concentration of our regularized Laplacian Lγ
towards the regularized Laplacian (13) and the Signed Laplacian (14) of the expected graph.
More precisely, if for some well-chosen parameters γ+, γ− ≥ 0, these upper bounds are
small, e.g ‖Lγ−Lsym‖ << 1, then we have ‖Lγ−Lsym‖ << ‖Lsym‖ since ‖Lsym‖ = 2 (see
Appendix E).
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Using this concentration bound, we can show that the eigenspaces Vk−1(Lγ) and Vk−1(Lsym)
are “close”, provided that p = Ω(1/n), ρ is close enough to 1, and γ is well-chosen. This is
stated in the next theorem.

Theorem 13 (Eigenspace alignment in the sparse case) Assuming η ∈ [0, 1/2), k ≥
2, and n ≥ 10, suppose that (11) holds true, and for δ ∈ (0, 1

2) and r ≥ 1, the sparsity p
satisfies

p >

(
2kC4

δ(1− 2η)

)8 2

n
with C4 = 128Cr2 + 1 (15)

and C > 1 the constant defined in (13). If the regularization parameters γ+, γ− ≥ 0 are

chosen so that γ = d
7/8

, then with probability at least 1− 7e−2r − 2
n − ne−np/c, there exists

an orthogonal matrix O ∈ R(k−1)×(k−1) so that

‖Vk−1(Lγ)−ΘRk−1O‖ ≤ 2δ.

Remark 14 In the sparse setting, the constant before the factor 1
n in the sparsity condition

(15) scales as
(
k
δ

)8
. However for k fixed, it would hold if p = ω(1/n) as n→∞.

Remark 15 In practice, one can choose the regularization parameters by first estimating
the sparsity parameter p, e.g. from the fraction of connected pairs of nodes

p =
2

n(n− 1)

∑

i<j

|Aij |,

then choosing γ ≥ 0 so that γ = (p̂(n− 1))7/8. However, from this analysis, it is not clear
how one would suitably choose γ+ and γ−.

Mis-clustering error bounds. Since Vk−1(Lsym) and Vk−1(Lγ) are “close” to Vk−1(Lsym),
we recover the ground-truth clustering structure up to some error, which we quantify in the
following theorem, where we bound the mis-clustering rate when using a (1+ξ)-approximate
k-means error on the rows of Vk−1(Lsym) (resp. Vk−1(Lγ)).

Theorem 16 (Number of mis-clustered nodes) Let ξ > 0 and δ ∈
(

0,
√

1
12(16+8ξ)(k−1)

)
,

and suppose that ρ and p satisfy the assumptions of Theorem 8 (resp. Theorem 13 and
r ≥ 1). Let (Θ̃, R̃k−1) be the (1 + ξ)-approximation of the k-means problem

min
Θ∈Mn,k,R∈Rk×(k−1)

∥∥ΘR− Vk−1(Lsym)
∥∥
F

(resp. min
Θ∈Mn,k,R∈Rk×(k−1)

‖ΘR− Vk−1(Lγ)‖F ).

Let Si =

{
j ∈ Ci;

∥∥∥(Θ̃R̃k−1)j∗ − (ΘRk−1O)j∗
∥∥∥

2
≥ 2

3ni

}
and Ṽ = ∪ki=1Ci\Si. Then with

probability at least 1 − 2
n − n exp(−npc ) (resp. 1 − 7e−2r − 2

n − ne−np/c), there exists a

permutation π ∈ Rk×k such that Θ̃
Ṽ ∗ = Θ̂

Ṽ ∗π and

k∑

i=1

|Si|
ni
≤ 96(2 + ξ)(k − 1)δ2.

In particular, the set of mis-clustered nodes is a subset of ∪ki=1Si.
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4. Analysis of SPONGE Symmetric

This section contains the proof of our main results for SPONGEsym, divided over the
following subsections. Section 4.1 describes the eigen-decomposition of the matrix T , thus
revealing that a subset of its eigenvectors contain relevant information about Θ. Section 4.2
provides conditions on τ+, τ− which ensure that Vk(Θ) = ΘR (for some rotation matrix R),
along with a lower bound on the eigengap λn−k+1(T ) − λn−k(T ). Section 4.3 then derives
concentration bounds on

∥∥T − T
∥∥ using standard tools from the random matrix literature.

These results are combined in Section 4.4 to derive error bounds for estimating Vk(T ) and
Gk(T ) up to a rotation (using the Davis-Kahan theorem). The results summarized thus far
pertain to the “dense” regime, where we require p = Ω(lnn/n) when n is large. Section
4.5 extends these results to the sparse regime where p = o(lnn)/n, for the regularized
version of SPONGEsym. Finally, we conclude in Section 4.6 by translating our results
from Sections 4.4 and 4.5 to obtain mis-clustering error bounds for a (1 + ξ)-approximate
k-means algorithm, by leveraging previous tools from the literature (Lei and Rinaldo, 2015).

4.1 Eigen-decomposition of T

The following lemma shows that a subset of the eigenvectors of T indeed contain information
about Θ, i.e., the ground-truth clustering.

Lemma 17 (Spectrum of T ) Let

d+
i = p (n(si(1− 2η) + η)− (1− η)) ,

d−i = p (n(−si(1− 2η) + (1− η))− η) ,

denote the expected degree of a node in cluster Ci, i ∈ [k]. Let u+ =

(√
n1

d+1
, . . . ,

√
nk
d+k

)>
,

u− =

(√
n1

d−1
, . . . ,

√
nk
d−k

)>
, α+

i = 1 + τ− + p(1 − η)/d+
i , and α−i = 1 + τ+ + pη/d−i , for

i ∈ [k], for some τ+ > 0, τ− ≥ 0. Let the columns of V ⊥ contain eigenvectors of E[D+]
which are orthogonal to the column span of Θ. It holds true that

T =
[
ΘR V ⊥

]




Λ
α+
1

α−1
In1−1

. . .
α+
k

α−k
Ink−1




[
(ΘR)>

V ⊥
>

]
, (16)

where R is a k × k rotation matrix, and Λ is a diagonal matrix, such that
(C−)−1/2 C+ (C−)−1/2 = RΛRT , where

C+ = −pηu+(u+)> + diag

(
1 + τ− +

p

d+
i

(1− η − ni(1− 2η))

)
, (17)

C− = −p(1− η)u−(u−)> + diag

(
1 + τ+ +

p

d−i
(η + ni(1− 2η))

)
. (18)
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Proof We first consider the spectrum of D+, D−, A+, A−, followed by that of (L+
sym+τ−I)

and (L−sym + τ+I), which altogether will reveal the spectral decomposition of T .
• Analysis in expectation of the spectra of D+, D−, A+, A−. Without loss of gener-

ality, we may assume that cluster C1 contains the first n1 vertices, cluster C2 the next n2 ver-
tices and similarly for the remaining clusters. Note that E[D±] = diag

(
d±1 In1 , . . . , d

±
k Ink

)
,

where for i ∈ [k], straightforward calculations reveal that d+
i = p (n(si(1− 2η) + η)− (1− η)),

and d−i = p (n(−si(1− 2η) + (1− η))− η). One can rewrite the matrices (E[D±])−1 in the
more convenient form

(E[D±])−1 = [Θ V ⊥] diag

(
1

d±1
, ...,

1

d±k
,

1

d±1
In1−1, ...,

1

d±k
Ink−1

)
[Θ V ⊥]> (19)

since the column vectors of Θ are eigenvectors of (E[D±])−1, and the eigenvalues of (E[D±])−1

are apparent because E[D±] is a diagonal matrix. Note that (19) is true in general, and
does not make any assumption on the placement of the vertices into their respective Ci
cluster. Furthermore, one can verify that E[A+] admits the eigen-decomposition

E[A+] = Θn×k




n1p(1− η)
√
n1n2pη . . .

√
n1nkpη√

n2n1pη n2p(1− η) . . .
√
n2nkpη

...
...

. . .
...√

nkn1pη
√
nkn2pη . . . nkp(1− η)



k×k

Θ>k×n − p(1− η)In×n (20)

and similarly, E[A−] can be decomposed as

E[A−] = Θn×k




n1pη
√
n1n2p(1− η) . . .

√
n1nkp(1− η)√

n2n1p(1− η) n2pη . . .
√
n2nkp(1− η)

...
...

. . .
...√

nkn1p(1− η)
√
nkn2p(1− η) . . . nkpη



k×k

Θ>k×n − pηIn×n .

• Analysis of the spectra of (L+
sym+ τ−I) and (L−sym+ τ+I). We start by observing

that

L±sym + τ∓I = I − (E[D±])−1/2(E[A±])(E[D±])−1/2 + τ∓I

= (1 + τ∓)I − (E[D±])−1/2(E[A±])(E[D±])−1/2 . (21)

In light of (20), one can write (E[D+])−1/2(E[A+])(E[D+])−1/2 as

(E[D+])−1/2(E[A+])(E[D+])−1/2 = −p(1− η)(E[D+])−1

+
[
Θ V ⊥

]




def
=B+

︷ ︸︸ ︷


n1

d+1
p(1− η)

√
n1n2

d+1 d
+
2

pη . . .
√

n1nk
d+1 d

+
k

pη
√

n2n1

d+2 d
+
1

pη n2

d+2
p(1− η) . . .

√
n2nk
d+2 d

+
k

pη

...
...

. . .
...√

nkn1

d+k d
+
1

pη
√

nkn2

d+k d
+
2

pη . . . nk
d+k
p(1− η)



k×k

0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)




[
Θ>

V ⊥
>

]
.

(22)
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Similarly, using the expression for E[A−], the expression for (E[D−])−1/2(E[A−])(E[D−])−1/2

can be written as

(E[D−])−1/2(E[A−])(E[D−])−1/2 = −pη(E[D−])−1+

[
Θ V ⊥

]




def
=B−︷ ︸︸ ︷



n1

d−1
pη

√
n1n2

d−1 d
−
2

p(1− η) . . .
√

n1nk
d−1 d

−
k

p(1− η)
√

n2n1

d−2 d
−
1

p(1− η) n2

d−2
pη . . .

√
n2nk
d−2 d

−
k

p(1− η)

...
...

. . .
...√

nkn1

d−k d
−
1

p(1− η)
√

nkn2

d−k d
−
2

p(1− η) . . . nk
d−k
pη



k×k

0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)




[
Θ>

V ⊥
>

]
.

(23)
Combining (19), (22), and (23) into (21), we readily arrive at

(L±sym+τ∓I) =
[
Θ V ⊥

]




[diag(α±i )−B±]k×k︸ ︷︷ ︸
def
=C±

0k×(n−k)

α±1 In1−1

α±2 Ink−1

. . .

α±k Ink−1,




[
Θ>

V ⊥
>

]

(24)
where α±i and C+, C− are defined as in the statement of the lemma. The spectral de-
composition of T now follows trivially using (24), along with the spectral decomposition
(C−)−1/2C+(C−)−1/2 = RΛRT .

Lemma 17 reveals that we need to extract the k-informative eigenvectors ΘR from the
n-eigenvectors

[
ΘR V ⊥

]
of T . Clearly, it suffices to recover any orthonormal basis for the

column span of Θ, since the rows of any such corresponding matrix (one instance of which
is ΘR) will exhibit the same clustering structure as Θ.

4.2 Ensuring Vk(T ) = ΘR and bounding the spectral gap

In this section, our aim is to show that, for suitable values of τ+ > 0, τ− ≥ 0, the eigenvectors
corresponding to the smallest k eigenvalues of T are given by ΘR, i.e., Vk(T ) = ΘR. This
is equivalent to ensuring (recall Lemma 17) that

λn−k+1(T ) =
∥∥∥(C−)−1/2C+(C−)−1/2

∥∥∥ < min
i∈[k]

α+
i

α−i
= λn−k(T ). (25)

Moreover, we will need to find a strictly positive lower-bound on the spectral gap λn−k(T )−
λn−k+1(T ), as it will be used later on, in order to show that the column span of Vk(T ) is
close to that of Vk(T ). We first consider the equal-sized clusters case, and then proceed to
the general-sized clusters case.
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4.2.1 Spectral gap for equal-sized clusters

When the cluster sizes are equal, the analysis is considerably cleaner than the general
setting. Let us first establish notation specific to the equal-sized clusters case.

Remark 18 (Notation for the equal-sized clusters) For clusters of equal size, we have
that n1 = ... = nk = n/k, d+ := d+

1 = ... = d+
k , d− := d−1 = ... = d−k , α+ := α+

1 = ... = α+
k ,

and α− := α−1 = ... = α−k . Let C+
e , C

−
e , and Te denote the respective counterparts of

C+, C−, and T , for the equal-sized case. In light of (17) and (18), one can verify that C+
e

and C−e are simultaneously diagonalizable, which we show in Lemma 60.

In the following lemma, we show the exact value of ‖Λ‖ =
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥.

Lemma 19 (Bounding the spectral norm of (C−e )−1/2C+
e (C−e )−1/2) For equal-sized clus-

ters, the following holds true

∥∥∥(C−e )−1/2C+
e (C−e )−1/2

∥∥∥ = max

{
τ−

τ+
,

τ− + pnη
d+

τ+ + pn(1−η)
d−

}
.

Proof The lemma follows directly from Lemma 60.

Next, we derive conditions on τ+ > 0, τ− ≥ 0 which ensure Vk(T ) = ΘR.

Lemma 20 (Conditions on τ− and τ+) Suppose n ≥ 2k(1−η)
1−2η , and τ− ≥ 0, τ+ > 0. If

τ−, τ+ satisfy

1.

τ−
(

1 +
pη

d−

)
< τ+

(
1 +

p(1− η)

d+

)
,

2.

τ−
[

(1− 2η)/k

(1− η)− 1−2η
k

]
+ τ+

[
(1− 2η)/k

η + 1−2η
k

]
+ 1 >

2η

η + 1−2η
2k

.

Then it holds true that Vk(T ) = ΘR, i.e., λn−k+1(T ) =
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ < α+

α− =

λn−k(T ).

Proof Recalling the expression for
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ from Lemma 19, we will ensure

that each term inside the max is less than α+/α−. To derive the first condition of the lemma,
we simply ensure that

τ−

τ+
<

1 + τ− + p(1− η)/d+

1 + τ+ + pη/d−
⇔ τ−

(
1 +

pη

d−

)
< τ+

(
1 +

p(1− η)

d+

)
.

Before deriving the second condition, let us note additional useful bounds on np
d− ,

np
d+

which
will be needed later.

1. d−/np = 1− η − (1− 2η)/k − η/n ≤ 1− η.
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2. Since n ≥ k ≥ 2, we obtain that d−/np ≥ (1 − η) − (1 − 3η)/k ≥ 1−η
2 . This also

implies that pη/d− ≤ 1.

Therefore, combining the above two bounds, we arrive at

1

1− η ≤
np

d−
≤ 2

1− η .

3. d+/np = (1− 2η)/k + η − (1− η)/n ≤ η + (1− 2η)/k.

4. Since n ≥ 2k(1−η)
1−2η , it holds that d+/np = (1−2η)/k+η− (1−η)/n ≥ η+ (1−2η)/2k.

5. Therefore, combining the above two conditions yields

1

η + 1−2η
k

≤ np

d+
≤ 1

η + 1−2η
2k

.

To derive the second condition, we need to ensure
τ−+ pnη

d+

τ++
pn(1−η)
d−

< 1+τ−+p(1−η)/d+

1+τ++pη/d− , which

is equivalent to

τ−
[
1− np

d−

(
(1− η)− η

n

)]
< τ+

[
1− np

d+

(
η − 1− η

n

)]

+

[
np(1− η)

d−

(
1 +

p(1− η)

d+

)
− npη

d+

(
1 +

pη

d−

)]

︸ ︷︷ ︸
term 2

.

Now, we can lower bound “term 2” in the above equation as

np(1− η)

d−

(
1 +

p(1− η)

d+

)
− npη

d+

(
1 +

pη

d−

)
≥ 1− 2η

η + (1−2η)
k

.

Hence from the above two equations, we observe that it suffices that τ+, τ− satisfy

τ−
[

(1− 2η)/k

(1− η)− 1−2η
k

]
+ τ+

[
(1− 2η)/k

η + 1−2η
k

]
+ 1 >

2η

η + 1−2η
2k

.

Next, we derive sufficient conditions on τ+, τ− which ensure a lower bound on the
spectral gap

λn−k(T )− λn−k+1(T ) =
α+

α−
−
∥∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥∥ .

Lemma 21 (Conditions on τ+, τ−, and lower-bound on spectral gap) Suppose n ≥
2k(1−η)

1−2η , then the following holds.
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1. If τ+ > 0, τ− ≥ 0 satisfy

τ+ >
32ηk

3(1− 2η)
, τ− < min

{
3

2
,

3

16
τ+,

3(1− η)

8(η + 1−2η
k )

}
,

then Vk(T ) = ΘR, and
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ <

(
1− (1−2η)

2k(1−η)

)
α+

α− , i.e., λn−k(T )−
λn−k+1(T ) >

(
(1−2η)
2k(1−η)

)
α+

α− .

2. If η < 1
3k+2 and τ+ > 0, τ− ≥ 0 satisfy

τ− < min

{(
1−2η
k − η

1−2η
k + η

)
,
1

2
,
τ+

8

}
,

then Vk(T ) = ΘR, and
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ < α+

2α− , i.e., λn−k(T )− λn−k+1(T ) >
α+

2α− .

Proof We need to ensure the following two conditions for a suitably chosen β ∈ (0, 1].

τ− + pnη
d+

τ+ + pn(1−η)
d−

< β

(
1 + τ− + p(1− η)/d+

1 + τ+ + pη/d−

)
, (26)

τ−

τ+
< β

(
1 + τ− + p(1− η)/d+

1 + τ+ + pη/d−

)
. (27)

1. Ensuring (26) We can rewrite (26) as

τ−
(

1 +
pη

d−
− β pn(1− η)

d−

)
+ τ+

(
pnη

d+
− β

(
1 +

p(1− η)

d+

))
+ τ+τ−(1− β)

< β
pn(1− η)

d−

(
1 +

p(1− η)

d+

)
− pnη

d+

(
1 +

pη

d−

)
. (28)

Using the expressions for d+, d−, we can write the coefficients of the terms τ+, τ− as follows.

1 +
pη

d−
− β pn(1− η)

d−
=
−(1−2η

k ) + (1− η)(1− β)

−(1−2η
k ) + (1− η)− η

n

,

pnη

d+
− β

(
1 +

p(1− η)

d+

)
=
np

d+
(η − β 1− η

n
)− β =

η(1− β)− β(1−2η
k )

1−2η
k + η − 1−η

n

.

Moreover, using the bounds on d−
np ,

d+

np derived in Lemma 20, we can lower bound the RHS
term in (28) as

β
pn(1− η)

d−

(
1 +

p(1− η)

d+

)
− pnη

d+

(
1 +

pη

d−

)
> β − 2η

η + 1−2η
k

.

From the above considerations, we see that (28) is ensured provided

τ−
[

(1−2η
k )− (1− η)(1− β)

−(1−2η
k ) + (1− η)− η

n

]
+ τ+

[
−η(1− β) + β(1−2η

k )
1−2η
k + η − 1−η

n

]
+β >

2η

η + 1−2η
k

+ τ+τ−(1−β).

(29)
We outline two possible ways in which (29) is ensured.

25



Cucuringu, Singh, Sulem, and Tyagi

• Note that the denominators of the coefficients of τ+, τ− in (29) are positive, while the

numerators are non-negative provided 1− β ≤ (1−2η)
2k(1−η) . Therefore, choosing

β = 1− (1− 2η)

2k(1− η)

(
≥ 3

4

)
,

note that (29) is ensured provided

τ−
[

(1− 2η)

2k(1− η)

]
+ τ+


 3(1− 2η)

8k
(
η + 1−2η

k

)


+

3

4
>

2η

η + 1−2η
k

+ τ+τ−
[

(1− 2η)

2k(1− η)

]
. (30)

Finally, we observe that in order for (30) to hold, it suffices that

τ+τ−
[

(1− 2η)

2k(1− η)

]
<
τ+

2


 3(1− 2η)

8k
(
η + 1−2η

k

)


 ⇐⇒ τ− <

3(1− η)

8
(
η + 1−2η

k

) , and

2η

η + 1−2η
k

<
τ+

2


 3(1− 2η)

8k
(
η + 1−2η

k

)


 ⇐⇒ τ+ >

32ηk

3(1− 2η)
.

• Alternatively, by setting β = 1/2, (29) can be rewritten as

τ+

[
−η

2 + 1−2η
2k

1−2η
k + η − 1−η

n

]
+

1

2
>

2η

η + 1−2η
k

+ τ−
[

−(1−2η
k ) + 1−η

2

−(1−2η
k ) + (1− η)− η

n

]
+
τ+τ−

2
. (31)

Clearly, it holds true that

1

2
>

2η

η + 1−2η
k

⇐⇒ η <
1

3k + 2
,

which also ensures that the numerator of the coefficient of τ+ is positive. Therefore,
if η < 1

3k+2 , then in order for (31) to hold, it suffices that

τ− <

[
−η + 1−2η

k
1−2η
k + η

]
=⇒ τ+

[
−η

2 + 1−2η
2k

1−2η
k + η − 1−η

n

]
>
τ+τ−

2
.

2. Ensuring (27) Note that one can rewrite (27) as

τ−τ+(1− β) + τ−
(

1 +
pη

d−

)
< βτ+

(
1 +

p(1− η)

d+

)
. (32)

Since pη
d− ≤ 1, (32) is ensured provided

τ−τ+(1− β) + 2τ− < βτ+
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which in turn holds if each LHS term is respectively less than half of the RHS term. This
leads to the condition

τ− < min

{
β

2(1− β)
,
β

4
τ+

}
.

Finally, plugging the choices β = 1− (1−2η)
2k(1−η)(≥ 3/4) and β = 1

2 in the above equation, and

combining it with the conditions derived for ensuring (26), we readily arrive (after minor
simplifications) at the statements in the Lemma.

4.2.2 Spectral gap for the general case

For the general-sized clusters case, it is difficult to find the exact value of
∥∥(C−)−1/2C+(C−)−1/2

∥∥.
Therefore, in the following lemma, we show an upper bound on this quantity by bounding
the spectral norms of C+ and (C−)−1.

Lemma 22 (Bounding the spectral norm of (C−)−1 and C+) Recall s := mini∈[k] ni/n.
Then it holds true that

λmax(C+) ≤ τ− +
nη

n(s(1− 2η) + η)− (1− η)
, (33)

λmin(C−) ≥ τ+ . (34)

From the above two inequalities, it follows that

∥∥∥(C−)−1/2C+(C−)−1/2
∥∥∥ ≤ λmax(C+)

λmin(C−)
≤
τ− + nη

n(s(1−2η)+η)−(1−η)

τ+
.

The proof of the above lemma is deferred to Appendix D.

Remark 23 It is difficult to obtain more precise bounds on λmax(C+) and λmin(C−), given
the expressions for C+ in (17), and C− in (18). Clearly, a tighter bound on∥∥(C−)−1/2C+(C−)−1/2

∥∥ would yield a tighter analysis in the general case.

Recall l := maxi∈[k] ni/n; with a slight abuse of notation, let d±l denote the degree of the
largest cluster (of size nl). As before, we now derive conditions on τ+ > 0, τ− ≥ 0 which
ensure Vk(T ) = ΘR, or equivalently,

λn−k+1(T ) =
∥∥∥(C−)−1/2C+(C−)−1/2

∥∥∥ < min
i∈[k]

α+
i

α−i
=

1 + τ− + p(1− η)/d+
l

1 + τ+ + pη/d−l
=
α+
l

α−l
= λn−k(T ).

(35)
Additionally, we find sufficient conditions on τ+ > 0, τ− ≥ 0 which ensure a lower bound

on the spectral gap λn−k(T ) − λn−k+1(T ) = mini∈[k]
α+
i

α−i
−
∥∥(C−)−1/2C+(C−)−1/2

∥∥. These

are shown in the following lemma.

Lemma 24 (Conditions on τ+, τ−, and Lower-Bound on Spectral Gap) Suppose n ≥
max

{
2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, then the following is true.
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1. If τ+ > 0, τ− ≥ 0 satisfy

2τ− +
4η

s(1− 2η) + 2η
<

s(1− 2η)

s(1− 2η) + 2η
τ+ (36)

then Vk(T ) = ΘR, i.e., λn−k+1(T ) =
∥∥(C−)−1/2C+(C−)−1/2

∥∥ < α+
l

α−l
= λn−k(T ).

2. For β = 4η
s(1−2η)+4η with 0 < η < 1

2 , if τ+ > 0, τ− ≥ 0 satisfy

(1− β)τ−τ+ + 2τ− +
4η

s(1− 2η) + 2η
<
β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
τ+ (37)

then Vk(T ) = ΘR, and
∥∥(C−)−1/2C+(C−)−1/2

∥∥ < β
α+
l

α−l
, i.e., λn−k(T )−λn−k+1(T ) >

(1− β)
α+
l

α−l
. Moreover, for (37) to hold, it suffices that

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}
.

3. The statement in part (2) also holds for the choice β = 1
2 , and provided η ≤ s

2s+4 .

Proof From (35) and Lemma 22, it suffices to show for β ∈ (0, 1] that

τ− + η

s(1−2η)+η− (1−η)
n

τ+
< β

(
1 + τ− + p(1− η)/d+

l

1 + τ+ + pη/d−l

)
. (38)

For the stated condition on n, it is easy to verify that

n ≥ 2(1− η)

s(1− 2η)
=⇒ s(1− 2η) + η − (1− η)

n
≥ s(1− 2η)

2
+ η,

n ≥ 2η

(1− l)(1− η)
=⇒ pη

d−l
≤ 2η

n(1− η)(1− l) ≤ 1.

Using these bounds in (38), observe that it suffices that τ+, τ− satisfy

τ− + 2η
s(1−2η)+2η

τ+
< β

(
1 + τ−

2 + τ+

)
. (39)

Then for β = 1, we readily see that (39) is equivalent to (36).

To establish the second part of the Lemma, we begin by rewriting (39) as

(1− β)τ+τ− + 2τ− +
4η

s(1− 2η) + 2η
<

(
β − 2η

s(1− 2η) + 2η

)
τ+

=

[
βs(1− 2η)− 2η(1− β)

s(1− 2η) + 2η

]
τ+, (40)
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and observe that

βs(1− 2η) ≥ 4η(1− β) ⇐⇒ β ≥ 4η

s(1− 2η) + 4η
(41)

This verifies (37) in the statement of the Lemma. The “moreover” part is established by
ensuring that each term on the LHS of (37) is a sufficiently small fraction of the RHS term.
In particular, it is enough to choose this fraction to be 1/4 for the first two terms, and 1/2
for the third term.

Finally, the third part of the Lemma can be shown in the same manner as the second
part. The starting point is to ensure (40), and we simply observe that for β = 1/2, (41) is
equivalent to η ≤ s

2s+4 . The rest follows identically.

4.3 Concentration bound for
∥∥T − T

∥∥

In this section, we bound the “distance” between T and T , i.e.,
∥∥T − T

∥∥. This is shown

via individually bounding the terms
∥∥∥L+

sym − L+
sym

∥∥∥, and
∥∥∥L−sym − L−sym

∥∥∥. To this end, we

first recall the following Theorem from Chung and Radcliffe (2011).

Theorem 25 (Bounding
∥∥Lsym − Lsym

∥∥, (Chung and Radcliffe, 2011)) Let Lsym de-
note the normalized Laplacian of a random graph, and Lsym the normalized Laplacian of
the expected graph. Let δ be the minimum expected degree of the graph. Choose ε > 0. Then
there exists a constant cε such that, if δ ≥ cε lnn, then with probability at least 1 − ε, it
holds true that

∥∥Lsym − Lsym
∥∥ ≤ 2

√
3 ln(4n/ε)

δ
.

Remark 26 A similar result appears in Imbuzeiro Oliveira (2009) for the (unsigned) inho-
mogeneous Erdős-Rényi model, where

∥∥Lsym − Lsym
∥∥ = O(

√
lnn/d0), with d0 the smallest

expected degree of the graph.

Using Theorem 25, we readily obtain the following concentration bounds for
∥∥∥L+

sym − L+
sym

∥∥∥
and

∥∥∥L−sym − L−sym
∥∥∥.

Lemma 27 (Bounding
∥∥∥L±sym − L±sym

∥∥∥) Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, there

exists a constant cε > 0 such that if p ≥ cε lnn
n max

{
1

s(1−2η)+2η ,
2

1−l

}
, then with probability

at least 1− 2ε,

∥∥∥L+
sym − L+

sym

∥∥∥ ≤ 2

√
6 ln(4n/ε)

np[s(1− 2η) + 2η]
, and

∥∥∥L−sym − L−sym
∥∥∥ ≤ 2

√
12 ln(4n/ε)

np(1− l) .

Proof Note that the minimum expected degrees of the positive and negative subgraphs
are given by d+

s , d
−
l , respectively. For the stated condition on n, it is easily seen that

d+
s ≥

np

2
[s(1− 2η) + 2η] , d−l ≥

np

2
(1− l)(1− η) ≥ np(1− l)

4
. (42)
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Invoking Theorem 25, and observing that d+
s , d

−
l ≥ cε

2 lnn are ensured for the stated condi-
tion on p, the statement follows via the union bound.

Next, using the above lemma, we can upper bound
∥∥T − T

∥∥. This will help us show
that Vk(T ) and Vk(T ) are “close”.

Lemma 28 (Bounding
∥∥T − T

∥∥) Let P = (L−sym + τ+I), P = (L−sym + τ+I), Q =

(L+
sym + τ−I), and Q = (L+

sym + τ−I). Assume that
∥∥P − P

∥∥ ≤ ∆P , and
∥∥Q−Q

∥∥ ≤ ∆Q.
Then it holds true that

∥∥T − T
∥∥ ≤ (α+

s + ∆Q)

τ+

(
∆P

τ+
+ 2

√
∆P

τ+

)
+

∆Q

τ+

where α+
s = 1 + τ− + p(1−η)

d+s
(see Lemma 17).

Proof Since P, P ,Q,Q are positive definite, therefore using Proposition 59, we obtain the
bound

∥∥T − T
∥∥ ≤

∥∥P−1
∥∥ ‖Q‖

(∥∥(P )−1
∥∥∥∥P − P

∥∥+ 2
∥∥∥(P )−1/2

∥∥∥
∥∥P − P

∥∥1/2
)

+
∥∥(P )−1

∥∥∥∥Q−Q
∥∥ .

(43)

We know that
∥∥P−1

∥∥ = 1/τ+ =
∥∥∥P−1

∥∥∥ and
∥∥(P )−1/2

∥∥ = 1/
√
τ+. Moreover, ‖Q‖ ≤

∥∥Q
∥∥+ ∆Q by Weyl’s inequality (Weyl, 1912) (see Appendix B). Hence (43) simplifies to

∥∥T − T
∥∥ ≤ (

∥∥Q
∥∥+ ∆Q)

τ+

(
∆P

τ+
+ 2

√
∆P

τ+

)
+

∆Q

τ+
≤ (α+

s + ∆Q)

τ+

(
∆P

τ+
+ 2

√
∆P

τ+

)
+

∆Q

τ+
,

where the last inequality can be verified by examining the expression of Q in (24), and
noting from the definition of C+ that ‖C+‖ < max

{
α+

1 , ..., α
+
k

}
= α+

s holds (via Weyl’s
inequality).

4.4 Estimating Vk(T ) and Gk(T ) up to a rotation

We are now ready to combine the results of the previous sections to show that if n, p are
large enough, then the distance between the subspaces spanned by Vk(T ) and Vk(T ) is
small, i.e., there exists an orthonormal matrix O such that Vk(T ) is close to Vk(T )O. For
τ+, τ− chosen suitably, we have seen in Lemma 24 that Vk(T ) = ΘR for a rotation R, hence
this suggests that the rows of Vk(T ) will then also approximately preserve the clustering
structure of Vk(T ).

With P, P ,Q,Q as defined in Lemma 28 recall from (4), (7) that Gk(T ), Gk(T ) can be
written as

Gk(T ) = P
−1/2

Vk(T ), Gk(T ) = P−1/2Vk(T ). (44)
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Therefore if Vk(T ) = ΘR, then using the expression for P from (24) we see that Gk(T ) =
Θ(C−)−1/2R, and thus the rows of Gk(T ) also preserve the ground truth clustering struc-
ture. Moreover, if

∥∥Vk(T )− Vk(T )O
∥∥ is small, then it can be shown to imply a bound on∥∥Gk(T )−Gk(T )O

∥∥. Hence the rows of Gk(T ) will approximately preserve the clustering
structure of Gk(T ).

Before stating the theorem, let us define the terms

C1(τ+, τ−) = 3

(
(3 + τ−)(2

√
τ+ + 1) + τ+

(τ+)2

)
, C2(s, η, l) = max

{
1

s(1− 2η) + 2η
,

2

1− l

}
.

(45)

Theorem 29 Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, suppose τ+ > 0, τ− ≥ 0 are chosen

to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}

where β, η satisfy one of the following conditions.

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R where R is a rotation matrix, and C− � 0 is
as defined in (18). Moreover, for any ε, δ ∈ (0, 1), there exists a constant c̃ε > 0 such that
the following is true. If p satisfies

p ≥ max

{
c̃εC2(s, η, l),

256C4
1 (τ+, τ−)(2 + τ+)4

δ4(1 + τ−)4(1− β)4
C2(s, η, l),

81

(1− l)δ4

}
ln(4n/ε)

n
,

with C1(·), C2(·) as in (45), then with probability at least 1− 2ε, there exists an orthogonal
matrix O ∈ Rk×k such that

∥∥Vk(T )− Vk(T )O
∥∥ ≤ δ, and

∥∥Gk(T )−Gk(T )O
∥∥ ≤ δ√

τ+
+

δ

(τ+)2
.

Proof We will first simplify the upper bound on
∥∥T − T

∥∥ in Lemma 28, starting by

bounding α+
s . If n ≥ 2(1−η)

s(1−2η) , it is easy to verify that (1−η)p

d+s
≤ 1 which implies α+

s ≤ 2 + τ−.

Moreover, we observe from Lemma 27 that ∆P ,∆Q ≤ 1 is ensured if p ≥ c̃εC2(s, η, l) ln(4n/ε)
n

where c̃ε = max {24, cε}. These considerations altogether imply

∥∥T − T
∥∥ ≤ (3 + τ−)(2

√
τ+ + 1)

(τ+)2

√
∆P +

∆Q

τ+

≤ (3 + τ−)(2
√
τ+ + 1) + τ+

(τ+)2
max

{√
∆P ,

√
∆Q

}

≤ C1(τ+, τ−)C
1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

(46)
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where in the penultimate inequality we used ∆Q ≤
√

∆Q, and the last inequality uses
Lemma 27.

Next, we will use the Davis-Kahan theorem (Davis and Kahan, 1970) (see Appendix B)
for bounding the distance

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥. Applied to our setup, it yields

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥ ≤

∥∥T − T
∥∥

λn−k+1(T )− λn−k(T )
, (47)

provided λn−k+1(T ) − λn−k(T ) > 0. From Weyl’s inequality, we know that λn−k+1(T ) ≥
λn−k+1(T ) −

∥∥T − T
∥∥. Moreover, under the stated conditions on τ+, τ−, we obtain from

Lemma 24 the bound

λn−k+1(T )− λn−k(T ) ≥ (1− β)
α+
l

α−l
≥ (1− β)

(
1 + τ−

2 + τ+

)
,

where in the last inequality we used the simplifications p(1− η)/d+
l ≥ 0 and pη/d−l ≤ 1 in

the expressions for α+
l , α

−
l . Hence using (46), we observe that if

C1(τ+, τ−)C
1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

≤
(

1− β
2

)(
1 + τ−

2 + τ+

)

⇐⇒ p ≥
(

16C4
1 (τ+, τ−)C2(s, η, l)(2 + τ+)4

(1 + τ−)4(1− β)4

)
ln(4n/ε)

n
,

then the RHS of (47) can be bounded as

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥ ≤ 2(2 + τ+)

(1 + τ−)(1− β)
C1(τ+, τ−)C

1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

.

It follows that there exists an orthogonal matrix O ∈ Rk×k so that

∥∥Vk(T )− Vk(T )O
∥∥ ≤ 2

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥ ( using Proposition 57)

≤ 4(2 + τ+)

(1 + τ−)(1− β)
C1(τ+, τ−)C

1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

≤ δ

for the stated bound on p. This establishes the first part of the Theorem.
In order to bound

∥∥Gk(T )−Gk(T )O
∥∥, we obtain from (44) that

∥∥Gk(T )−Gk(T )O
∥∥ =

∥∥∥P−1/2(Vk(T )− Vk(T )O) + (P−1/2 − P−1/2
)Vk(T )O

∥∥∥

≤
∥∥∥P−1/2

∥∥∥
︸ ︷︷ ︸
(τ+)−1/2

∥∥Vk(T )− Vk(T )O
∥∥

︸ ︷︷ ︸
≤δ

+
∥∥∥P−1/2 − P−1/2

∥∥∥
∥∥Vk(T )

∥∥
︸ ︷︷ ︸

=1

≤ δ√
τ+

+
∥∥∥P−1/2 − P−1/2

∥∥∥ . (48)
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The term
∥∥∥P−1/2 − P−1/2

∥∥∥ can be bounded as

∥∥∥P−1/2 − P−1/2
∥∥∥ =

∥∥∥P−1(P 1/2 − P 1/2
)P
−1
∥∥∥ ≤

∥∥∥P 1/2 − P 1/2
∥∥∥

(τ+)2

≤
∥∥P − P

∥∥1/2

(τ+)2

≤ 3

(τ+)2

[
ln(4n/ε)

np(1− l)

]1/4

, (49)

where the penultimate inequality uses Proposition 58, and the last inequality follows
from Lemma 27 with a minor simplification of the constant. Plugging (49) in (48) leads to

the stated bound for p ≥ 81
(1−l)δ4

ln(4n/ε)
n .

4.5 Clustering sparse graphs

We now turn our attention to the sparse regime where p = o(lnn)/n. In this regime, Lemma
27 is no longer applicable since it requires p = Ω

(
lnn
n

)
. In fact, it is not difficult to see that

the matrices L±sym will not concentrate around L±sym in this sparsity regime. To circumvent

this issue, we will aim to show that the normalized Laplacian L±
sym,γ± corresponding to the

regularized adjacencies A±
γ± := A±+ γ±

n 11
> concentrate around L±sym, for carefully chosen

values of γ+, γ−.
To show this, we rely on the following theorem from Le et al. (2017), which states that

the symmetric Laplacian Lsym,γ of the regularized adjacency matrix Aγ := A + γ
n11

> is
close to the symmetric Laplacian Lsym,γ of the expected regularized adjacency matrix, for
inhomogeneous Erdős-Rényi graphs.

Theorem 30 (Theorem 4.1 of Le et al. (2017)) Consider a random graph from the
inhomogeneous Erdős-Rényi model (G = (n, pij)), and let d = maxpij npij. Choose a num-
ber γ > 0. Then, for any r ≥ 1, C being an absolute constant, with probability at least
1− e−r

∥∥Lsym,γ − Lsym,γ
∥∥ ≤ Cr2

√
γ

(
1 +

d

γ

)5/2

. (50)

The above result leads to a bound on the distance between Lsym,γ and the normalized
Laplacian Lsym of the expected (un-regularized) adjacency matrix.

Theorem 31 (Concentration of Regularized Laplacians) Consider a random graph
from the inhomogeneous Erdős-Rényi model (G = (n, pij)), and let d = maxpij npij, dmin =
mini

∑
j pij . Choose a number γ > 0. Then, for any r ≥ 1, C being an absolute constant,

with probability at least 1− e−r

∥∥Lsym,γ − Lsym
∥∥ ≤ Cr2

√
γ

(
1 +

d

γ

)5/2

+ 3

√
γ

dmin + γ
. (51)
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Proof To establish the above lemma we make use of triangle inequality, where we use the
fact that

∥∥Lsym,γ − Lsym
∥∥ ≤

∥∥Lsym,γ − Lsym,γ
∥∥ +

∥∥Lsym,γ − Lsym
∥∥. We know the bound

on the first term on the RHS from Lemma 30 (which holds with probability 1 − e−r). To
bound the second term on the RHS, note that
∥∥Lsym,γ − Lsym

∥∥ =
∥∥∥D−1/2

AD
−1/2 −D−1/2

γ AγD
−1/2
γ

∥∥∥

=
∥∥∥D−1/2

AD
−1/2 −D−1/2

γ AD
−1/2
γ +D

−1/2
γ AD

−1/2
γ −D−1/2

γ AγD
−1/2
γ

∥∥∥

≤
∥∥∥D−1/2

AD
−1/2 −D−1/2

γ AD
−1/2
γ

∥∥∥+
∥∥∥D−1/2

γ AD
−1/2
γ −D−1/2

γ AγD
−1/2
γ

∥∥∥ .

The second term of the inequality can be easily bounded as follows.
∥∥∥D−1/2

γ AD
−1/2
γ −D−1/2

γ AγD
−1/2
γ

∥∥∥ ≤
∥∥∥D−1/2

γ

∥∥∥
2 ∥∥A−Aγ

∥∥ ≤ γ

dmin + γ
≤
√

γ

dmin + γ
.

To analyse the first term, we observe that

∥∥∥D−1/2
AD

−1/2 −D−1/2
γ AD

−1/2
γ

∥∥∥ =

∥∥∥D−1/2
AD

−1/2 −D−1/2
γ D

1/2
D
−1/2

AD
−1/2

D
1/2
D
−1/2
γ

∥∥∥

=
∥∥∥(I − Lsym)(I −D1/2

D
−1/2
γ ) + (I −D−1/2

γ D
1/2

)(I − Lsym)D
1/2
D
−1/2
γ

∥∥∥

≤
∥∥∥I −D1/2

D
−1/2
γ

∥∥∥+
∥∥∥I −D−1/2

γ D
1/2
∥∥∥
∥∥∥D1/2

D
−1/2
γ

∥∥∥

≤
(

1−
√

dmin

dmin + γ

)
+

(
1−

√
dmin

dmin + γ

)

≤ 2

√
γ

dmin + γ
,

where in the first inequality we use the fact that
∥∥I − Lsym

∥∥ ≤ 1, and in the last inequality

we use the fact that for two numbers a, b > 0 if a > b then
√
a−
√
b ≤
√
a− b. We have all

the components to plug into the triangle inequality, which yields the desired statement of
the theorem.

We now translate Theorem 31 to our setting for G+, G− and show that if p = Ω(1/n) for

n large enough, then for the choices γ+, γ− � (np)6/7, the bounds
∥∥∥L±sym,γ± − L

±
sym

∥∥∥ =

O
(

1
(np)1/14

)
hold with sufficiently high probability.

Lemma 32 Let n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−η)(1−l)

}
and p ≥ 1

n(1−η) . Then for the choices

γ+, γ− = [np(1 − η)]6/7, and any r ≥ 1, there exists a constant C > 0 such that with
probability at least 1− 2er, it holds true that

∥∥∥L+
sym,γ+

− L+
sym

∥∥∥ ≤
(

25/2Cr2 +
3
√

2√
s(1− 2η) + 2η

)
1

[np(1− η)]1/14
, (52)

∥∥∥L−sym,γ− − L
−
sym

∥∥∥ ≤
(

25/2Cr2 +
6√

1− l

)
1

[np(1− η)]1/14
. (53)
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Proof We will apply Theorem 31 to the subgraphs G+, G−. Let us denote d± to be the
quantity maxij npij , and d±min to be the minimum expected degree for the positive and
negative subgraphs, respectively. From the SSBM model, it can be verified that d± =
np(1− η). We also know that d+

min = d+
s and d−min = d−l , where for the stated condition on

n, d+
s , d

−
l satisfy the bounds in (42). The latter can be written as

d+
min ≥

d+

2
[s(1− 2η) + 2η], d−min ≥

d−(1− l)
4

.

Let us denote C3(s, η) = s(1−2η)+2η for convenience. In order to show (52), we obtain
from Theorem 31 that, with probability at least 1− e−r,

∥∥∥L+
sym,γ+

− L+
sym

∥∥∥ ≤ Cr2

√
γ+

(
1 +

d+

γ+

)5/2

+ 3

√
γ+

d+
min + γ+

≤ Cr2

√
γ+

(
1 +

d+

γ+

)5/2

+ 3

√
γ+

C3(s, η)d+
,

where the last inequality uses d+
s + γ+ ≥ d+

s . Now note that if γ+ ≤ d+, then the above
bound simplifies to

∥∥∥L+
sym,γ+

− L+
sym

∥∥∥ ≤ 25/2Cr2(d+)5/2

(γ+)3
+

3
√

2√
C3(s, η)

√
γ+

d+
. (54)

Choosing γ+ such that (d+)5/2

(γ+)3
=
√

γ+

d+
, or equivalently, γ+ = (d+)6/7, and plugging this in

(54), we arrive at (52). Clearly, γ+ ≤ d+ is equivalent to the stated condition on p. The
bound in (53) follows in an identical manner and is omitted.

We are now in a position to write the bound on
∥∥Tγ+,γ− − T

∥∥ in terms of
∥∥∥L±sym,γ± − L

±
sym

∥∥∥,

in a completely analogous manner to Lemma 28.

Lemma 33 (Adapting Lemma 28 for the sparse regime) Let Pγ− = (L−
sym,γ−+τ+I),

P = (L−sym + τ+I), Qγ+ = (L+
sym,γ+

+ τ−I), and Q = (L+
sym + τ−I). Assume that∥∥Pγ− − P

∥∥ ≤ ∆Pγ− ,
∥∥Qγ+ −Q

∥∥ ≤ ∆Qγ+
. Then it holds true that

∥∥Tγ+,γ− − T
∥∥ ≤

(α+
s + ∆Qγ+

)

τ+


∆Pγ−

τ+
+ 2

√
∆Pγ−

τ+


+

∆Qγ+

τ+
,

where α+
s = 1 + τ− + p(1−η)

d+s
(see Lemma 17).

Next, we derive the main theorem for SPONGEsym in the sparse regime, which is the
analogue of Theorem 29. The first part of the Theorem remains unchanged, i.e., for n large
enough and τ+, τ− chosen suitably, we have Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R for
a k × k rotation R, and C− � 0. The remaining arguments follow the same outline of
Theorem 29, i.e., (a) using Lemma 33 and Lemma 32 to obtain a concentration bound on
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∥∥Tγ+,γ− − T
∥∥ (when p = Ω(1/n)), and (b) using the Davis-Kahan theorem to show that the

column span of Vk(Tγ+,γ−) is close to Vk(T ). The latter bound then implies that Gk(Tγ+,γ−)
is close (up to a rotation) to Gk(T ), where we recall

Gk(T ) = P
−1/2

Vk(T ), Gk(Tγ+,γ−) = P
−1/2
γ− Vk(Tγ+,γ−) (55)

with Pγ− , P as defined in Lemma 33.

Theorem 34 Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, suppose τ+ > 0, τ− ≥ 0 are chosen

to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}

where β, η satisfy one of the following conditions.

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R where R is a rotation matrix, and C− � 0
is as defined in (18). Moreover, there exists a constant C > 0 such that for r ≥ 1 and
δ ∈ (0, 1), if p satisfies

p ≥ max

{
1,

(
4C1(τ+, τ−)(2 + τ+)

3(τ+)2(1− β)(1 + τ−)

)28
}
C14

4 (r, s, η, l)

δ28(1− η)n
,

and γ+, γ− = [np(1− η)]6/7, then with probability at least 1− 2e−r, there exists a rotation
O ∈ Rk×k so that

∥∥Vk(Tγ+,γ−)− Vk(T )O
∥∥ ≤ δ,

∥∥Gk(Tγ+,γ−)−Gk(T )O
∥∥ ≤ δ√

τ+
+

δ

(τ+)2
.

Here, C4(r, s, η, l) := 25/2Cr2 + 3
√

2C2(s, η, l) with C2(s, η, l) as defined in (45).

Proof We will first simplify the upper bound on
∥∥Tγ+,γ− − T

∥∥ in Lemma 33. Note that

n ≥ 2(1−η)
s(1−2η) implies α+

s ≤ 2+τ−, and moreover, we can bound
∥∥∥L±sym,γ± − L

±
sym

∥∥∥ uniformly

(from (52), (53)) as

∥∥∥L±sym,γ± − L
±
sym

∥∥∥ ≤ 25/2Cr2 + 3
√

2C2(s, η, l)

[np(1− η)]1/14
≤ C4(r, s, η, l)

[np(1− η)]1/14
(= ∆Pγ− ,∆Qγ+

). (56)

Note that ∆Pγ− ,∆Qγ+
≤ 1 if p ≥ C14

4 (r,s,η,l)
n(1−η) . Under these considerations, the bound in

Lemma 33 simplifies to

∥∥Tγ+,γ− − T
∥∥ ≤ (3 + τ−)(2

√
τ+ + 1) + τ+

(τ+)2
max

{√
∆Pγ− ,

√
∆Qγ+

}

=
C1(τ+, τ−)

√
C4(r, s, η, l)

3(τ+)2[np(1− η)]1/28
.
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Following the steps in the proof of Theorem 29, we observe that

∥∥Tγ+,γ− − T
∥∥ ≤ 1

2
(λn−k+1(Tγ+,γ−)− λn−k(T )),

is guaranteed to hold, provided

C1(τ+, τ−)
√
C4(r, s, η, l)

3(τ+)2[np(1− η)]1/28
≤ (

1− β
2

)

(
1 + τ−

2 + τ+

)

⇐⇒ p ≥
(

2C1(τ+, τ−)(2 + τ+)

3(τ+)2(1− β)(1 + τ−)

)28
C14

4 (r, s, η, l)

n(1− η)
.

Then, we obtain via the Davis-Kahan theorem that there exists an orthogonal matrix O ∈
Rk×k such that

∥∥Vk(Tγ+,γ−)− Vk(T )O
∥∥ ≤ 4

∥∥Tγ+,γ− − T
∥∥

λn−k+1(T )− λn−k(T )

≤ 4C1(τ+, τ−)
√
C4(r, s, η, l)(2 + τ+)

3(τ+)2[np(1− η)]1/28(1− β)(1 + τ−)
≤ δ,

for the stated bound on p in the theorem. This establishes the first part of the theorem.
In order to bound

∥∥Gk(Tγ+,γ−)−Gk(T )O
∥∥, first observe that

∥∥Gk(Tγ+,γ−)−Gk(T )O
∥∥ =

∥∥∥P−1/2
γ− (Vk(Tγ+,γ−)− Vk(T )O) + (P

−1/2
γ− − P−1/2

)Vk(T )O
∥∥∥

≤
∥∥∥P−1/2

γ−

∥∥∥
︸ ︷︷ ︸
≤(τ+)−1/2

∥∥Vk(Tγ+,γ−)− Vk(T )O
∥∥

︸ ︷︷ ︸
≤δ

+
∥∥∥P−1/2 − P−1/2

∥∥∥
∥∥Vk(T )

∥∥
︸ ︷︷ ︸

=1

≤ δ√
τ+

+
∥∥∥P−1/2

γ− − P−1/2
∥∥∥ . (57)

The second term
∥∥∥P−1/2

γ− − P−1/2
∥∥∥ can be bounded as

∥∥∥P−1/2
γ− − P−1/2

∥∥∥ =
∥∥∥P−1

γ− (P
1/2
γ− − P

1/2
)P
−1
∥∥∥ (58)

≤

∥∥∥P 1/2
γ− − P

1/2
∥∥∥

(τ+)2
≤
∥∥Pγ− − P

∥∥1/2

(τ+)2
≤

√
C4(r, s, η, l)

(τ+)2[np(1− η)]1/28
, (59)

where the penultimate inequality uses Proposition 58, and the last inequality uses (56).

Plugging (58) into (57) leads to the stated bound for p ≥ C14
4 (r,s,η,l)
n(1−η)δ28

.

4.6 Mis-clustering rate from k-means

We now analyze the mis-clustering error rate when we apply a (1+ξ)-approximate k-means
algorithm (e.g., (Kumar et al., 2004)) on the rows of Gk(T ) (respectively, Gk(Tγ+,γ−) in the
sparse regime). To this end, we rely on the following result from Lei and Rinaldo (2015),
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which when applied to our setting, yields that the mis-clustering error is bounded by the

estimation error
∥∥Gk(T )−Gk(T )O

∥∥2

F
(or
∥∥Gk(Tγ+,γ−)−Gk(T )O

∥∥2

F
in the sparse setting).

By an (1 + ξ)-approximate algorithm, we mean an algorithm that is provably within an
(1 + ξ) factor of the cost of the optimal solution achieved by k-means.

Lemma 35 (Lemma 5.3 of Lei and Rinaldo (2015), Approx. k-means error) For
any ξ > 0, and any two matrices U,U , such that U = ΘX with (Θ, X) ∈ Mn×k × Rk×k,
let (Θ̃, X̃) ∈ Mn×k × Rk×k be a (1 + ξ)-approximate solution to the k-means problem
minΘ∈Mn×k,X∈Rk×k ‖ΘX − U‖

2
F so that

∥∥∥Θ̃X̃ − U
∥∥∥

2

F
≤ (1 + ξ) min

Θ∈Mn×k,X∈Rk×k
‖ΘX − U‖2F

and Ũ = Θ̃X̃. For any δi ≤ mini′ 6=i
∥∥Xi′∗ −Xi∗

∥∥, define

Si =
{
j ∈ Ci :

∥∥∥Ũj∗ − U j∗
∥∥∥ ≥ δi/2

}
, then,

k∑

i=1

|Si| δ2
i ≤ 4(4 + 2ξ)

∥∥U − U
∥∥2

F
. (60)

Moreover, if

(16 + 8ξ)
∥∥U − U

∥∥2

F
/δ2
i < ni ∀i ∈ [k] , (61)

then there exists a k×k permutation matrix π such that Θ̃G = ΘGπ, where G = ∪ki=1(Ci\Si).

Combining Lemma 35 with the perturbation results of Theorem 29 and Theorem 34, we
readily arrive at mis-clustering error bounds for SPONGEsym.

Theorem 36 (Mis-clustering error for SPONGEsym) Under the notation and assump-

tions of Theorem 29, let (Θ̃, X̃) ∈ Mn×k × Rk×k be a (1 + ξ)-approximate solution to the
k-means problem minΘ∈Mn×k,X∈Rk×k ‖ΘX −Gk(T )‖2F . Denoting

Si =



j ∈ Ci :

∥∥∥(Θ̃X̃)j∗ − (Θ(C−)−1/2RO)j∗
∥∥∥ ≥ 1

2
√
ni(τ+ + 2

1−l )



 ,

it holds with probability at least 1− 2ε that

k∑

i=1

|Si|
ni
≤ δ2(64 + 32ξ)k

(
τ+ +

2

1− l

)(
(τ+)3 + 1

(τ+)4

)
.

In particular, if δ satisfies

δ <
(τ+)2

√
(64 + 32ξ)k(τ+ + 2

1−l )((τ
+)3 + 1)

,

then there exists a k×k permutation matrix π such that Θ̃G = Θ̂Gπ, where G = ∪ki=1(Ci\Si).
In the sparse regime, the above statement holds under the notation and assumptions of

Theorem 34 with Gk(T ) replaced with Gk(Tγ+,γ−), and with probability at least 1− 2e−r.
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Proof Since Gk(T )−Gk(T )O has rank at most 2k, we obtain from Theorem 29 that

∥∥Gk(T )−Gk(T )O
∥∥
F
≤
√

2k
∥∥Gk(T )−Gk(T )O

∥∥ ≤ δ
√

2k

(
(τ+)3/2 + 1

(τ+)2

)
. (62)

We now use Lemma 35 with U = Gk(T ) and U = Gk(T )O. It follows from (44) and
Lemma 17 thatGk(T ) = Θ(C−)−1/2R = Θ∆ ∆−1(C−)−1/2R where ∆ = diag(

√
n1, . . . ,

√
nk).

Denoting X = ∆−1(C−)−1/2RO, we can write Gk(T )O = Θ̂X, where Θ̂ ∈ Mn×k is the
ground truth membership matrix, and for each i 6= i′ ∈ [k], it holds true that

∥∥Xi∗ −Xi′∗
∥∥ ≥ λmin((C−)−1/2)

√
1/ni + 1/ni′ ≥

1√
λmax(C−)ni

.

From (18), one can verify using Weyl’s inequality that

λmax(C−) ≤ 1 + τ+ + max
i

p

d−i
(ηi + sin(1− 2η)) ≤ τ+ +

2

1− l ,

where the last inequality holds if n ≥ 2η
(1−l)(1−η) . The above considerations imply that

δi = 1√
ni(τ++ 2

1−l )
. Now with Si as defined in the statement, we obtain from (60) and (62)

that

k∑

i=1

|Si| δ2
i =

1

τ+ + 2
1−l

k∑

i=1

|Si|
ni
≤ δ2(32 + 16ξ)k

((τ+)3/2 + 1)2

(τ+)4
≤ δ2(64 + 32ξ)k

(
(τ+)3 + 1

(τ+)4

)
,

where the last inequality uses (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0. This yields the first part of
the Theorem.

For the second part, we need to ensure (61) holds. Using (62) and the expression for δi,
it is easy to verify that (61) holds for the stated condition on δ.

Finally, the statement for the sparse regime readily follows in an analogous manner (re-
placing Gk(T ) with Gk(Tγ+,γ−)), by following the same steps as above.

5. Concentration results for the symmetric Signed Laplacian

This section contains proofs of the main results for the symmetric Signed Laplacian, in both
the dense regime p & lnn

n and the sparse regime p & 1
n . Before proceeding with an overview

of the main steps, for ease of reference, we summarize in the Table below the notation
specific to this section.
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Notation Description

Lsym symmetric Signed Laplacian

Lsym population Signed Laplacian

Lγ regularized Laplacian

Lγ population regularized Laplacian

γ+, γ− > 0 regularization parameters

γ = γ+ + γ−

α = 1 + p

d
(1− 2η)

d = p(n− 1) expected signed degree

ρ = nmin
nmax

= s
l aspect ratio

The proof of Theorem 8 is built on the following steps. In Section 5.1, we compute
the eigen-decomposition of the Signed Laplacian of the expected graph Lsym. Then in
Section 5.2, we show Lsym and Lsym are “close”, and obtain an upper bound on the error∥∥Lsym − Lsym

∥∥. Finally, in Section 5.3, we use the Davis-Kahan theorem (see Theorem 56)
to bound the error between the subspaces Vk−1(Lsym) and Vk−1(Lsym). To prove The-
orem 11, in Section 5.4, we first use a decomposition of the set of edges [n] × [n] and
characterize the behaviour of the regularized Signed Laplacian on each subset. This leads
in Section 5.5 to the error bounds of Theorem 11. Finally, the proof of Theorem 13, that
bound the error on the eigenspace, relies on the same arguments as Theorem 8 and can be
found in Section 5.6. Similarly to the approach for SPONGEsym, the mis-clustering error is
obtained using a (1+ξ)-approximate solution of the k-means problem applied to the rows of
Vk−1(Lsym) (resp. Vk−1(Lγ)). This solution contains, in particular, an estimated member-

ship matrix Θ̃. The bound on the mis-clustering error of the algorithm given in Theorem 16
is derived using Lemma 35 (Lemma 5.3 of Lei and Rinaldo (2015)), in Section 5.7.

5.1 Analysis of the expected Signed Laplacian

In this section, we compute the eigen-decomposition of the matrix Lsym. In particular,
we aim at proving a lower bound on the eigengap between the (k − 1)th and kth smallest
eigenvalues. For equal-size clusters, there is an explicit expression for this eigengap.

5.1.1 Matrix decomposition

Lemma 37 Let Θ ∈ Rn×k denote the normalized membership matrix in the SSBM. Let
V ⊥ ∈ Rn×(n−k) be a matrix whose columns are any orthonormal base of the subspace orthog-
onal to R(Θ). The Signed Laplacian of the expected graph has the following decomposition

Lsym = [Θ V ⊥]

(
C 0
0 αIn−k

)[
ΘT

(V ⊥)T

]
, (63)

with C = αIk −B, α = 1 + p

d
(1− 2η) and B is a k × k matrix such that

Bii′ =

{
nip

d
(1− 2η); if i = i′

−
√
nini′p
d

(1− 2η); if i 6= i′.
(64)

Proof On one hand, we recall from Section 2.3 that the expected degree matrix is a scaled
identity matrix E[D] = dIn, with d = p(n − 1). Thus, any vector v ∈ Rn is an eigenvector
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of E[D] with corresponding eigenvalue d, and it holds true that

E[D]−1/2 =
1√
d
In =

1√
d

[Θ (V ⊥)] In

[
ΘT

(V ⊥)T

]
. (65)

On the other hand, the signed adjacency matrix can be written in the form

E[A] = E[A+]− E[A−] = M − p(1− 2η)In, (66)

where

M =




p(1− 2η)Jn1 −p(1− 2η)Jn1×n2 . . . −p(1− 2η)Jn1×nk
−p(1− 2η)Jn2×n1 p(1− 2η)Jn2 . . . −p(1− 2η)Jn2×nk

...
...

. . .
...

−p(1− 2η)Jnk×n1 . . . . . . p(1− 2η)Jnk


 .

The matrix M has the following decomposition

M = dΘBΘT = d[Θ V ⊥]

(
B 0
0 0

)[
ΘT

(V ⊥)T

]
,

with B defined in (64). Thus, combining (65) and (66), we arrive at

E[D]−1/2E[A]E[D]−1/2 =
1

d
M − p(1− 2η)

1

d
In = [Θ V ⊥]

(
B 0
0 0

)[
ΘT

(V ⊥)T

]
− (1− 2η)

p

d
In.

This finally leads to the decomposition of Lsym

Lsym = I − E[D]−1/2E[A]E[D]−1/2 = [Θ V ⊥]

(
C 0
0 αIn−k

)[
ΘT

(V ⊥)T

]
,

with C = αIk −B and α = 1 + p(1− 2η).

We can infer from Lemma 37 that the spectrum of Lsym is the union of the spectrum
of the matrix C ∈ Rk×k and {α}. Moreover, denoting u = 1√

d
(
√
n1, . . . ,

√
nk)

T , we have

C = p(1 − 2η)uuT + diag
(

1 + p

d
(1− 2η)(1− 2ni)

)
. For a SSBM with equal-size clusters,

we are able to find explicit expressions for the eigenvalues of C.

5.1.2 Spectrum of the Signed Laplacian: equal-size clusters

In this section, we assume that the clusters in the SSBM have equal sizes n1 = n2 = · · · =
nk = n

k . In this case,

1√
d

(
√
n1, . . . ,

√
nk)

T =

√
n

d
χ1,

and denoting by Ce the matrix C in this setting of equal clusters, we may write

Ce =
np

d
(1− 2η)χ1χ

T
1 +

(
1 +

p

d
(1− 2η)

(
1− 2

n

k

))
Ik. (67)
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Hence, the spectrum of Ce contains only two different values. The largest one has multi-
plicity 1, and χ1 is the corresponding largest eigenvector. The k − 1 remaining eigenvalues
are all equal. In fact, we have

λi(Ce) =





1 + p

d
(1− 2η)(n+ 1− 2nk ); if i = 1

1 + p

d
(1− 2η)

(
1− 2nk

)
; if 2 ≤ i ≤ k.

One can easily check that these eigenvalues are positive, and that the following inequality
holds true

λ1(Ce) = α+
p

d
(1− 2η)(n− 2

n

k
) ≥ α > α− 2

n

k
(1− 2η) = λ2(Ce).

We finally have

λj(Lsym) =





1 + p

d
(1− 2η)(n+ 1− 2nk ); if j = 1

α; if 2 ≤ j ≤ n− k + 1

λ2(Ce); if n− k + 2 ≤ j ≤ n.

Note that for k = 2, λ1(Ce) = α and the spectrum of Lsym contains only two values
{α, λ2(Ce)}. For k > 2, λ1(Lsym) > α > λ2(Ce). Writing the spectral decomposition

Ce = R ΛRT = [Rk−1 γ1] Λ

[
RTk−1

γT1

]
,

with γ1 = χ1 and Rk−1 ∈ Rk×(k−1) being the matrix of eigenvectors associated to λ2(Ce),
we conclude that Vk−1(Lsym) = ΘRk−1. In fact, since Θ has k distinct rows and R is a
unitary matrix, ΘR also has k distinct rows. As χ1 is the all one’s vector , ΘRk−1 has k
distinct rows as well. These observations are summarized in the following lemma and lead
to the expression of the eigengap.

Lemma 38 (Eigengap for equal-size clusters) For the SSBM with k ≥ 2 clusters of
equal-size n

k , we have that Vk−1(Lsym) = ΘRk−1 ∈ Rn×(k−1), where Rk−1 corresponds to the
(k − 1) smallest eigenvectors of Ce. Moreover, with the eigengap defined as

λgap := λn−k+1(Lsym)− λn−k+2(Lsym),

it holds true that

λgap = α− λ2(Ce) =
2np

kd
(1− 2η) ≥ 2

k
(1− 2η). (68)

5.1.3 Non-equal-size clusters

In the general setting of non-equal-size clusters, it is difficult to obtain an explicit expression
of the spectrum of Lsym. Thus, using a perturbation method, we establish a lower bound
on the eigengap, provided that the aspect ratio ρ is close to 1. Recall that

C = p(1− 2η)uuT + diag

(
1 +

p

d
(1− 2η)(1− 2ni)

)

= p(1− 2η)uuT − 2p(1− 2η)diag(u2
i )
n
i=1 + diag

(
1 +

p

d
(1− 2η)

)
. (69)
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We note that this matrix is of the form Λ+vvT , with Λ being a diagonal matrix and v ∈ Rk
a vector. Using again the spectral decomposition

C = R ΛRT = [Rk−1 γ1] Λ

[
RTk−1

γT1

]
, (70)

where γ1 is the largest eigenvector and Rk−1 ∈ Rk×(k−1) contains the smallest (k − 1)
eigenvectors of C, we would like to ensure that the smallest (k−1) eigenvectors of Lsym are
related to the (k − 1) eigenvectors of C in the following way Vk−1(Lsym) = ΘRk−1. Note
that γ1 is not necessarily the all one’s vector, and ΘRk−1 has at least k − 1 distinct rows.
To this end, we will like to ensure that

{λ2(C), . . . , λk−1(C), λk(C)} = {λn−k+2(Lsym), . . . , λn−1(Lsym), λn(Lsym)}. (71)

From Weyl’s inequality (see Theorem 55), we know that

|λi(Ce)− λi(C)| ≤ ‖C − Ce‖ ∀i = 1, . . . k,

which in particular implies

λ2(C) ≤ λ2(Ce) + ‖C − Ce‖, λ1(C) ≥ λ1(Ce)− ‖C − Ce‖.

Moreover, λ1(C) = α when k = 2, and λ1(C) > α when k > 2. Thus, for Condition 71 to
be true, it suffices to ensure

λ2(Ce) + ‖C − Ce‖ < α+ ‖C − Ce‖ ⇐⇒ ‖C − Ce‖ <
α− λ2(Ce)

2

⇐⇒ ‖C − Ce‖ <
np

kd
(1− 2η),

using (68). In this case, we indeed have that Vk−1(Lsym) = ΘRk−1. As it will be convenient
later, we will ensure a slightly stronger condition, i.e.

‖C − Ce‖ <
α− λ2(Ce)

4
=

np

2kd
(1− 2η). (72)

Now we compute the error ‖C − Ce‖. We recall that ‖u‖ =
√

n
d

and denote Du =:

1
‖u‖2 diag(u2

i )
n
i=1, then (69) becomes

C = αIk +
np

d
(1− 2η)

(
u

‖u‖

)(
u

‖u‖

)T
− 2

np

d
(1− 2η)Du.

Using (67), we obtain

‖C − Ce‖ =

∥∥∥∥∥
np

d
(1− 2η)

((
u

‖u‖

)(
u

‖u‖

)T
− χ1χ

T
1

)
− 2

np

d
(1− 2η)

(
Du −

1

k
In

)∥∥∥∥∥

≤ np

d
(1− 2η)

∥∥∥∥∥

(
u

‖u‖

)(
u

‖u‖

)T
− χ1χ

T
1

∥∥∥∥∥+ 2
np

d
(1− 2η)

∥∥∥∥Du −
1

k
In

∥∥∥∥ . (73)
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For the first term on the RHS, we have
∥∥∥∥∥

(
u

‖u‖

)(
u

‖u‖

)T
− χ1χ

T
1

∥∥∥∥∥ ≤ 2

∥∥∥∥
u

‖u‖ − χ1

∥∥∥∥ ≤ 2
√
kmax

i

∣∣∣∣∣

√
ni
n
−
√

1

k

∣∣∣∣∣

≤ 2
√
k(
√
l −√s) ≤ 2

√
k(1−√ρ), (74)

while for the second term on the RHS, we have

∥∥∥∥Du −
1

k
In

∥∥∥∥ = max
i

∣∣∣∣∣

√
ni
n
−
√

1

k

∣∣∣∣∣ ≤ 1−√ρ. (75)

By combining (74) and (75) into (73), we arrive at

‖C − Ce‖ ≤
np

d
(1− 2η)

√
k(1−√ρ) +

2np

d
(1− 2η)(1−√ρ)

≤ np

d
(1− 2η)(1−√ρ)

(√
k + 2

)

≤ 2(2 +
√
k)(1− 2η)(1−√ρ),

using that np

d
= n

n−1 ≤ 2. Now since np

2kd
≥ 1−2η

2k and from Condition 72, it suffices that ρ
satisfies

2(2 +
√
k)(1− 2η)(1−√ρ) ≤ 1− 2η

2k
⇐⇒ 1−√ρ ≤ 1

4k(2 +
√
k)
.

Finally, we can compute

λgap := λn−k+1(Lsym)− λn−k+2(Lsym)

≥ α− ‖C − Ce‖ − (λ2(Ce) + ‖C − Ce‖)
≥ α− λ2(Ce)− 2‖C − Ce‖

≥ α− λ2(Ce)

2
=
np

kd
(1− 2η) ≥ 1− 2η

k
.

Hence we arrive at the following lemma.

Lemma 39 (General lower-bound on the eigengap) For a SSBM with k ≥ 2 clusters
of general sizes (n1, . . . , nk) and aspect ratio ρ satisfying

√
ρ > 1− 1

4k(2 +
√
k)
,

it holds true that Vk−1(Lsym) = ΘRk−1, where Rk−1 ∈ Rk×k−1 corresponds to the (k − 1)
smallest eigenvectors of C. Furthermore, we can lower-bound the spectral gap λgap as

λgap := λn−k+1(Lsym)− λn−k+2(Lsym) ≥ 1− 2η

k
.

We will now show that Lsym concentrates around the population Laplacian Lsym, pro-
vided the graph is dense enough.
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5.2 Concentration of the Signed Laplacian in the dense regime

In the moderately dense regime where p & lnn
n , the adjacency and the degree matrices

concentrate towards their expected counterparts, as n increases. This can be established
using standard concentration tools from the literature.

Lemma 40 We have the following concentration inequalities for A and D

1. ∀0 < ε ≤ 1
2 ,∃cε > 0,

P
(
‖A− E[A]‖ ≤ ((1 + ε)4

√
2 + 2)

√
np

)
≥ 1− n exp

(
− np

cε

)
.

In particular, there exists a universal constant c > 0 such that

P
(
‖A− E[A]‖ ≤ 12

√
np

)
≥ 1− n exp

(
− np

c

)
.

2. If p > 12 lnn
n ,

P
(
‖D − E[D]‖ ≤

√
3np lnn

)
≥ 1− 2

n
.

Proof For the first statement, we recall that A is a symmetric matrix, with Ajj′ = 0 and
with independent entries above the diagonal (Ajj′)j<j′ . We denote Zjj′ = Ajj′ −E[Ajj′ ]. If
j, j′ lie in the same cluster,

Zjj′ =





1− p(1− 2η) ; w. p. p(1− η)
−1− p(1− 2η) ; w. p. pη
−p(1− 2η) ; w. p. 1− p

.

If j, j′ lie in different clusters,

Zjj′ =





1 + p(1− 2η) ; w. p. pη
−1 + p(1− 2η) ; w. p. p(1− η)

p(1− 2η) ; w. p. 1− p
.

One can easily check that in both cases, it holds true that

E[(Zjj′)
2] = p

[
(1− η)(1− p(1− 2η))2 + η(1 + p(1− 2η))2 + p(1− 2η)2)(1− p)

]

≤ p(1 + η(1 + p)2 + p) ≤ 4p.

Thus we can conclude that for each j ∈ [n], the following holds

√√√√
n∑

j′=1

E[(Zjj′)2] ≤
√

4np = 2
√
np.

Hence, σ̃ := maxj
√∑n

j′=1 E[(Zjj′)2 ] ≤ 2
√
np. Moreover, σ̃∗ := maxj,j′

∥∥∥Z+
jj′

∥∥∥
∞

= 1 +

p(1− 2η) ≤ 2. Therefore, we can apply the concentration bound for the norm of symmetric
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matrices by Bandeira and van Handel (2016, Corollary 3.12, Remark 3.13) (recalled in
Appendix 53) with t = 2

√
np, in order to bound ‖Z‖ = ‖A− E[A]‖. For any given 0 < ε ≤

1/2, we have that
‖A− E[A]‖ ≤

(
(1 + ε)4

√
2 + 2

)√
np,

with probability at least 1− n exp
(
−pn
cε

)
, where cε only depends on ε.

For the second statement, we apply Chernoff’s bound (see Appendix A.1) to the random

variables Djj =
∑n

j′=1

(
A+
jj′ +A−jj′

)
, where we note that (A+

jj′ +A−jj′)
n
j′=1 are independent

Bernoulli random variables with mean p. Hence, E[Djj ] = d = p(n − 1). Let δ =
√

6 lnn
d

and assuming that p > 12 lnn
n (so that δ < 1), we obtain

P
[∣∣Djj − d

∣∣ ≥
√

6d lnn
]
≤ P

[∣∣Djj − d
∣∣ ≥

√
3np lnn

]
≤ 2 exp

(
− 2 lnn

)
=

2

n2
,

using that n− 1 ≥ n
2 . Applying the union bound, we finally obtain that

P
(
‖D − E[D]‖ ≥

√
3np lnn

)
≤ 2

n
.

Lemma 41 If ‖A− E[A]‖ ≤ ∆A, ‖D − E[D]‖ ≤ ∆D and p > 12 lnn
n , then with probability

at least 1− 2
n , it follows that

‖Lsym − Lsym‖ ≤
∆A

d
+ 2

∆D

d
+

∆2
D

d
2 .

Proof We first note that using the proof of Lemma 40, with probability at least 1− 2
n , we

have that
∣∣Djj − d

∣∣ ≤ δd,∀j ∈ [n], with δ < 1. Consequently,

‖(E[D])−1/2D
1/2 − I‖ = max

j

∣∣∣∣∣∣

√
Djj

d
− 1

∣∣∣∣∣∣
≤ max

j

|Djj − d|
d

=
∆D

d
,

since |√x− 1| ≤ |x− 1| for 0 < x < 1. We now apply the first inequality of Proposition 59
with A− = D,A+ = A,B− = E

[
D
]
, B+ = E [A]. We obtain

‖Lsym − Lsym‖ ≤
∆A

d
+
∥∥∥D−1

∥∥∥ ‖A‖
(

∆2
D

d
2 + 2

∆D

d

)
.

It remains to prove that
∥∥∥D−1

∥∥∥ ‖A‖ ≤ 1. It holds since D is a diagonal matrix, thus∥∥∥D−1
∥∥∥ ‖A‖ =

∥∥∥D−1
A
∥∥∥ and similarly to Lemma 61, it is straightforward to prove that

I −
∥∥∥D−1

A
∥∥∥ ≤ 2, therefore

∥∥∥D−1
A
∥∥∥ ≤ 1.

Combining the results from Lemma 40 and Lemma 41, we arrive at the concentration bound
for ‖Lsym − Lsym‖.
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Lemma 42 Under the assumptions of Theorem 8, if n ≥ 10, then with probability at least
1− n exp(−np

cε
)− 2

n there exists a universal constant 0 < C < 43 such that

‖Lsym − Lsym‖ ≤ C
√

lnn

np
.

Proof If p ≥ 12 lnn
n , the bounds in Lemma 40 hold simultaneously with probability at

least 1− n exp(−np
c )− 2

n and we have, with the notations of Lemma 41, ∆A ≤ 12
√
np and

∆D ≤
√

3np lnn. Applying Lemma 41, we then obtain

‖Lsym − Lsym‖ ≤
12
√
np

d
+ 2

√
3np lnn

d
+

3np lnn

d
2 ≤ 24√

np
+ 4
√

3

√
lnn

np
+

12 lnn

np
.

If n ≥ 10, lnn ≥ 1 and
√

lnn
np ≥ 1√

np . Moreover, since p ≥ 12 lnn
n , then lnn

np ≤ 1
12 < 1 and

√
lnn
np ≥ lnn

np . We finally obtain

‖Lsym − Lsym‖ ≤ (24 + 4
√

3 + 12)

√
lnn

np
= C

√
lnn

np
,

with C = 24 + 4
√

3 + 12 ≤ 43.

5.3 Proof of Theorem 8

The proof of this theorem relies on the Davis-Kahan theorem. Using Weyl’s inequality (see
Theorem 55) and Lemma 42, we obtain for all 1 ≤ j ≤ n,

|λj(Lsym)− λj(Lsym)| ≤ C
(

lnn

np

)1/2

.

In particular, for the k-th smallest eigenvalue,

λn−k+1(Lsym) ≥ λn−k+1(Lsym)− C
(

lnn

np

)1/2

,

λn−k+1(Lsym)− λn−k+2(Lsym) ≥ λn−k+1(Lsym)− λn−k+2(Lsym)− C
(

lnn

np

)1/2

= λgap − C
(

lnn

np

)1/2

.

For δ ∈ (0, 1), we will like to ensure that

λgap − C
(

lnn

np

)1/2

> λgap

(
1− δ

2

)
. (76)
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From Lemma 39, if
√
ρ > 1 − 1

4k(2+
√
k)

, then λgap ≥ 1
k (1 − 2η). Then for the previous

condition (76) to hold, it is sufficient that

C

(
lnn

np

)1/2

<
δ

2k
(1− 2η) ⇐⇒ p >

(
2Ck

δ(1− 2η
)

)2 lnn

n
= C(k, η, δ)

lnn

n
, (77)

with C(k, η, δ) =
(

2Ck
δ(1−2η)

)2
. We note that since C(k, η, δ) ≥ C ≥ 12, hence (77) implies

that p > 12 lnn
n .

With this condition, we now apply the Davis-Kahan theorem (Theorem 56)

‖(I − Vk−1(Lsym)Vk−1(Lsym)T )Vk−1(Lsym)‖ ≤
∥∥Lsym − Lsym

∥∥

λgap − C
(

lnn
np

)1/2

≤ δλgap/2

λgap(1− δ/2)
=

δ/2

1− δ/2 ≤ δ.

Using Proposition 57, there then exists an orthogonal matrix O ∈ R(k−1)×(k−1) so that

‖Vk−1(Lsym)−ΘRk−1O‖ ≤ 2δ.

5.4 Properties of the regularized Laplacian in the sparse regime

The analysis of the signed regularized Laplacian differs from the one of unsigned regu-
larized Laplacian. In particular, Lemma 30 cannot be directly applied, since the trimming
approach of the adjacency matrix for unsigned graphs is not available in this case. However,
we will also use arguments of Le et al. (2015) and Le et al. (2017) for unsigned directed ad-
jacency matrices in the inhomogeneous Erdős-Rényi model G(n, (pjj′)j,j′). More precisely,
in Section 5.4.1, we will prove that the adjacency matrix concentrates on a large subset of
edges called the core. On this subset, the unregularized (resp. regularized) Laplacian also
concentrates towards the expected matrix Lsym (resp. Lγ). In Section 5.4.2, we will show
that on the remaining subset of nodes, the norm of the regularized Laplacian is relatively
small.

5.4.1 Properties of the signed adjacency and degree matrices

In this section, we adapt the results by Le et al. (2017) for the signed adjacency matrix and
the degree matrix in our SSBM. Similarly to Le et al. (2017, Theorem 2.6) (see Theorem 54),
the following lemma shows that the set of edges can be decomposed into a large block, and
two blocks with respectively few columns and few rows.

Lemma 43 (Decomposition of the set of edges for the SSBM) Let A be the signed adjacency
matrix of a graph sampled from the SSBM. For any r ≥ 1, with probability at least 1−6n−r,
the set of edges [n]× [n] can be partitioned into three classes N ,R and C such that

1. the signed adjacency matrix concentrates on N

‖(A− EA)N ‖ ≤ Cr3/2
√
d(1− η),

with C > 1 a constant;
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2. R (resp. C) intersects at most 4n/d columns (resp. rows) of [n]× [n];

3. each row (resp. column) of AR (resp. AC) has at most 128r non-zero entries.

Remark 44 We underline that this lemma is valid because the unsigned adjacency matrices
A+ and A− have disjoint support. We do not know if similar results could be obtained for
the Signed Stochastic Block Model defined by Mercado et al. (2016).

Proof We denote A±sup (resp. A±inf ) the upper (resp. lower) triangular part of the unsigned
adjacency matrices. Using this decomposition, we have

A = A+
inf +A+

sup −A−inf −A−sup.

We note that A+
inf , A

+
sup, A

−
inf , A

−
sup have disjoint supports, and each of them has indepen-

dent entries. We can hence apply Theorem 54 to each of these matrices, where we note that
for each matrix

d := nmax
j,j′

E[Ajj′ ] = np(1− η) ≤ 2d(1− η).

With probability at least 1 − 2 × 3n−r, there exists N±inf ,R±inf , C±inf ,N±sup,R±sup, C±sup four

partitions of [n]× [n] that have the subsequent properties. For e.g., for A+
inf ,

• ‖(A+
inf − EA+

inf )N ‖ ≤ Cr3/2
√
d ≤ Cr3/2

√
2d(1− η);

• R+
inf (resp. C+

inf ) intersects at most n/d ≤ n/d columns (resp. rows) of [n]× [n];

• each row (resp. column) of (A+
inf )R (resp. (A+

inf )C) have at most 32r ones.

We note that this decomposition holds simultaneously for A±inf and A±sup. Taking the unions
of these subsets,

N = N+
inf ∪N+

sup ∪N−inf ∪N−sup,
and similarly for R and C, we have, with the triangle inequality

‖(A− EA)N ‖
= ‖(A+

inf − EA+
inf )N+

inf
+ (A+

sup − EA+
sup)N+

sup
− (A−inf − EA−inf )N−inf

− (A−sup − EA−sup)N−sup‖
≤ ‖(A+

inf − EA+
inf )N+

inf
‖+ ‖(A+

sup − EA+
sup)N+

sup
‖+ ‖(A−inf − EA−inf )N−inf

‖
+ ‖(A−sup − EA−sup)N−sup‖

≤ 4Cr3/2
√
d ≤ C1r

3/2
√
d(1− η),

with C1 = 4C
√

2. Moreover, each row of R (resp. each column of C) has at most 2 × 32r
entries equal to 1 and 2 × 32r entries equal to −1, which means at most 128r non-zero
entries. Finally R (resp. C) intersects at most 4n/d rows (resp. columns) of [n]× [n].
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For the degree matrix D, we use inequality (4.3) from (Le et al., 2017). Recall that the
degree of node j is Djj =

∑n
j′=1(A+

jj′ + A−jj′) which is a sum of n independent Bernoulli
variables with bounded variance d/n. We can thus find an upper bound on the error
‖D−E[D]‖F . This bound is weaker than the one obtained in Lemma 40 with the assumption
p & lnn

n .

Lemma 45 There exists a constant C ′ > 0 such that for any r ≥ 1, with probability at
least 1− e−2r, it holds true

n∑

j=1

(Djj′ − d)2 ≤ C ′r2nd ≤ 2C ′r2nd(1− η).

5.4.2 Properties of the regularized Laplacian outside the core

In this section, we will bound the norm of the Signed Laplacian restricted to the subsets
of edges N and C. The following “restriction lemma” is an extension of Lemma 8.1 in Le
et al. (2015) for Signed Laplacian matrices.

Lemma 46 (Restriction of Signed Laplacian) Let B be a n× n symmetric matrix, Bγ its
regularized form as described in Section 2.2, and C ⊂ [n]×[n]. We denote Dγ the regularized

degree matrix , and Lγ = D
−1/2
γ BγD

−1/2
γ the modified “Laplacian” and BC the n×n matrix

such that the entries outside of C are set to 0. Let 0 < ε < 1 such that the degree of each
node in (Bγ)C is less that ε times the the corresponding degree in Bγ. Then we have

‖(Lγ)C‖ ≤
√
ε.

Proof We denote Dr (resp. Dc) the degree matrix of (Bγ)C (resp. (Bγ)TC ) and L̃ its
regularized “Laplacian” (it is not necessarily a symmetric matrix) where

L̃ = (D
1/2
r )†(Bγ)C(D

1/2
c )†.

By definition of Lγ , (Lγ)C = D
−1/2
γ (Bγ)CD

−1/2
γ . Since in (Bγ)C , some entries in B are

set to 0, we have that for all 1 ≤ j ≤ n,

(Dc)jj ≤ [Dγ ]jj .

Moreover, by assumption, (Dr)jj ≤ ε[Dγ ]jj . We denote X = (D
1/2
r )†, Y = (D

1/2
c )† and

Z = D
−1/2
γ , and now we have

LC = ZBCZ = ZX†XBCY Y †Z = ZX†L̃Y †Z.

Because ‖ZX†‖ ≤ √ε and ‖Y †Z‖ ≤ 1, by sub-multiplicativity of the norm, we thus obtain

‖LC‖ ≤ ‖ZX†‖ · ‖L̃‖ · ‖Y †Z‖ ≤
√
ε‖L̃‖.

In addition, by considering the 2n× 2n symmetric matrix L̃′

L̃′ =

(
0n L̃

L̃ 0n

)
,
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we have ‖L̃′‖ = ‖L̃‖ ≤ 1. In fact, L̃′ is equal to the identity matrix minus the regularized
Laplacian of

(
0n (Bγ)C

(Bγ)TC 0n

)
.

Using Appendix E, we can conclude that the eigenvalues of L̃′ are between -1 and 1, leading
to ‖L̃′‖ ≤ 1. Hence, we finally arrive at ‖(Lγ)C‖ ≤

√
ε.

Remark 47 We note that this lemma is not specific to the rows of the matrix B, and one
could also derive the same lemma with the assumptions on the columns of the matrix.

5.5 Error bounds w.r.t the expected regularized Laplacian and expected
Signed Laplacian

In this section, we prove an upper bound on the errors ‖Lγ − Lγ‖ and ‖Lγ − Lsym‖ from
Theorem 11. We will use the decomposition of the set of edges (N ,R, C) from Lemma 43,
and sum the errors on each of these subsets of edges. We recall that on the subset N ,
we have an upper bound on ‖(A − EA)N ‖. We will also use the fact that the regularized
degrees [Dγ ]jj are lower-bounded by the regularization parameter γ. On the subsets R and
C, we will use Lemma 46 to upper bound the norm of the regularized Laplacian.

Lemma 48 Under the assumptions of Theorem 11, for any r ≥ 1, with probability at least
1− 7e−2r, we have

‖Lγ − Lγ‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r√
γ

+
8√
d
. (78)

Proof Let Lγ − Lγ = S + T with

S = (Dγ)−1/2Aγ(Dγ)−1/2 − (Dγ)−1/2EAγ(Dγ)−1/2 = (Dγ)−1/2(Aγ − EAγ)(Dγ)−1/2,

T = (Dγ)−1/2EAγ(Dγ)−1/2 − (EDγ)−1/2EAγ(EDγ)−1/2.

We will bound the norm of S+T on N , and the norms of Lγ and Lγ on the residuals R, C.
We first use the triangle inequality to obtain

‖Lγ − Lγ‖
≤ ‖ (Lγ − Lγ)N ‖+ ‖ ((Lγ − I)− (Lγ − I))R ‖+ ‖ (Lγ − Lγ)C ‖
≤ ‖ (Lγ − Lγ)N ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)C ‖+ ‖ (I − Lγ)C ‖
= ‖ (S + T )N ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)C ‖+ ‖ (I − Lγ)C ‖
≤ ‖SN ‖+ ‖TN ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)C ‖+ ‖ (I − Lγ)C ‖.

51



Cucuringu, Singh, Sulem, and Tyagi

1. Bounding the norm ‖TN ‖. Denoting γ = γ+ + γ−, we have that

‖TN ‖2 ≤ ‖TN ‖2F

=

n∑

j,j′=1

T 2
jj′

=
n∑

j,j′=1

(
EAjj′ + (γ+ − γ−)/n

)2

 1√

(Djj + γ)(Dj′j′ + γ)
− 1

d+ γ




2

(79)

≤ (d+ γ)2

2n2γ6




n∑

j=1

(Djj + γ)2
n∑

j′=1

(Dj′j′ − d)2 + n(d+ γ)2
n∑

i=1

(Djj − d)2


 . (80)

To upper bound (79) by (80), we have used the simplification trick in the proof of (Le et al.,
2017, Theorem 4.1) which we now recall. Firstly, the second factor of (79) can be upper
bounded in the following way. For 1 ≤ j, j′ ≤ n,

∣∣∣∣∣∣
1√

(Djj + γ)(Dj′j′ + γ)
− 1

d+ γ

∣∣∣∣∣∣

=
|(Djj + γ)(Dj′j′ + γ)− (d+ γ)2|

(Djj + γ)(Dj′j′ + γ)(d+ γ) +
√

(Djj + γ)(Dj′j′ + γ)(d+ γ)2

≤ |(Djj + γ)(Dj′j′ + γ)− (d+ γ)2|
2γ3

=
|(Djj + γ)(Dj′j′ + γ)− (d+ γ)(Djj + γ) + (d+ γ)(Djj + γ)− (d+ γ)2|

2γ3

=
|(Djj − d)(Dj′j′ + γ) + (d+ γ)(Djj − d)|

2γ3
, (81)

where the inequality comes from the fact that Djj + γ ≥ γ. Secondly, we use the inequality
(a+ b)2 ≤ 2(a2 + b2) and we recall that by definition, we can bound the first factor of (79)

by |E(Aγ)jj′ | ≤ d+γ
n . This finally leads to (80).

Now we will bound each term of (80). Using Lemma 45, we have, for any r ≥ 1, with
probability at least 1− e−2r,

n∑

j=1

(Djj − d)2 ≤ 2C ′r2nd(1− η) ≤ 2C ′r2nd.
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If this holds, then the first term of (80) is upper bounded by

n∑

i=1

(Djj + γ)2
n∑

j=1

(Dj′j′ − d)2 ≤


2

n∑

j=1

(Djj − d)2 + 2n(d+ γ)2




n∑

j′=1

(Dj′j′ − d)2

≤ 2C ′r2nd
(
4C ′r2nd+ 2n(d+ γ)2

)

≤ 2C ′r2n(d+ γ)(1− η)
(
4C ′r2nd+ 2n(d+ γ)2

)

≤ 2C ′r2n(d+ γ)
(
2(2C ′ + 1)r2n(d+ γ)2

)

≤ C1r
4n2(d+ γ)3,

with C1 = 4C ′(2C ′ + 1). Similarly, we can bound the second term of (80)

n(d+ γ)2
n∑

j=1

(Djj − d)2 ≤ 2C ′(d+ γ)2r2n2d ≤ 2C ′(d+ γ)3r2n2.

Hence, we obtain the following upper bound of (80)

‖TN ‖2 ≤
(C1 + 2C ′)r4

2γ6
(d+ γ)5 =

C2r
4

γ

(
1 +

d

γ

)5

, (82)

with C2 = (C1 + 2C ′)/2.

2. Bounding the norm ‖SN ‖. We first note that

S = (Dγ)−1/2(Aγ − EAγ)(Dγ)−1/2 = (Dγ)−1/2(A− EA)(Dγ)−1/2.

We also recall that ‖Dγ‖ ≥ γ. Hence, using Lemma 43, with probability at least 1− 6n−r,
we have

‖SN ‖ ≤ ‖D−1/2
γ ‖ ‖(A− EA)N ‖ ‖D−1/2

γ ‖ ≤ ‖(A− EA)N ‖/γ ≤
Cr3/2

γ

√
d(1− η)

≤ Cr3/2

γ

√
d. (83)

Summing the bounds in (82) and (83), we have the intermediate result

‖(Lγ − Lγ)N ‖ ≤
Cr3/2

γ

√
d+

√
C2r

2

√
γ

(
1 +

d

γ

)5/2

(84)

≤ r2

√
γ


C

√
d

γ
+
√
C2

(
1 +

d

γ

)5/2

 (85)

≤ r2

√
γ

(C +
√
C2)

(
1 +

d

γ

)5/2

=
C3r

2

√
γ

(
1 +

d

γ

)5/2

, (86)

with C3 = C +
√
C2.
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3. Bounding
∥∥(Lγ)R

∥∥ ,
∥∥(Lγ)C

∥∥ ,
∥∥(Lγ)R

∥∥ ,
∥∥(Lγ)C

∥∥. Using the proof of Lemma 43,

each row of AR has at most 128r non-zeros entries and intersects at most 4n/d columns.
Thus, for all 1 ≤ j ≤ n

n∑

j′=1

[
(A+

γ +A−γ )R
]
jj′
≤ 128r +

4γ

d
= γ

(
128r

γ
+

4

d

)
≤
∑

j′

[
A+
γ +A−γ

]
jj′

(
128r

γ
+

4

d

)
,

as
∑

j′ [A
+
γ +A−γ ]jj′ ≥ n×

(
γ+

n + γ−
n

)
= γ. We can thus apply Lemma 46 with ε = 128r

γ + 4
d
,

and we arrive at

‖(Lγ)R‖ ≤
√

128r

γ
+

4

d
.

We also obtain the same bound for ‖(Lγ)C‖. Similarly, we have
∑

j′
[
E[A+

γ ] + E[A−γ ]
]
jj′

=

(n− 1)p+ γ = d+ γ ≥ γ and

n∑

j′=1

[
(E[A+

γ ] + E[A−γ ])R
]
jj′
≤ 4

np

d
+

4γ

d
≤ 8 +

4γ

d
= γ

(
8

γ
+

4

d

)

≤
∑

j′

[
E[A+]γ + E[A−]γ

]
jj′

(
8

γ
+

4

d

)
.

We arrive at ‖(Lγ)R‖ ≤
√

8
γ + 4

d
, and finally, we also have ‖(Lγ)C‖ ≤

√
8
γ + 4

d
.

4. Bounding ‖Lγ −Lγ‖. Summing up the bounds obtained in the first three steps, with
probability at least 1− e−2r − 6n−r ≥ 1− 7e−2r, we finally arrive at the bound

‖Lγ − Lγ‖ ≤
C3r

2

√
γ

(
1 +

d

γ

)5/2

+ 2

√
128r

γ
+

4

d
+ 2

√
8

γ
+

4

d

≤ C3r
2

√
γ

(
1 +

d

γ

)5/2

+ 4

√
128r

γ
+

4

d

≤ C3r
2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r√
γ

+
8√
d
.

This bound also provides easily a bound on the norm of Lγ − Lsym.

Corollary 49 (Error bound of the regularized Laplacian) With the notations of Theorem 8
and Theorem 11, and γ = γ+ + γ−, we have

‖Lγ − Lsym‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r√
γ

+
8√
d

+
γ

d+ γ
=: ∆L(γ, d). (87)

In particular, for the choice γ = d
7/8

, if p ≥ 2/n, we obtain

‖Lγ − Lsym‖ ≤
(
128Cr2 + 1

)
d
−1/8

.
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Proof By triangular inequality,

‖Lγ − Lsym‖ ≤ ‖Lγ − Lγ‖+ ‖Lγ − Lsym‖.

For the second term on the RHS, we have

‖Lγ − Lsym‖ =

∥∥∥∥
1

d+ γ
EA− 1

d
EA
∥∥∥∥ =

γ

d(d+ γ)
‖EA‖ ≤ γ

d+ γ
. (88)

The last inequality comes from the fact that ‖EA‖ ≤ (n − 1)p(1 − η) ≤ d. Thus, by
summing the bound obtained in Lemma 48 and (88), we arrive at the expected result in
(87). Moreover, if γ ≤ d, since C > 1, one can readily verify that

‖Lγ − Lsym‖ ≤ 128Cr2d
5
2

γ3
+
γ

d
. (89)

If γ = d
7/8

, then γ ≤ d holds provided d ≥ 1 or equivalently, p ≥ 1
n−1 . The latter is ensured

if p ≥ 2/n (since n ≥ 2). Plugging this in (89), we then obtain the bound

‖Lγ − Lsym‖ ≤
(
128Cr2 + 1

)
d
−1/8

.

This concludes the proof of Corollary 49 and Theorem 11.

5.6 Error bound on the eigenspaces and mis-clutering rate in the sparse
regime

This section provides a bound on the misalignment error of the eigenspaces of Lγ and Lsym,
which then leads to a bounds on the mis-clustering rate of the k-means clustering step.

5.6.1 Eigenspace alignment

Using the bound from Corollary 49, we can perform the same analysis of the eigenspaces of
Lγ and Lsym, as in Theorem 8, which will prove Theorem 13. We apply, once again, Weyl’s
inequality and the Davis-Kahan theorem to bound the distance between the two subspaces
R(Vk−1(Lγ)) and R(Vk−1(Lsym)). We have that

λn−k+1(Lγ)− λn−k+2(Lsym) ≥ λgap − ‖Lγ − Lsym‖ ≥ λgap −∆L(γ, d),

using Corollary 49. If γ = γ0d
7/8

, then

∆L(γ, d) ≤
(
128Cr2 + 1

)
(d)−1/8 :=

C4

d
1/8

,

with C4 = 128Cr2 + 1. For 0 < δ < 1/2, we would like to ensure that

λgap −∆L(γ, d) ≥ λgap
(

1− δ

2

)
.
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Hence, using the lower bound on the eigengap from Lemma 39, it suffices that

λgap −
C4

d
1/8
≥ λgap

(
1− δ

2

)
⇐⇒ d

1/8 ≥ 2kC4

δ(1− 2η)
⇐⇒ p ≥

(
2kC4

δ(1− 2η)

)8 1

n− 1
.

Thus, the condition p ≥
(

2kC4
δ(1−2η)

)8
2
n is sufficient. Applying the Davis-Kahan theorem, we

arrive at

‖(I − Vk−1(Lγ)Vk−1(Lγ)T )Vk−1(Lsym)‖ ≤ δλgap/2

λgap(1− δ/2)
≤ δ/2

1− δ/2 ≤ δ,

and using once again Proposition 57, there exists an orthogonal matrix O ∈ R(k−1)×(k−1)

such that

‖Vk−1(Lγ)−ΘRk−1O‖ ≤ 2δ.

5.7 Proof of Theorem 16

In this section, we finally prove our result on the clustering performance of the Signed
Laplacian and regularized Laplacian algorithms. The proof essentially relies on the following
lemma, which provides a lower bound on the distance between two rows of ∆−1Rk−1, with
∆ = diag(

√
ni).

Lemma 50 For all 1 ≤ i 6= i′ ≤ k, we have ‖(Rk−1)i∗ − (Rk−1)i′∗‖ ≥ 1. Moreover, for
i ∈ [k], it holds that

min
i,i′∈[k],i 6=i′
j∈Ci,j′∈Ci′

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2 ≥ 2

3ni
.

Proof Recall from (69) that C = p(1− 2η)uuT + diag(di), with di = u2
i +
(

1 + p

d
(1− 2η)

)

and ui =
√

ni
d
, 1 ≤ i ≤ k. Moreover, from (70), C = RΛR with R = [Rk−1 γ1] and γ1 the

largest eigenvector of C. We first show that the entries of γ1 are necessarily of the same
sign, i.e. (γ1)i ≥ 0, ∀i or (γ1)i ≤ 0, ∀i. In fact, by definition, γ1 is the solution of

max
‖v‖=1

vTCv = max
‖v‖=1

p(1− 2η)(vu)2 +

k∑

i=1

div
2
i . (90)

Since all the entries of u are positive, it is easy to see that any solution γ1 of (90) necessarily
has entries of the same sign (otherwise you could replace some (γ1)i) by −(γ1)i and increase
the objective function).

Let i 6= i′ ∈ [k]. As R has orthonormal rows,

〈Ri∗, Ri′∗〉 = 0 ⇐⇒ 〈(Rk−1)i∗, (Rk−1)i′∗〉+ (γ1)i(γ1)i′︸ ︷︷ ︸
≥0

= 0

=⇒ 〈(Rk−1)i∗, (Rk−1)i′∗〉 ≤ 0.
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Hence,

‖(Rk−1)i∗ − (Rk−1)i′∗‖2 = ‖(Rk−1)i∗‖2 +
∥∥(Rk−1)i′∗

∥∥2 − 2 〈(Rk−1)i∗, (Rk−1)i′∗〉︸ ︷︷ ︸
≤0

≥ ‖(Rk−1)i∗‖2 + ‖(Rk−1)i′∗‖2

= 2− [(γ1)2
i + (γ1)2

i′ ]︸ ︷︷ ︸
≤1

≥ 1.

In particular, this implies that Rk−1 has k distinct rows. Now let j, j′ ∈ [n] such that j ∈ Ci
and j′ ∈ Ci′ . Recalling that with ∆ = diag(

√
ni), Vk−1(Lsym) = ΘRk−1 = Θ∆∆−1Rk−1 =

Θ̂∆−1Rk−1, we have

{
(∆−1Rk−1)j∗ = 1√

ni
(Rk−1)i∗,

(∆−1Rk−1)j′∗ = 1√
ni′

(Rk−1)i′∗.

Hence,

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2

=
1

ni
‖(Rk−1)i∗‖2 +

1

ni′
‖(Rk−1)i′∗‖2 − 2

1√
nini′

〈(Rk−1)i∗, (Rk−1)i′∗〉︸ ︷︷ ︸
≤0

≥ 1

ni
‖(Rk−1)i∗‖2 +

1

ni′
‖(Rk−1)i′∗‖2

≥ 1

ni
+

1

ni′
− (γ1)2

i

ni
− (γ1)2

i′

n′i

≥ 1

ni
+

1

ni′
− (γ1)2

i + (γ1)2
i′

ns
≥ 1

ni
+

1

ni′
− 1

ns
≥ 1

ni
+

1

nl
− 1

ns
.

Besides, we know that 1
nl ≥

ρ
ni

and 1
ns ≤ 1

ρni
. Therefore, we obtain the bound

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2 ≥ 1

ni

(
1 + ρ− 1

ρ

)
.

We will now prove that with the condition
√
ρ > 1− 1

4k(2+
√
k)

, we have 1 + ρ− 1
ρ ≥ 2

3 and

this will lead to the final result. First, we note that ρ > 1− 1
2k(2+

√
k)

and 2k(2 +
√
k) ≥ 12,

and 2k(2+
√
k)

2k(2+
√
k)−1

≤ 5
4 for k ≥ 2. Thus,

1 + ρ− 1

ρ
≥ 2− 1

2k(2 +
√
k)
− 2k(2 +

√
k)

2k(2 +
√
k)− 1

≥ 2− 1

12
− 5

4
=

2

3
.
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Remark 51 In the equal-size case ni = n
k ,∀1 ≤ i ≤ k, since γ1 = χ1, Rk−1 has orthogonal

rows and

‖(Rk−1)i∗ − (Rk−1)i′∗‖2 = ‖Ri∗ −Ri′∗‖2 = 2.

This implies that

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2

=
2k

n
.

From Lemma 50, we have that ∀1 ≤ i ≤ k, min
i,i′∈[k],i 6=i′
j∈Ci,j′∈Ci′

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2 ≥

2
3ni
. Hence with δ2

i := 2
3ni

and using Lemma 35, we obtain

k∑

i=1

δ2
i |Si| =

k∑

i=1

2|Si|
3ni

≤ 4(4 + 2ξ)
∥∥Vk−1(Lsym)− Vk−1(Lsym)

∥∥2

F

≤ 4(16 + 8ξ)(k − 1)
∥∥Vk−1(Lsym)− Vk−1(Lsym)O

∥∥2

≤ 8(16 + 8ξ)(k − 1)δ2,

using Theorem 8 . Moreover, we have

∥∥Vk−1(Lsym)− Vk−1(Lsym)
∥∥2

F
≤ 2(k − 1)

∥∥Vk−1(Lsym)− Vk−1(Lsym)O
∥∥2

≤ 8(k − 1)δ2

< 8(k − 1) · 1

12(16 + 8ξ)(k − 1)

=
niδ

2
i

16 + 8ξ
, ∀1 ≤ i ≤ k.

Therefore, we can use the second part of Lemma 35 and finally conclude that

k∑

i=1

|Si|
ni
≤ 96(2 + ξ)δ2.

For the regularized Laplacian algorithm, the same computations are valid using the
result from Theorem 13.

6. Numerical experiments

In this section, we report on the outcomes of several numerical experiments that compare our
two proposed algorithms with a suite of state-of-the-art methods from the signed clustering
literature. We test the performances of the different algorithms on signed graphs drawn
from our Signed Stochastic Block Model, as well as on three real-world data sets that are
standard benchmarks in the signed networks literature. We rely on a previous Python
implementation of SPONGE and Signed Laplacian (along with their respective normalized
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versions), and of other methods from the literature3, made available in the context of
previous work of a subset of the authors of the present paper (Cucuringu et al., 2019). More
specifically, we consider algorithms based on the adjacency matrix A, the Signed Laplacian
matrix L, its symmetrically normalized version Lsym (Kunegis et al., 2010), SPONGE and
its normalized version SPONGEsym, and the two algorithms introduced in Chiang et al.
(2012) that optimize the Balanced Ratio Cut and the Balanced Normalized Cut objectives.

We note that once the low-dimensional embedding has been computed by any of the
considered algorithms, the final partition is obtained after running k-means++ (Arthur
and Vassilvitskii, 2007), which improves over the popular k-means algorithm by employing
a careful seeding initialization procedure and is the typical choice in practice.

6.1 Grid search for choosing the parameters τ+, τ−

In the following experiments, the Signed Stochastic Block Model will be sampled with the
following set of parameters

• the number of nodes n = 5000,

• the number of communities k ∈ {3, 5, 10, 20},

• the relative size of communities (defined in Section 3.2) ρ = 1 (equal-size clusters)
and ρ = 1/k (non-equal size clusters).

For the edge density parameter p, we choose two sparsity regimes, Regime I and Regime
II, where Regime II is strictly harder than Regime I, in the sense than for the same value
of k, the edge density in Regime I is significantly larger compared to Regime II. The noise
level η is chosen such that the recovery of the clusters is unsatisfactory for a subset of pairs
of parameters (τ+, τ−). For each set of parameters, we sample 20 graphs from the SSBM
and average the resulting ARI.

Our experimental setup is summarized in the following steps.

1. Select a set of parameters (k, ρ, p, η) from the regime of interest;

2. Sample a graph from the SSBM(n, k, ρ, p, η);

3. Extract the largest connected component of the measurement graph (regardless of the
sign of the edges);

4. If the size of the latter is too small (< n/2), resample a graph until successful;

5. For each pair of parameters (τ+, τ−), compute the k-dimensional embeddings using the
SPONGEsym algorithm (with the implementation in the signet package (Cucuringu
et al., 2019));

6. Obtain a partition of the graph into k clusters, and compute the ARI between this
estimated partition and the ground-truth clusters using the implementation in scikit-
learn of the k-means++ algorithm;

3Python implementations of a suite of algorithms for signed clustering are available at https://github.
com/alan-turing-institute/signet
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7. Repeat 20 times the steps 2−7 mentioned above, and record the average performance
over the 20 runs.

The results in the dense regimes are reported in Figure 1, while those for the sparse
regimes in Figure 2. This set of results indicate that the gradient of the ARI in the space
of parameters (τ+, τ−) is larger when the cluster sizes are very unbalanced and the edge
density is low. We attribute this to the fact that, for suitably chosen values, the parameters
(τ+, τ−) are performing a form of regularization of the graph that can significantly improve
the clustering performance.

6.2 Comparison of a suite of spectral methods

This section performs a comparison of the performance of the following spectral clustering
algorithms. We rely on the same notation used in Cucuringu et al. (2019), when mentioning
the names of the SPONGE algorithms, namely SPONGE and SPONGEsym. The complete
list of algorithms compared is as follows.

• the combinatorial (un-normalized) Signed Laplacian L = D −A,

• the symmetric Signed Laplacian Lsym = I −D−1/2
AD

−1/2
,

• SPONGE and SPONGEsym with a suitably chosen pair of parameters (τ+, τ−)

• the Balanced Ratio Cut LBRC = D+ −A

• the Balanced Normalized Cut LBNC = D−1/2(D+ −A)D−1/2.

For the combinatorial and symmetric Signed Laplacians L and Lsym, we compute (k−1)-
dimensional embeddings before applying the k-means++ algorithm. For all other methods,
we use the k smallest eigenvectors.

In this experiment, we fix the parameters n = 5000, k ∈ {3, 5, 10, 20} and p, η in a certain
set, and for each plot, we vary the aspect ratio ρ ∈ [0, 1]. The relative proportions of the
classes si = ni

n are chosen according to the following procedure

1. Fix s′1 = 1/k, pick a value for ρ and compute s′k = s′1/ρ.

2. For i ∈ [2, k − 1], sample s′i from the uniform distribution in the interval [s′1, s
′
k].

3. Compute the proportions si =
s′i∑k
i=1 s

′
i

, and then sample the graph from the resulting

SSBM.

4. Repeat 20 times the steps 1-3 mentioned above, and record the average performance
over the 20 runs.

The results are reported in Figure 3. We note that in almost all settings, the SPONGEsym
algorithm outperforms the other clustering methods, in particular for low values of the as-
pect ratio ρ. With the exception of the symmetric Signed Laplacian, most methods seem
to perform worse when the aspect ratio is higher, meaning that the clusters are more un-
balanced, which is a more challenging regime.
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Regime
I

Equal-size clusters Unequal-size clusters

k = 3

k = 5

k = 10

k = 20

Figure 1: Heatmaps of the Adjusted Rand Index between the ground truth and the par-
tition obtained using the SPONGEsym algorithm with varying regularization parameters
(τ+, τ−), for a SSBM in Regime I, with n = 5000 and k = {3, 5, 10, 20} clusters of equal
sizes (left column) and unequal sizes (right column).
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Regime
II

Equal-size clusters Unequal-size clusters

k = 3

k = 5

k = 10

k = 20

Figure 2: Heatmaps of the Adjusted Rand Index between the ground truth and the partition
obtained using the SPONGEsym algorithm with varying regularization parameters (τ+, τ−),
for a SSBM in Regime II with n = 5000 and k = {3, 5, 10, 20} clusters of equal sizes (left
column) and unequal sizes (right column).
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Figure 3: Performance of the various clustering algorithms, as measured by the Adjusted
Rand Index, versus the aspect ratio ρ for a SSBM with k = {3, 5, 10, 20} for n = 5000. For
larger number of clusters, k = 10 and especially k = 20, SPONGEsym is essentially the
only algorithm able to produce meaningful results, and clearly outperforms all the other
methods. Note that no regularization has been used throughout this set of experiments.

6.3 Performance of the regularized algorithms in the sparse regime

In this batch of experiments, we study how the regularized Signed Laplacian and the
SPONGEsym sparse algorithms perform. We consider sparse settings of the SSBM (p ≤
0.003) with n = 5000 nodes. For the SPONGEsym algorithm, we fix the parameters (τ+, τ−)
in each setting. Our parameter selection procedure is to chose a pair of parameters that
leads to a “good” recovery of the clusters for the unregularized algorithm (see Figure 2). We
perform a grid search on the parameters (γ+, γ−) for each of the two regularized algorithms
(see Figure 4 and Figure 5). For the regularized Signed Laplacian algorithm, we observe
distinct regions of performance on the space of parameters (γ+, γ−). This is not predictable
from our theoretical results, where the positive and negative regularization parameters play
symmetric roles. We conjecture this to be due to the difference of density of the positive
and negative subgraphs in our signed random graph model. For the SPONGEsym sparse
algorithm, we note that the gradient of performances in the heatmaps (Figure 4, Figure 5) is
similar to what was reported in Figure 2, which could be due to the fact that the parameters
(τ+, τ−) already have a regularization effect.
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Sparse
Regime
k=3

Lγ SPONGEsym

Figure 4: Heatmaps of the Adjusted Rand Index between the ground truth and the partition
obtained using the Lγ and SPONGEsym algorithm with fixed parameters (τ+, τ−) and
varying regularization parameters (γ+, γ−), for a SSBM in two sparse regimes, with
n = 5000 and k = 3 clusters.
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Sparse
Regime
k=5

Lγ SPONGEsym

Figure 5: Heatmaps of the Adjusted Rand Index between the ground truth and the partition
obtained using the Lγ and SPONGEsym algorithm with fixed parameters (τ+, τ−) and
varying regularization parameters (γ+, γ−), for a SSBM in two sparse regimes, with
n = 5000 and k = 5 clusters.
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Dataset Number of nodes Edge density

Wikipedia 11, 259 2.2× 10−3

Slashdot 82, 140 1.3× 10−4

Bitcoin 5, 875 3.6× 10−3

Table 1: Characteristics of the three benchmark data sets.

6.4 Performances on real-world data sets

Finally, we measure the performances of our unregularized and regularized algorithms on
three benchmark data sets in the signed clustering problem: the Wikipedia Requests for
Adminship, the Slashdot Zoo and Bitcoin data sets from Leskovec and Krevl (2014). These
networks are large and sparse (see Table 1 for a summary of the number of nodes and edge
densities). Since no ground-truth clusters are available for these networks, we measure the
quality of the clustering using an objective score, namely the normalized adjacency score.
This metric is defined as the sum of ratios of the number of positive edges over the number
of negative edges within each cluster. We assume that a higher value of this score indicates
a better partition of the node set. Our results are reported in Figure 6. We observe that
the regularized versions of our algorithms, namely SPONGEsym and the Symmetric Signed
Laplacian, perform much better that their respective unregularized versions, confirming
the fact that regularization improves the performance of spectral algorithms in the sparse
regime. We also note that the standard Spectral Clustering algorithm based on the signed
adjacency matrix - denoted by A in the figure legend - also performs well on these real-world
data sets.

7. Concluding remarks and future research directions

In this work, we provided a thorough theoretical analysis of the robustness of the SPONGEsym
and symmetric Signed Laplacian algorithms, for graphs generated from a Signed Stochastic
Block Model. Under this model, the sign of the edges (rather than the usual discrepancy
of the edge densities across clusters versus within clusters) is an essential attribute which
induces the underlying cluster structure of the graph. We proved that our signed clustering
algorithms, based on suitably defined matrix operators, are able to recover the clusters un-
der certain favorable noise regimes, and under two regimes of edge sparsity. Although the
sparse setting is particularly challenging, our algorithms based on regularized graphs per-
form well, provided that the regularization parameters are suitably chosen. We also expect
that the same type of analysis could be adapted to other probabilistic generative models for
signed networks. For instance, extensions of the unsigned Stochastic Block Models, such as
the Degree-Corrected Stochastic Block Model, that includes degree-heterogeneity could be
considered, as well extensions to the setting of polarized communities, in the spirit of those
proposed by Bonchi et al. (2019) and Xiao et al. (2020).

One theoretical question that has been not been answered yet relates to the choice of
the positive and negative regularization parameters γ+, γ−. Having a data-driven approach
to tune the regularization parameters would be of great use in many practical applications
involving very sparse graphs. An interesting future line of work would be to study the latest
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Figure 6: Objective clustering scores attained by the different spectral clustering algorithms,
as we vary the number of clusters k on the Wikipedia (top left panel), the Bitcoin (top right
panel), and Slashdot (bottom panel) data sets.

regularizing techniques based on powers of adjacency matrices or certain graph distance
matrices, in the context of sparse signed graphs.

Yet another approach is to consider a pre-processing stage that performs low-rank ma-
trix completion on the adjacency matrix, whose output could subsequently be used as input
for our proposed algorithms. An extension of the Cheeger inequality to the setting of signed
graphs, analogue to the generalized Cheeger inequality previously explored in Cucuringu
et al. (2016), is another interesting research question. Extensions to the time-dependent
setting and online clustering (Liberty et al., 2016; Mansfield et al., 2018), or when covari-
ate information is available (Yan and Sarkar, 2020), are further research directions worth
exploring, well motivated by real world applications involving signed networks.
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Appendix A. Useful concentration inequalities

A.1 Chernoff bounds

Recall the following Chernoff bound for sums of independent Bernoulli random variables.

Theorem 52 ((Mitzenmacher and Upfal, 2005, Corollary 4.6)) Let X1, . . . , Xn be
independent Bernoulli random variables with P [Xi = 1] = pi. Let X =

∑n
i=1Xi and µ =

E[X]. For δ ∈ (0, 1), it holds true that

P [|X − µ| ≥ δµ] ≤ 2 exp(−µδ2/3).

A.2 Spectral norm of random matrices

We will make use of the following result for bounding the spectral norm of symmetric
matrices with independent, centered and bounded random variables.

Theorem 53 ((Bandeira and van Handel, 2016, Corollary 3.12, Remark 3.13)) Let
X be an n×n symmetric matrix whose entries Xij (i ≤ j) are independent, centered random
variables. There there exists for any 0 < ε ≤ 1/2 a universal constant cε such that for every
t ≥ 0,

P
[
‖X‖ ≥ (1 + ε)2

√
2σ̃ + t

]
≤ n exp

(
− t2

cεσ̃2∗

)
(91)

where

σ̃ := max
i

√∑

j

E[X2
ij ], σ̃∗ := max

i,j
‖Xij‖∞ .

Note that it suffices to employ upper bound estimates on σ̃, σ̃∗ in (91). Indeed, if σ̃ ≤ σ̃(u)

and σ̃∗ ≤ σ̃(u)
∗ , then

P
[
‖X‖ ≥ (1 + ε)2

√
2σ̃(u) + t

]
≤ P

[
‖X‖ ≥ (1 + ε)2

√
2σ̃ + t

]
≤ n exp

(
− t2

cεσ̃2∗

)

≤ n exp

(
− t2

cε(σ̃
(u)
∗ )2

)
.

A.3 A graph decomposition result

The following graph decomposition result for inhomogeneous Erdős-Rényi graphs was es-
tablished in (Le et al., 2017, Theorem 2.6).

Theorem 54 (Le et al., 2017, Theorem 2.6) Let A be a directed adjacency matrix sampled
from an inhomogeneous Erdős-Rényi G(n, (pjj′)j,j′) model and let d = nmaxj,j′ pjj′. For
any r ≥ 1, with probability at least 1 − 3n−r, the set of edges [n] × [n] can be partitioned
into three classes N ,R and C, such that

1. the signed adjacency matrix concentrates on N
‖(A− EA)N ‖ ≤ Cr3/2

√
d,

2. R (resp. C) intersects at most n/d columns (resp. rows) of [n]× [n],

3. each row (resp. column) of AR (resp. AC) have at most 32r non-zero entries.
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Appendix B. Matrix perturbation analysis

In this section, we recall several standard tools from matrix perturbation theory for studying
the perturbation of the spectra of Hermitian matrices. The reader is referred to Stewart
and Sun (1990) for a more comprehensive overview of this topic.

Let A ∈ Cn×n be Hermitian with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding
eigenvectors v1, v2, . . . , vn ∈ Cn. Let Ã = A + W be a perturbed version of A, with the
perturbation matrix W ∈ Cn×n being Hermitian. Let us denote the eigenvalues of Ã and
W by λ̃1 ≥ · · · ≥ λ̃n, and ε1 ≥ ε2 ≥ · · · ≥ εn, respectively.

To begin with, one can quantify the perturbation of the eigenvalues of Ã with respect to
the eigenvalues of A. Weyl’s inequality (Weyl, 1912) is a very useful result in this regard.

Theorem 55 (Weyl’s Inequality (Weyl, 1912)) For each i = 1, . . . , n, it holds that

λi + εn ≤ λ̃i ≤ λi + ε1. (92)

In particular, this implies that λ̃i ∈ [λi − ‖W‖ , λi + ‖W‖].

One can also quantify the perturbation of the subspace spanned by eigenvectors of A,
which was established by Davis and Kahan (1970). Before introducing the theorem, we
need some definitions. Let U, Ũ ∈ Cn×k (for k ≤ n) have orthonormal columns respectively,
and let σ1 ≥ · · · ≥ σk denote the singular values of U∗Ũ . Also, let us denote R(U) to
be the range space of the columns of U , and similarly for R(Ũ). Then the k principal
angles between R(U),R(Ũ) are defined as θi := cos−1(σi) for 1 ≤ i ≤ k, with each θi ∈
[0, π/2]. It is usual to define k×k diagonal matrices Θ(R(U),R(Ũ)) := diag(θ1, . . . , θk) and
sin Θ(R(U),R(Ũ)) := diag(sin θ1, . . . , sin θk). Denoting ||| · ||| to be any unitarily invariant
norm (Frobenius, spectral, etc.), the following relation holds (see for eg., (Li, 1994, Lemma
2.1), (Stewart and Sun, 1990, Corollary I.5.4)).

||| sin Θ(R(U),R(Ũ))||| = |||(I − Ũ Ũ∗)U |||.

With the above notation in mind, we now introduce a version of the Davis-Kahan theorem
taken from (Yu et al., 2015, Theorem 1) (see also (Stewart and Sun, 1990, Theorem V.3.6)).

Theorem 56 (Davis-Kahan) Fix 1 ≤ r ≤ s ≤ n, let d = s − r + 1, and let U =
(ur, ur+1, . . . , us) ∈ Cn×d and Ũ = (ũr, ũr+1, . . . , ũs) ∈ Cn×d. Write

δ = inf
{∣∣∣λ̂− λ

∣∣∣ : λ ∈ [λs, λr], λ̂ ∈ (−∞, λ̃s+1] ∪ [λ̃r−1,∞)
}

where we define λ̃0 =∞ and λ̃n+1 = −∞ and assume that δ > 0. Then

||| sin Θ(R(U),R(Ũ))||| = |||(I − Ũ Ũ∗)U ||| ≤ |||W |||
δ

.

For instance, if r = s = j, then by using the spectral norm ‖·‖, we obtain

sin Θ(R(ṽj),R(vj)) =
∥∥(I − vjv∗j )ṽj

∥∥ ≤ ‖W‖
min

{∣∣∣λ̃j−1 − λj
∣∣∣ ,
∣∣∣λ̃j+1 − λj

∣∣∣
} . (93)
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Finally, we recall the following standard result which states that given any pair of k-
dimensional subspaces with orthonormal basis matrices U, Ũ ∈ Rn×k, there exists an align-
ment of U, Ũ with the error after alignment bounded by the distance between the subspaces.
We provide the proof for completeness.

Proposition 57 Let U, Ũ ∈ Rn×k respectively consist of orthonormal vectors. Then there
exists a k × k rotation matrix O such that

∥∥∥Ũ − UO
∥∥∥ ≤ 2

∥∥∥(I − UUT )Ũ
∥∥∥ .

Proof Write the SVD as UT Ũ = V Σ(V ′)T , where we recall that the ith largest singular
value σi = cos θi with θi ∈ [0, π/2] denoting the principal angles between R(U) and R(Ũ).
Choosing O = V (V ′)T , we then obtain

∥∥∥Ũ − UV (V ′)T
∥∥∥ ≤

∥∥∥Ũ − UUT Ũ
∥∥∥+

∥∥∥UUT Ũ − UV (V ′)T
∥∥∥

=
∥∥∥(I − UUT )Ũ

∥∥∥+
∥∥∥UT Ũ − V (V ′)T

∥∥∥

=
∥∥∥(I − UUT )Ũ

∥∥∥+ ‖I − Σ‖

≤ 2
∥∥∥(I − UUT )Ũ

∥∥∥ ,

where the last inequality follows from the fact ‖I − Σ‖ = 1− cos θk ≤ sin θk.

Appendix C. Summary of main technical tools

This section collects certain technical results that were used in the course of proving our
main results.

Proposition 58 ((Bhatia, 1996, Theorem X.1.1)) For matrices A,B � 0,

∥∥∥A1/2 −B1/2
∥∥∥ ≤ ||A−B||1/2

holds as (·)1/2 is operator monotone.

Proposition 59 For symmetric matrices A+, A−, B+ and B− where A−, B− � 0, the
following holds.

∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2B+(B−)−1/2
∥∥∥

≤
∥∥(A−)−1

∥∥∥∥A+
∥∥
(∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥
2

+ 2
∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥
)

+
∥∥(B−)−1

∥∥∥∥A+ −B+
∥∥

≤
∥∥(A−)−1

∥∥∥∥A+
∥∥
(∥∥(B−)−1

∥∥∥∥(B−)− (A−)
∥∥+ 2

∥∥∥(B−)−1/2
∥∥∥
∥∥(B−)− (A−)

∥∥1/2
)

+
∥∥(B−)−1

∥∥∥∥A+ −B+
∥∥ .

76



Regularized spectral methods for clustering signed networks

Proof∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2B+(B−)−1/2
∥∥∥

=
∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2A+(B−)−1/2

+ (B−)−1/2A+(B−)−1/2 − (B−)−1/2B+(B−)−1/2
∥∥∥

≤
∥∥∥(B−)−1/2(A+ −B+)(B−)−1/2

∥∥∥+
∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2A+(B−)−1/2

∥∥∥ .

Now, we bound the two terms separately. The first term is easy to bound.
∥∥∥(B−)−1/2(A+ −B+)(B−)−1/2

∥∥∥ ≤
∥∥∥(B−)−1/2

∥∥∥
∥∥A+ −B+

∥∥
∥∥∥(B−)−1/2

∥∥∥
=
∥∥(B−)−1

∥∥∥∥A+ −B+
∥∥ . (94)

To bound the second term, we do the following manipulations,
∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2A+(B−)−1/2

∥∥∥

=
∥∥∥(A−)−1/2A+(A−)−1/2 − (A−)−1/2(A−)1/2(B−)−1/2A+(B−)−1/2(A−)1/2(A−)−1/2

∥∥∥

=
∥∥∥(A−)−1/2

(
A+ − (A−)1/2(B−)−1/2A+(B−)−1/2(A−)1/2

)
(A−)−1/2

∥∥∥

=
∥∥∥(A−)−1/2

(
A+ −

(
(A−)1/2(B−)−1/2 − I + I

)
A+
(

(B−)−1/2(A−)1/2 − I + I
))

(A−)−1/2
∥∥∥

=
∥∥∥(A−)

−1
2 ( ((A−)

1
2 (B−)−

1
2 − I)A+((B−)−

1
2 (A−)

1
2 − I) +A+((B−)−

1
2 (A−)

1
2 − I)

+ ((A−)
1
2 (B−)−

1
2 − I)A+ ) (A−)−

1
2

∥∥∥

≤
∥∥(A−)−1

∥∥∥∥A+
∥∥
(∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥
2

+ 2
∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥
)
. (95)

The first inequality of the lemma follows by adding (95) and (94). To see the second
inequality of the lemma, observe that,
∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥ =
∥∥∥(B−)−1/2((B−)1/2 − (A−)1/2)

∥∥∥

≤
∥∥∥(B−)−1/2

∥∥∥
∥∥∥(B−)1/2 − (A−)1/2

∥∥∥

≤
∥∥∥(B−)−1/2

∥∥∥
∥∥B− −A−

∥∥1/2
(using Proposition 58) . (96)

The second inequality of the lemma follows by substituting (96) in the first inequality of
the lemma.

Appendix D. Proofs from Section 4

Lemma 60 (Expression for C+
e & C−e )

C+
e = −pη n

d+
χ1χ

>
1 +

(
1 + τ− +

p

d+

(
1− η − n

k
(1− 2η)

))
I ,
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C−e = −p(1− η)
n

d−
χ1χ

>
1 +

(
1 + τ+ +

p

d−

(
η +

n

k
(1− 2η)

))
I .

It follows that can be written as C+
e = RΣ+R> and C−e = RΣ−R>, where R is a rotation

matrix, and

Σ+ =



(

1 + τ− + p
d+

(
1− η − n

(
η + 1−2η

k

)))
(

1 + τ− + p
d+

(
1− η − n

(
1−2η
k

)))
Ik−1


 ,

Σ− =



(

1 + τ+ + p
d−

(
η − n

(
1− η − 1−2η

k

)))
(

1 + τ+ + p
d−

(
η + n

(
1−2η
k

)))
Ik−1


 .

The above lemma shows that we know the spectrum of (C−)−1/2C+(C−)−1/2 exactly,
in the case of equal-sized clusters.
Proof [Proof of Lemma 22] From (17) it follows that,

λmax(C+) ≤ max
i∈[k]

(
1 + τ− +

p

d+
i

(1− η − ni(1− 2η))

)
.

The maximum is achieved for the smallest sized cluster. This shows the proof for (33).
The proof of (34) follows from the fact that in (24) we had decomposed the matrix

L−sym + τ+I as a block-diagonal matrix, with block of C−, α−1 In1−1, . . . , α
−
k Ink−1. Since

L−sym is a symmetric Laplacian, we know that λmin(L−sym + τ+I) = τ+. Also, α−i > τ+ for
i ∈ [k]. Thus the equation follows.

Appendix E. Spectrum of Signed Laplacians

This section extends some classical results for the unsigned Laplacian to the symmetric
Signed Laplacian and the regularized Laplacian.

Lemma 61 For all x ∈ Rn,

xTLsymx =
1

2

∑

j,j′
|Ajj′ |

(
xj√
dj
− sgn(Ajj′)

xj′√
dj′

)2

(97)

Moreover, the eigenvalues of Lsym and Lγ are in the interval [0, 2].

Proof Equation (97) is adapted from Proposition 5.2 from Gallier (2016) and is obtained

by replacing x by D
−1/2

x. The second part of the lemma comes from the fact that (a±b)2 ≤
2(a2 + b2). In fact, for x ∈ Rn such that ‖x‖ = 1, we have

xTLsymx ≤
∑

j,j′
|Ajj′ |

(
x2
j

dj
+
x2
j′

dj′

)

= 2
∑

j,j′
|Ajj′ |

x2
j

dj
= 2

∑

j

x2
j = 2.
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Similarly, we have

xTLγx ≤
∑

j,j′
|(Aγ)jj′|

(
x2
j

Djj + γ
+

x2
j′

Dj′j′ + γ

)

≤ 2
∑

j,j′
(|Ajj′ |+

γ

n
)

x2
j

Djj + γ

= 2
∑

j

(Djj + γ)x2
j

Djj + γ
= 2.

Moreover Lsym and Lγ are positive semi-definite, thus we can conclude that their eigenval-
ues are between 0 and 2.

79



  
Statement of Authorship for joint/multi-authored papers for PGR thesis 

To appear at the end of each thesis chapter submitted as an article/paper 
  
 

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis 
publications. For each publication there should exist a complete statement that is to be filled out and signed by the 
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper 
itself). 
 

  
 
Title of Paper 
 

Regularized spectral methods for clustering signed networks 
 

 
Publication Status 
 
 
 

  X Published                                  □ Accepted for Publication 

  □Submitted for Publication          □Unpublished and unsubmitted work written 
                         in a manuscript style 

 
Publication Details 
 
 
 

Cucuringu, M., Singh, A. V., Sulem, D., & Tyagi, H. (2021). Regularized spectral 
methods for clustering signed networks. J. Mach. Learn. Res., 22, 264-1. 

Student Confirmation 
 

 
Student Name: 
 

 
Deborah Sulem 

 
Contribution to the 
Paper 
 

I have analyzed the theoretic properties of the spectral clustering algorithm based on 
the symmetric signed Laplacian, as well as its regularized version. I have implemented 
the regularized algorithms and conducted the numerical experiments. 
 

 

Signature Deborah Sulem 
 
 

 
Date 

 
08/11/2022 

 

Supervisor Confirmation 

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the 
publication, and that the description described above is accurate. 
 

 
Supervisor name and title:  Professor Mihai Cucuringu 
 
 
Supervisor comments 
 
I confirm that Deborah has made a substantial contribution in line with her description above. 
 
 
 
 

Signature   
 
 

 
 
 

Date 

 
 
 

9 Nov 2022 

 
 
This completed form should be included in the thesis, at the end of the relevant chapter. 



5 | Graph similarity learning for detecting change-points in

dynamic networks

Submitted to the Machine Learning journal.

256



Springer Nature 2021 LATEX template

Graph similarity learning for change-point
detection in dynamic networks

Déborah Sulem1*, Henry Kenlay2, Mihai Cucuringu1,3,4

and Xiaowen Dong2

1Department of Statistics, University of Oxford.
2Department of Engineering Science,University of Oxford.

3Mathematical Institute, University of Oxford.
4The Alan Turing Institute, London, UK.

*Corresponding author(s). E-mail(s):
deborah.sulem@stats.ox.ac.uk;

Contributing authors: kenlay@robots.ox.ac.uk;
mihai.cucuringu@stats.ox.ac.uk; xdong@robots.ox.ac.uk;

Abstract
Dynamic networks are ubiquitous for modelling sequential graph-
structured data, e.g., brain connectome, population flows and messages
exchanges. In this work, we consider dynamic networks that are temporal
sequences of graph snapshots, and aim at detecting abrupt changes in their
structure. This task is often termed network change-point detection and
has numerous applications, such as fraud detection and physical motion
monitoring. Leveraging a graph neural network model, we design a method
to perform online network change-point detection that can adapt to the
specific network domain and localise changes with no delay. The main
novelty of our method is to use a siamese graph neural network architec-
ture for learning a data-driven graph similarity function, which allows to
effectively compare the current graph and its recent history. Importantly,
our method does not require prior knowledge on the network generative
distribution and is agnostic to the type of change-points; moreover, it can
be applied to a large variety of networks, that include for instance edge

1
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weights and node attributes. We show on synthetic and real data that our
method enjoys a number of benefits: it is able to learn an adequate graph
similarity function for performing online network change-point detection
in diverse types of change-point settings, and requires a shorter data
history to detect changes than most existing state-of-the-art baselines.

Keywords: dynamic networks, change-point detection, graph similarity
learning, siamese graph neural network.
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1 Introduction
The study of dynamic - or temporal, evolutionary, time-varying - networks
has become very popular in the last decade, with the increasing amount of
sequential data collected from structured and evolving systems, e.g. online
communication platforms (Kumar et al, 2019), co-voting networks (Wilson
et al, 2019), and fMRI data (Cribben and Yu, 2017). In fact, adding a time
component to graph-structured data leads to a richer representation and allows
more powerful analysis (Skarding et al, 2021). This is particularly important
when the network is governed by a non-stationary underlying process, which
dynamics undergo abrupt switches or breaks. For instance, social networks
appear with different characteristics at different times and can be dependent
on global temporal events such as terrorist attacks (Bourqui et al, 2009),
thus providing strong motivation for incorporating a temporal dimension in
the analysis. Detecting such structural breaks is a common task in diverse
applications, from brain connectivity state segmentation (Ondrus et al, 2021)
to phase discovery in financial correlation networks (Barnett and Onnela,
2016). Moreover, several real-world dynamic networks are structured around
functional groups or densely connected communities (see for instance Rossetti
and Cazabet (2018) for a review on community discovery in dynamic networks).
The evolution of such networks over time has been often measured by the
changes in these substructures - sometimes called community life-cycle - e.g.
growth, decay, merges, splits, etc.

For multivariate time series, change-point detection is a task that has been
widely studied in various settings (e.g., nonparametric (Zou et al, 2014), high-
dimensional (Wang and Samworth, 2018), and online (Wang et al, 2022)). The
equivalent task for dynamic networks is often termed network change-point
detection (NCPD) and has recently become a popular problem with numerous
successful applications in finance (Barnett and Onnela, 2016), neuroscience
(Ofori-Boateng et al, 2019), and transport networks (Yu et al, 2021). Depending
on the type of problem at hand, dynamic networks have been represented in
multiple ways, e.g., with contact sequences, interval graphs, graph snapshots
(see Holme and Saramäki (2012) for a precise review of concepts, models, and
applications). In this work, we will consider the discrete representation of
time-varying networks or snapshot networks: we denote a dynamic network
NI = {Gt}t∈I to be a sequence of graph snapshots, where I is an ordered set,
chosen as N>0 for simplicity, and each Gt, t ∈ I, is a (static) graph. We note
that Gt is a graph that can be directed, have edge weights or node attributes.
We define a change-point for the network N as a timestamp t ∈ N>0 such
that the generative distribution of the graphs before t, (G1, . . . , Gt−2, Gt−1) is
different from the one of graphs observed from t, (Gt, Gt+1, . . . ). More broadly,
a change-point for a dynamic network sequence is defined as a timestamp t
where a significant shift or deviation can be observed between Gt and the
preceding graph snapshots.
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In general, a dynamic network may contain multiple change-points and the
tasks of detecting and localising the latter therefore correspond to partitioning
the observation window [1, T ], T > 0 into K segments Ti = [τi−1, τi), 1 ≤ i ≤ K
with τ0 = 1, τK = T and 1 < τ1 < · · · < τK−1 < T , such that for each
i ∈ [K − 1], the generative distribution of the graph snapshots in Ti ∩ I is
the same, while it is different from the distribution generating the graphs in
Ti−1 ∩ I and Ti+1 ∩ I. The set of timestamps (τi)i=1,...,K−1 then corresponds
to the set of change-points. Intuitively, each temporal segment [τi, τi+1) can be
associated with a state of the underlying process, and each change-point τi can
be interpreted as a response of the system to an external event. Therefore, NCPD
shares some similarity with the task of anomaly detection in temporal graphs
Enikeeva and Klopp (2021). In an online setting, one aims to detect such change-
points while the graph snapshots are collected, and with minimal detection
delay, while in an offline setting, such analysis is conducted a posteriori on the
whole data sequence. For particular graph generative models, the feasibility of
the NCPD task and minimax rates of estimation have been analysed in dynamic
random graph models, e.g., Bernoulli networks (Padilla et al, 2019; Enikeeva
and Klopp, 2021; Yu et al, 2021; Wang and Samworth, 2018), graphon models
(Zhao et al, 2019), stochastic block models (Wilson et al, 2019; Wang et al,
2013) and generalized hierarchical random graphs (Peel and Clauset, 2015).
However, most real-world dynamic networks have heterogeneous properties,
e.g. sparsity, edge weights, node attributes or nonlinear dynamics (Li et al,
2017) - and neither their generative distribution nor the type of change that
can happen are known in advance.

Many existing methods for NCPD measure the discrepancy between two subsets
of graphs, and rely on a graph similarity function, kernel or distance for pairwise
graph comparisons (Chu and Chen, 2018; Cribben and Yu, 2017; Zhao et al,
2019; Gretton et al, 2008). However, it is often difficult to choose a priori
an appropriate measure of similarity (or dissimilarity) that can integrate all
the network characteristics, while being agnostic to the generating mechanism
or type of change-point. Consequently, without any domain knowledge, this
choice is often arbitrary, and result in poor performances (Chu and Chen,
2018; Enikeeva and Klopp, 2021; Kriege et al, 2020). Moreover, most online
NCPD methods require finely tuning several hyperparameters, such as detection
thresholds (Yu et al, 2021) and window sizes (Huang et al, 2020). To address
these challenges, we propose a change-point agnostic and end-to-end method for
online NCPD that in particular includes learning a data-driven graph similarity
function. Our method is therefore adaptive to the network distribution and
different types of change-points; in particular, it can easily incorporate general
graph features such as node attributes, edge weights or attributes, and can
adapt to sparse settings. In summary, our contributions are the following:

• We propose a graph similarity learning model based on a siamese graph
neural network able to handle any available node attributes, and demon-
strate how it can be leveraged for the online NCPD problem with an
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adequate training procedure. In particular, our learnt similarity function
is sensitive to both local and global displacements in the graph struc-
ture, and can effectively be employed in the context of change-point (and
anomaly) detection in temporal networks.

• We use an efficient online NCPD statistic with a short-term history of the
graph snapshots that avoids detection delays and requires little additional
hyperparameter tuning.

• We empirically demonstrate the advantages of our method on synthetic
networks with diverse types of change-points, as well as on two challenging
real-world data sets. We notably design a self-supervised training procedure
for data without ground-truth labelling of change-points.

Paper outline.
In Section 2, we succinctly review existing work on NCPD and present our
general setup and methodology in Section 3. In Section 4, we evaluate our
method on synthetic and real-world data sets and compare to several existing
NCPD baseline methods. Finally, we conclude in Section 5 with a summary of
our results and discuss possible future developments.

2 Related works
The study of dynamic networks, and in particular NCPD, is a relatively recent
area of research that has largely incorporated principles from change-point
detection in time series, especially in high-dimensional settings. Some NCPD
methods estimate the parameters of a network model, e.g., the generalised
hierarchical random graph (Peel and Clauset, 2015), a stochastic block model
(De Ridder et al, 2016) or the preferential attachment model (Bhamidi et al,
2018), and conduct hypothesis tests to detect changes in the estimated pa-
rameters. Other methods maximize a penalized likelihood function, e.g., based
on a non-homogeneous Poisson point process model (Corneli et al, 2018) or a
dynamic stochastic block model (Wilson et al, 2019; Bhattacharjee et al, 2020).
However, for real-world networks, the assumption on a particular model can
sometimes be too restrictive.

Several model-agnostic methods for NCPD extract features from the graph
snapshots, e.g., the degree distribution (Miller and Mokryn, 2020) or the joint
distribution of a set of edges (Wang et al, 2017), and use classical discrepancy
measures to quantify the amount of change. Other methods relying on pairwise
comparison of graphs use a graph similarity or pseudo-distance, such as the
DeltaCon metric (Koutra et al, 2016), the Hamming distance and the Jaccard
distances (Donnat and Holmes, 2018), the Frobenius and maximum norms
(Barnett and Onnela, 2016), spectral distances based on the Laplacian (Huang
et al, 2020; Cribben and Yu, 2017; Hewapathirana et al, 2020), `2 or `∞ norms
(Zhao et al, 2019) or a graph kernel (Desobry et al, 2005; Gretton et al, 2008;
Harchaoui et al, 2009). Nevertheless, these graph metrics suffer from intrinsic
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limitations; e.g., the Hamming distance is sensitive to the graph density and
the Jaccard distance treats all edges uniformly (Donnat and Holmes, 2018).
Furthermore, it has been previously underlined that the choice of graph distance
can significantly affect a method’s results (Barnett and Onnela, 2016), and
therefore requires a-priori knowledge or assumption on the network distribution.

One widely popular statistic in change-point detection problems is the cumu-
lative sums (CUSUM) statistic, which has been used in different time series
contexts, e.g., in the offline and high-dimensional setting (in combination with
the network binary segmentation algorithm) (Wang et al, 2022), and more
recently, in the online setting (Wang et al, 2022). Several NCPD methods have
adapted this efficient statistic to dynamic networks, e.g., for sparse graphs
(Wang and Samworth, 2018), graphs with missing links (Dubey et al, 2021;
Enikeeva and Klopp, 2021), in offline (Padilla et al, 2019) and online (Yu et al,
2021) settings, and proved that minimax rates of estimation can be obtained for
the overall false alarm probability and the detection delay. However, computing
the CUSUM statistic necessitates a “forward” window to detect a change at
a given timestamp, and methods based on this statistic often require to tune
several hyperparameters (e.g., one or several detection thresholds).

In addition to the aforementioned limitations, most previously cited methods
do not provide a principled way to incorporate node attributes or even edge
weights. Interestingly, to the best of our knowledge, no prior work has ever
considered graph neural networks (GNNs) for the NCPD problem, despite the
fact that such architectures can easily handle different types of networks (e.g.,
signed (Derr et al, 2018) or directed (Huang et al, 2019) ), and in particular, can
inherently account for any available node attributes (Kipf and Welling, 2016).
In dynamic network modelling, graph convolutional recurrent networks (Seo
et al, 2018) and dynamic graph convolutional networks (Manessi et al, 2020)
were introduced for predicting graph-structured sequences. In the dynamic
link prediction task, methods that learn representations of dynamic networks
have been proposed, using deep temporal point processes (Trivedi et al, 2019),
joint attention mechanisms on nodes neighborhoods and temporal domain
(Sankar et al, 2020), memory feature vectors in message-passing architectures
(Rossi et al, 2020) or recurrent neural networks (Zhang et al, 2021; Kumar
et al, 2019). For anomalous edge detection in dynamic graphs, (Cai et al,
2021) process subgraphs around the target edges through convolution and sort
pooling operations, and gated recurrent units. Moreover, one prior work has
incorporated GNN layers in a method for change-point detection, but has done
so in the context of multivariate time series (Zhang et al, 2020). However, in
this method, the GNN encodes the cross-covariances between the time series’
dimensions in the spatial layers, and is one part of a complex neural network
architecture (the temporal dependencies being encoded by recurrent neural
network layers).

Furthermore, while GNNs have proved to effectively learn representations of
graphs, they can also be leveraged to learn graph similarity functions in a
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data-driven way and for particular tasks in a end-to-end fashion. This now
popular problem is called graph similarity learning (GSL) (Ma et al, 2021).
One common type of model for this task is siamese networks (Koch, 2015), e.g.,
siamese graph neural networks (Ma et al, 2019)) or graph matching networks
(Li et al, 2019; Ling et al, 2021). These architectures allow to learn flexible and
adaptive similarity functions and have been successfully applied to several tasks
and graph domains, e.g. classification of brain networks (Ma et al, 2019; Liu
et al, 2019; Ktena et al, 2017), image classification (Mensink et al, 2012), and
detection of vulnerabilities in software systems (Li et al, 2019). In this work,
we will leverage such GSL models for the online NCPD task, which avoids the
need for choosing a-priori a particular graph distance, kernel or embedding.

3 General setup and framework
In this section, we describe our general set-up and NCPD method based on
a graph similarity learning model. We will first present our network change-
point statistic in Section 3.1, leveraging a similarity function learnt by a GSL
model described in Section 3.2, through an adequate training and validation
procedures (see Section 3.3). Before presenting our methodology, we introduce
some useful notation.

Notation.
We denote G = (A,X) ∈ G a graph with n ≥ 1 nodes denoted by {u1, . . . , un},
adjacency matrix A ∈ Rn×n and node attributes (or features) matrix X ∈
Rn×d∪{∅}, with d ≥ 1 attributes. We say that the graph is attributed if X 6= ∅,
and unattributed otherwise. If A ∈ Rn×n≥0 , we also say that the graph is unsigned.
We denote NT = {Gt}1≤t≤T a dynamic network with T ≥ 1 snapshots, where
each graph Gt has the same set of nodes, with the same order in A and E. Let
In and 1n be respectively the n×n identity matrix and the all-one vector of size
n. For a matrix M , we denote Mij an entry, Mi: its i-th row and M:j its j-th
column. We also denote ‖M‖F and ‖M‖ respectively the Frobenius norm and
operator norm (i.e., the largest singular value). For a vector ~v, we denote ‖~v‖ its
Euclidean norm. For any positive integer J , let [J ] denote the set {1, 2, . . . , J}.

3.1 Graph similarity function for network change point
detection

We consider a single dynamic network NT = {Gi}1≤t≤T with an unknown
number of change-points 1 < τ1 < · · · < τK < T , K ≥ 1, such that, for any
k ∈ [K] we have

Gi
i.i.d.∼ Gk−1, τk−1 ≤ i < τk, (1)

(2)
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with τ0 = 1 and (G0, . . . ,GK) distinct graph generating distributions. We assume
that ∀k ≥ 1, τk − τk−1 ≥L0, with L0 > 0 a known lower bound of the minimal
spacing between two consecutive change-points. We recall that in our setting,
the set of nodes in each graph snapshot Gt is fixed and its ordering is kept
unchanged along the sequence. We note that in general, the i.i.d. assumption in
(1) is a strong hypothesis on the dynamic network’s generative distribution. In
practice, this assumption may not be verified since consecutive snapshots of real-
world dynamic networks are often correlated. However, this is a standard setting
for deriving theoretical results on NCPD methods in dynamic random graph
models (Yu et al, 2021; Bhattacharjee et al, 2020; Zhao et al, 2019; Wang and
Samworth, 2018). In this work, we consider this set-up for clarity of exposition,
nevertheless our method accounts for the possibly existing correlations between
the snapshots in the design of the sampling scheme (see Section 3.3).

Assume for now that we have a graph similarity function s : G × G → [0, 1]
that we can use as a binary classifier classifier of graph distribution. In other
words, s is such that for any Gt1 ∼ Gi1 , Gt2 ∼ Gi2 , s(Gt1 , Gt2) > 0.5 if Gi1 = Gi2
and s(Gt1 , Gt2) ≤ 0.5 otherwise. One can then detect change-points in NT by
monitoring the following average similarity statistic

Zt(s, L) =
1

L

L∑

i=1

s(Gt, Gt−i), t ≥ L, (3)

where L < L0 is a hyperparameter that controls the length of the past window,
and declare a change-point at any timestamp t such that

Zt′(s, L) > 0.5, t− L ≤ t′ < t, (4)
Zt(s, L) ≤ 0.5.

This general method can be applied to recover an arbitrary number of change-
points in the dynamic network in an online setting and without any detection
delay, i.e., as soon as the data is collected. In practice, one can choose a graph
similarity function or kernel s(·, ·) and a detection threshold θ, e.g., using a
validation criterion (Ranshous et al, 2015) or a significance test procedure using
stationary bootstrap (Cribben and Yu, 2017), and declare a change-point (or
an anomaly) in the dynamic network whenever Zt(s, L) > θ. Note that the
properties of this method heavily depend on the chosen similarity function and
its discriminative power.

Our NCPD method consists of using the statistic Zt(s, L) and the detection
rule (4), together with a data-driven graph similarity function s(·, ·) learnt by
a s-GNN model, which we describe in the next section.

Remark 1. Our method can also be employed in an offline setting, where one
aims at localising changes in a dynamic network after the whole sequence has
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been collected, with a slight change of the detection rule. For instance, for a
dynamic network with a single change-point, one can localise the latter at τ̂ ,
such that

τ̂ = arg min
t∈[L,T ]

Zt(s, L),

or τ̂ = arg max
t∈[L+1,T ]

|Zt(s, L)− Zt−1(s, L)|. (5)

Additionally, our method could be adapted to a setting where a small detection
delay (e.g., of order L) may be tolerated. In this case, we could replace (3)
by a more robust change-point statistic that also uses a future (or forward)
window, e.g., (Gt, Gt+1, . . . Gt+L). For instance, we could use a two-sample test
statistic on the two sets of graphs (Gt−1, . . . , Gt−L) and (Gt, . . . , Gt+L) such
as the maximum kernel Fisher discriminant ratio (Harchaoui et al, 2009) or
the maximum mean discrepancy (MMD) (Gretton et al, 2008), for which an
unbiased estimate is given by

ZMMD
t =

√√√√ 1

L(L+ 1)

L+1∑

i,j=1

(
s(Gt−i, Gt−j) + s(Gt−1+i, Gt−1+j)− s(Gt−i, Gt−1+j)

)
.

Note that this estimate would correspond to the empirical MMD measure
between two sets of graphs mapped into a reproducing kernel Hilbert space if
the function s(·, ·) was a graph kernel function (Gretton et al, 2008).

3.2 Graph similarity learning via siamese graph neural
networks

Siamese graph neural networks (s-GNN) are architectures designed to compare
pairs of graphs, e.g., for learning a graph similarity function or distance. They
can notably be used in graph classification and graph matching tasks Ma et al
(2019); Ktena et al (2017) in both supervised and unsupervised settings. More
precisely, a general s-GNN takes as input a pair (G1, G2), embeds G1 and G2

with the same graph encoder (or equivalently, two siamese encoders that share
the same weights), then combines the embeddings in a symmetric similarity
module. The variability of s-GNN architectures mainly lies in the design of
these two modules (see for instance Ktena et al (2017); Ma et al (2019); Ling
et al (2021)).

In our NCPD method, we propose a s-GNN architecture summarized in Figure
1, for learning a similarity score s(Gt1 , Gt2) in [0, 1] on the space of graph
snapshots (G1, G2, . . . , Gt, . . . ) from the dynamic network. For this purpose, we
design a similarity module for comparing the node-level embeddings output by
a generic graph encoder (e.g., a graph convolutional network Kipf and Welling
(2016), a graph attention network Veličković et al (2018), a GraphSage network
Hamilton et al (2017) or a graph isomorphism network (GIN) Xu et al (2019)).
Our similarity module consists of a Euclidean distance operation, a pooling
layer and two fully-connected layers (see Figure 1b). The pooling operation in
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(a) Siamese graph neural network (b) Similarity module

Figure 1: Architecture of our graph similarity learning model. The general
pipeline (a) is a siamese GNN where the output module is a similarity module
(b). We design the latter with Euclidean distance, Sort-k pooling operations,
and fully-connected layers, for measuring the proximity of snapshots in dynamic
networks.

this module is Sort-k pooling Zhang et al (2018), which consists in selecting
and sorting the k largest entries of the input (here, the n-dimensional vector of
Euclidean distances). This operation allows to select the subset of nodes having
the largest displacement between H1 and H2, therefore to measure a local
change of the graph. It also limits the number of parameters of the following
fully-connected layer.

For the sake of simplicity, we use a simple graph convolutional network (GCN)
Kipf and Welling (2016) for undirected and unsigned graphs as the graph
encoder in our architecture. However, this block can be replaced by any ad-hoc
graph encoder. With a GCN, the embedding of a graph H(j) at each layer
j ∈ [J ], J ≥ 1 is computed as follows

H(j) = σ
(
ÃH(j−1)W(j) + B(j)

)
, (6)

where W(j) ∈ Rhj−1×hj is a weight matrix, hj is the number of hidden units of
layer j, B(j) ∈ Rhj is a bias vector, Ã = D̃−1/2(A+In)D̃−1/2 is the normalized
augmented adjacency matrix with degree matrix D̃ = Diag((A+In)1n), and σ
is the point-wise ReLU activation function, i.e., σ(x) = max(x, 0). The input of
the first layer, H(0), is either the node attributes matrix X ∈ Rn×d if the input
graph is attributed or a positional encoding matrix (see below). Finally, the
output of the GCN is the node-level embedding matrix HJ ∈ Rn×hJ at the last
layer. Therefore, for a pair of graphs (Gt1 , Gt2), this siamese encoder module
computes a pairs of graph embeddings, (H1,H2) := (HJ (Gt1),HJ (Gt2)), and
the vectors (H1)i: and (H2)i: correspond to the representations of the node
i respectively in Gt1 and Gt2 . Intuitively, a large distance between these two
embeddings can indicate that node i plays distinct structural roles in Gt1 and
Gt2 .
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Then, the pair of embeddings (H1,H2) is processed by a similarity module,
which first computes a vector of Euclidean distance between the nodes’ embed-
dings, and secondly, applies a Sort-k pooling operation Zhang et al (2018) to
select its k largest entries, i.e.,

P = (fr1 , . . . , frk), fi = ‖(H1)i: − (H2)i:‖2 ∈ R≥0, 1 ≤ i ≤ n,

where r1, . . . , rk correspond to the indices of the (sorted) k largest elements
of {fi}i∈[n]. We note that the Euclidean distance could be also replaced by
another distance, similarity, or kernel function such as the cosine similarity or a
Gaussian kernel. Next, the pooled vector P is processed by two fully connected
layers, each of them containing an affine transformation, batch normalisation
and ReLU activation function. Finally, the output of the second fully connected
layer is pooled using a sum-pooling layer followed by a sigmoid activation
function, so that the final output of the similarity module (and the s-GNN),
s(Gt1 , Gt2) ∈ [0, 1], a non-negative similarity score between the two input
graphs. This score can be transformed into a similarity label via

ŷ(Gt1 , Gt2) =





1 (i.e., Gt1 and Gt2 are similar or have the same
generative distribution), if s(Gt1 , Gt2) > 0.5

0 (i.e., Gt1 and Gt2 are dissimilar or have different
generative distributions), otherwise.

(7)

Note that using a Sort-k pooling layer in the design of the similarity module
has two main advantages in our context.

• First, since it follows the (node-wise) Euclidean distance operation, it therefore
selects the nodes that have the largest discrepancies between their embeddings in
the two graphs. Therefore, if a structural change in the dynamic network affects
only a few nodes, this change can be picked up by this pooling operation, without
being diminished by the absence of change in the rest of the network. This
component could be further built upon for identifying which local part of the
network is mainly driving the change-point, thus enhancing the explainability
of the proposed pipeline.

• Second, Sort-k pooling reduces the number of parameters while preserving the
most important information for measuring potential and local graph changes.
More generally, replacing max or sum pooling by sorted pooling have been
proven to increase the accuracy and generalization power of neural networks, in
particular in settings with limited data availability, such as one-shot learning
Horváth (2020), and can also be used for downsampling graphs Lee et al
(2019). In the network change-point-agnostic detection task, we incorporate
this pooling layer to mitigate our lack of information on the change-points.
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Remark 2. It is often a desirable property of GNN models with graph-
level (resp. nodel-level) output to be invariant (resp. equivariant) to nodes’
permutations. This is due to the fact that nodes in a graph are generally
considered exchangeable, or in other words, the order of node set in the
adjacency and node attributes matrix is arbitrary. In our method, the s-GNN
model takes as input pairs of graph snapshots from a dynamic network sequence
(see Section 3.1), where every snapshot contains the same set of nodes with
the same ordering. Therefore, in our context, the invariance property of the
learned graph similarity function denotes that the latter is invariant to any
permutation of the nodes that is applied on both inputs. More precisely, for
any permutation of the node set σ : [n] → [n], denoting σ ∗ G the resulting
transformation of a graph G under σ (i.e., permutation of the rows and columns
of the adjacency and node attributes matrices), the invariance property writes
s(σ(G1), σ(G2)) = s(G1, G2). This is indeed the case for our method since the
node-wise operations, i.e, the graph encoder and the Euclidean distance, are
equivariant. Then, since the Sort-k pooling layer is permutation-invariant, i.e.
P (H) = P (σ(H)), so is the final similarity score.

Moreover, when the dynamic network is unattributed, i.e., each graph snapshot
contains only structural information Gi = (Ai, ∅), one needs to choose an
appropriate initialisation of the node features matrix H(0) as input of the s-
GNN. Following existing methodology, we propose different variants of our
method with different computations of the node encodings, i.e., synthetic node
attributes that capture their relative positions in the graph structure or their
specific identity. In fact, it has been previously noted that the choice of node
encodings is critical for the expressivity of GNN models (Dwivedi et al, 2022).
Therefore, in our experiments, we will use and compare four types of encoding,
the first three being existing techniques that have been introduced in different
graph learning settings, and the last being one that we believe may also be
appropriate for certain NCPD tasks.

1. Degree encoding (s-GNN-D) (Bruna and Li, 2017): the attribute of
a node is a scalar equal to its degree in the graph, i.e. H(0) = A1n ∈ Rn×1.

2. Random-Walk encoding (s-GNN-RW) (Li et al, 2020; Dwivedi
et al, 2022): for k ≥ 1, the vector of attributes of a node ui, 1 ≤ i ≤ n is
defined as

H
(0)
i: = [Rii,R

2
ii, . . .R

k
ii] ∈ Rk,

where R = AD−1 is the random-walk operator and k ≥ 1 is a
hyperparameter.

3. Laplacian (or positional encoding) (s-GNN-PE) (Dwivedi and
Bresson, 2021): the node attributes are the principal eigenvectors of the
symmetric normalised Laplacian matrix L = In−D−1/2AD−1/2. We note
that this is similar to the first steps of spectral clustering algorithms. More
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precisely, using the factorisation L = UTΛU where U ,Λ respectively
contain the ordered set of eigenvectors and eigenvalues of L, the Laplacian
encodings are defined as

H(0) = [UT
:1 ,U

T
:2 , . . . ,U

T
:k ] ∈ Rn×k,

where k ≥ 1 is a hyperparameter.

4. Identity encoding (s-GNN-I): we define the initial feature matrix as
H(0) = In, which corresponds to using a one-hot encoding of each node.
We argue that this is an appropriate choice for the graph siamese encoder
in our setting. In fact, these encodings in general break the equivariance
property of GNN models; however, this is not the case here since this
property has a modified definition when the graphs are snapshots of a
dynamic network (see Remark 2). We recall that we have assumed that the
set of nodes is constant in the dynamic network, and the global ordering of
the nodes, although arbitrary, is common to all graph snapshots. Finally, it
has been previously noted in graph learning tasks that taking into account
the nodes’ identities (Donnat and Holmes, 2018) can be beneficial. We
will in particular use these encodings for the real-world dynamic network
with a small number of nodes in Section 4.5.

We note that more complex strategies for computing positional encodings
include learning them along the training procedure of the s-GNN (Dwivedi et al,
2022). However, we do not consider these latter approaches, which significantly
increase the model complexity.

Finally, our s-GNN architecture can classically be trained in a supervised way
if a data set of labelled pairs of graphs is available, with D = {(Gi1, Gi2, yi)}i
with yi ∈ {0, 1} indicating if the graphs come from the same distribution or not.
For example, one can optimise its parameters by minimising the cross-entropy
loss function

LBCE(G1, G2, y) = −y log s(G1, G2)− (1− y) log(1− s(G1, G2)),

via gradient descent. In the next section, we propose a sampling scheme of the
snapshots in the dynamic network and a supervised learning strategy for the
s-GNN in the NCPD task.

3.3 Training and validation procedures for NCPD
In the NCPD task, a supervised setting corresponds to the case where a training
subsequence of the dynamic network containing ground-truth change-points is
available. In this setting, these change-point labels can then be used to design
training and validation sets for our GSL model, with these sets containing
triplets (G1

i , G
2
i , yi), where yi ∈ {0, 1} is a similarity label (yi = 1 corresponding

to "similar"). In this section, we describe our strategy for sampling such triplets
from the dynamic network sequence, for both the training and validation steps.
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First, we divide the sequence of graph snapshots into training, validation and
test subsequences, e.g., using consecutive windows of respectively x%, y% and
z% timestamps. In the training and validation sequences, we sample labelled
pairs of graphs according to the two following schemes.

1. Random scheme (training set): we consider the set of all (non-ordered)
pairs of graphs in the training sequence and label each pair (Gt1 , Gt2) with
y = 1 if there is no change-point between t1 and t2, and yi = 0 otherwise.
Then we uniformly sample a fixed number of pairs with label 1 ("positive"
examples) and the same number of pairs with label 0 ("negative" examples),
without replacement. The number of pairs is chosen heuristically between
T and 10× T in our experiments.

2. Windowed scheme (validation set): we consider the set of all (non-
ordered) pairs of graphs in the network sequence that are not distant from
each other by more than L timestamps, and label them with the same
procedure as in the Random scheme.

We note that the different sampling mechanisms for the pairs in the training
and validation sets are designed to satisfy a double objective of our learning
procedure: we aim to learn an adequate graph similarity function and to detect
change-points in a network sequence using the latter. For the first objective,
the Random scheme allow to subsample pairs of graph snapshots that are
further away in the sequence. This design aims at mitigating two possible
undesired effects in real-world dynamic networks: on the one hand, the possible
temporal correlations between the snapshots in each pair and between the pairs
themselves; in the other hand, "transition" phenomenon or gradual changes
between generative distributions. Additionally, with the Random scheme, we
can avoid label imbalance in the training set by sampling the same number of
positive and negative pairs, which we assume is favorable for the s-GNN. For
the second objective, the Windowed scheme builds a validation set of pairs
that imitates the test setting of our GSL model. In fact, in our online NCPD
method (see Section 3.1), the evaluation of the graph similarity function s(., .)
in the statistic (3) (and detection rule (4)) only applies for pairs of graphs
within a sliding window of size L. In particular, in the test setting, the pairs of
graphs that are compared by s(·, ·) are highly correlated and the number of
positive pairs is much larger than the number of negative examples, since there
are generally only few change-points in the dynamic network. We finally note
that in both the Random and Windowed schemes, the sampled pairs may
have in common (at most) one graph snapshot.

Consequently, in a supervised NCPD setting, we can train our s-GNN model in a
supervised way as a binary classifier of pairs (see Section 3.2) using the previous
sampling strategies. In an unsupervised NCPD setting, i.e., when the dynamic
network does not contain any ground-truth label of change-point, we need to
resort to a novel self-supervised learning technique (Liu et al, 2021). In this
case, we first pre-estimate a set of change-points in the training and validation
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sequences using a spectral technique, then apply the previous sampling schemes
to draw training and validation pairs of graphs (see more details in Section 4.4
where this strategy is applied to the financial network data set).

4 Numerical experiments
In this section, we test and evaluate the performances of our s-GNN method
in the online NCPD task, first in a controlled setting of synthetic dynamic
networks (Section 4.3), then on real-world correlation networks (Sections 4.4
and 4.5). Moreover, since one of these data sets does not contain ground-truth
change-points, we also introduce a self-supervised learning procedure for our
method (see Section 4.4).

4.1 Performance metrics
For dynamic network data sets with ground-truth labels of change-points, we
evaluate the performance of NCPD methods using the following metrics, in the
single or multiple change-point settings:

• Localisation error (single change-point) defined as ErrorCPD = |τ̂ −
τ |, where τ, τ̂ are respectively the ground-truth and estimated change-
points.

• Adjusted F1-score (Xu et al, 2018) (multiple change-points) on
the classification of timestamps as change-point (label 1) or not change-
point (label 0). We note that the label of timestamps differs from the
definition of pair labels in (7) where the label 1 corresponds to "similar"
pairs. We tolerate an error of ±5 timestamps on this task, i.e. all the
timestamps within a window of length 11 centered at the ground-truth
change-point are given a ground-truth label 1, and a valid detection occurs
whenever one of these timestamps is classified as change-point.

For the the data set without ground-truth labels in Section 4.4, we qualitatively
discuss our findings, frame them in a financial context, and compare them with
previous analysis of similar data. Additionally, in the synthetic data experiments
in Section 4.3, we also evaluate the ability of our graph similarity function ŝ to
discriminate between graphs sampled from the same or different distributions,
i.e., to classify pairs of graphs generated from either the same or different
random graph models. We measure this property in terms of the accuracy score.

4.2 Baselines
We will compare our data-driven graph similarity function to graph distances,
similarity function and kernel previously used in the context of NCPD and
graph two-sample-test.

• Frobenius distance (Barnett and Onnela, 2016; Nie and Nicolae, 2021;
Bao et al, 2018; Dubey et al, 2021), defined as dF (A,B) = ‖A −B‖F ,
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for two matrices A,B with equal dimensions. Here, we will apply this
distance to the adjacency matrices of two graphs. Note that one can also
apply it on the graph Laplacian matrices (Bao et al, 2018), and that this
distance has also been used in a minimax testing perspective between two
graph samples (Ghoshdastidar et al, 2020).

• Procrustes distance between Laplacian principal eigenspaces (Hewap-
athirana et al, 2020). This distance corresponds to the Frobenius distance
between the matrices of eigenvectors corresponding to the k largest eigen-
values of the symmetric graph Laplacian L = In −D1/2AD1/2, after
performing an alignment step. The number of eigenvectors k can be pre-
specified or chosen by finding the optimal low-rank approximation of
L.

• DeltaCon similarity (Koutra et al, 2016). This graph similarity
function is based on the Matusita distance applied to the Fast Belief
Propagation graph operators, defined for a graph as S = [In+ε2D−εA]−1

with ε > 0. We use the implementation of this similarity function provided
in the python package netrd 1.

• Weisfeiler-Lehman (WL) kernel (Shervashidze et al, 2011). This
graph kernel is notably used in the two-sample-test problem for sets of
graphs (Gretton et al, 2008). We use the implementation from the GraKel
python package (Siglidis et al, 2020), and fix the number of iterations of
the WL kernel algorithm to 5 in our experiments.

We will use the previous baselines in the statistic (3) and detect change-points
using a threshold chosen on a validation set. We also compare our NCPD
pipeline to methods that do not rely on an explicit graph metric for detecting
change-points.

• Network change-point detection with spectral clustering (SC-
NCPD) (Cribben and Yu, 2017). This method first partitions the node
set of each snapshot with a spectral clustering algorithm and compute an
inner product between averages of spectral features across a backward (or
past) and a forward (or future) windows. In this method, the number of
clusters and the lengths of the windows are pre-specified.

• Laplacian anomaly detection (LAD) (Huang et al, 2020). This
method applies both to the anomaly detection and change-point detection
tasks for dynamic networks, and is based on the anomaly score

Zt = 1− |σ̃tσt|,

where σt is the vector of top-k singular values of the unormalized Laplacian
of the graph Gt and σ̃t aggregates (e.g. averages) the top-k singular values
of each snapshots in a past window of size L, i.e., (σt−L, . . . , σt−1). The

1https://netrd.readthedocs.io/
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number of singular values k and the length of the window are pre-specified
hyperparameters.

• Network cumulative sums statistic (CUSUM) (Yu et al, 2021).
This method uses a backward and a forward windows of sizes L′ to compute
a sequence of CUSUM matrices

Ct =
1√
2L′




t∑

s=t−L′+1

As −
t+L′∑

s=t+1

As


 , L′ ≤ t ≤ T − L′. (8)

Following the methodology in Yu et al (2021), we divide the dynamic
network into two samples,NA = {G2t}1≤t≤T/2 andNB = {G2t−1}1≤t≤T/2,
containing the snapshots respectively at even and uneven timestamps.
This algorithm monitors two statistics based on the CUSUM matrices
(8) of these samples: the Frobenius norm of the Universal Singular Value
Threshold (USVT) estimator B̃(t) of the CUSUM matrix computed from
NB, and the dot product between B̃(t)/‖B̃(t)‖ and the CUSUM matrix
computed from NA. To avoid tuning the additional threshold parameters,
we do not apply the USVT step (or equivalently choose τ1 = 0 and τ2 = 1
in USVT). Moreover, we only use the second statistics since the first one
is very close to the next baseline.

• Operator norm of network CUSUM (CUSUM 2) (Enikeeva and
Klopp, 2021). We adapt this offline method to the online problem by
computing the CUSUM matrix over a past and future windows of size L′.
The NCPD statistics is then zt = ‖Ct‖.

For these baselines, we fix the number of clusters or singular values to k = 6 and
the size of windows to L′ = L/2 when both the past and future are used in the
NCPD statistic. We also note that these methods are applied to non-attributed
dynamic networks and therefore only use the sequence of adjacency matrices
(At)t. However, only one of our network data sets is attributed (see Section
4.4) and in this case, the node attributes are ignored by the baseline methods.

4.3 Synthetic data
In this section, we generate dynamic networks from a dynamic stochastic block
model (Zhao et al, 2019; Yu et al, 2021; Padilla et al, 2019; Bhattacharjee et al,
2020) with a unique change-point. More precisely, we generate sequences of
unattributed graphs (G1, . . . , GT ) with T = 100 such that for each t ∈ [T ],
each graph is independently drawn from a Stochastic Block Model (SBM) with
n = 400 nodes and

Gt
i.i.d∼ G1, if t < τ,

Gt
i.i.d∼ G2, if t ≥ τ,
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(a) “Merge" scenario. (b) “Birth" scenarios. (c) “Swap" scenario.

Figure 2: Expectation of the adjacency matrices of the graphs in the SBMs G1
(first row) and G2 (second row) , i.e., before and after the change-point, in our
three types of synthetic scenarios, “Merge" (a), “Birth" (b) and “Swaps" (c).

where G1,G2 are two SBM distributions. We recall that an SBM with K ≥
1 communities can be defined by a connectivity matrix C = (p − q)IK +
q1K1

T
K with intra- and inter-cluster connectivity parameters p, q ∈ [0, 1],

and a membership matrix Θ ∈ {0, 1}n×K . The parameter p (respectively q)
corresponds to the probability of existence of an edge between two nodes in the
same community (respectively in two different communities), while each row
Θi of the membership matrix indicates the community a node ni belongs to.

We consider four different change-point scenarios related to three possible
types of events in a community life-cycle (Rossetti and Cazabet, 2018), namely
“Merge", “Birth" and “Swaps". These community events are illustrated in
Figure 2 by heatmaps of the expected adjacency matrices in G1 and G2. We note
that in all the following settings, the graph snapshots will be relatively sparse.

• Scenario 1 (“Merge"). In this scenario, the two SBMs G1 and G2 have
respectively four and two equal-size clusters with inter-cluster connectivity
parameter q = 0.02 and intra-cluster connectivity parameter p > q which
we vary. We design several difficulty levels of this scenario by changing
the value of p: the larger p is, the easier the detection problem is.

• Scenario 2 (“Birth 1"). This scenario mimics the appearance of a
community in a dynamic network. In this case, G1 is the distribution of an
Erdos-Renyi model with parameter q = 0.03 and G2 is a SBM with two
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communities of size n− s and s, 1 ≤ s ≤ n/2, and connectivity matrix

C =

(
q q
q p

)
,

with p = 0.1. We vary the difficulty of this detection scenario by changing
the size of the second cluster s: the bigger s is, the easier the detection
problem is.

• Scenario 3 (“Birth 2"). This scenario uses the setting of Scenario 2 but
in this case, the size of the dense subgraph is fixed to s = 100 and the
difficulty level is controlled by the connectivity p. We consider p > q such
that the larger p is, the easier the detection problem.

• Scenario 4 (“Swaps"). In this scenario, the connectivity parameters
of the two SBMs are equal but their membership matrices differ. We
simulate a recombination of communities where pairs of nodes exchange
their community memberships, i.e., two nodes "swap" their community
of attachment. The two SBMs have four equal-size clusters with inter-
connectivity parameter q = 0.05 and intra-connectivity parameter p = 0.1.
We test different difficulty levels by varying the proportion h of pairs
of nodes swapping their memberships; the bigger the h, the easier the
detection problem.

Note that Scenario 1 can be considered as a global change of the network
structure, while the other scenarios correspond to a local topological change
(i.e., localised on a subset of nodes). For each scenario and each difficulty level,
we generate 50 sequences with one change-point uniformly sampled in the
interval [25, 75]. Moreover, for the pair classification task (see Section 4.1), in
each scenario, we also independently generate 1000 labelled pairs of graphs
{(Gi1, Gi2, yi)}i, where for each i, Gi1 ∼ Gk, Gi2 ∼ Gl with k, l ∈ {1, 2} and yi = 1
if Gk = Gl and yi = 0 otherwise. Each of these data sets of pairs is balanced
and we use respectively 60%, 20% and 20% of the pairs for training, validation
and test. In the NCPD task, we estimate the unique change-point with the
detection rule (5), and use a window size L = 6. Additional details on the
experimental setting can be found in Appendix A.

We test our NCPD method with the four variants of node encodings (Degree,
Random Walk, Laplacian and Identity) defined in Section 3.2 and report
the results of each scenario in Figures 3, 4, 5 and 6. In almost all scenarios and
difficulty levels, our method outperforms the other baselines, except for the
variant with Laplacian attributes. The drop of performance using the latter
type of encodings has been previously attributed to the sign ambiguity in
Laplacian eigenvectors (Dwivedi et al, 2022). Moreover, the degree and random
walks encodings generally seem to be better than the identity encodings, except
for the last scenario. We conjecture that this is due to the fact that in the first
three scenarios, nodes in the same cluster are exchangeable in the SBM model,
while in the last scenario, this symmetry is broken by the membership exchange
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(a) Classification accuracy vs intra-connectivity parameter
p.
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(b) Change-point localisation error for different intra-
connectivity parameters p.

Figure 3: Performances of our s-GNNmethod and baselines on the classification
and detection tasks in the “Merge" scenario. In the first task, pairs of graphs
sampled from the same or different SBM distributions are classified using a
graph similarity function or a graph distance, therefore, the set of baselines
only consists of the latter type of algorithms. In the second task, a single
change-point needs to be localised in a dynamic SBM sequencem and the set
of baselines include graph distance- (or kernel-) based methods and network
change-point detection methods. We remark that for very large values of p,
many methods attain zero error and our method achieves a smaller error for
all values of p.

mechanism. For networks with a lot of symmetry, the Identity encoding might
introduce additional noise.

We also observe that the strongest baselines are CUSUM and CUSUM
2, which have better performances if larger window sizes L are used, while
our method is not sensitive to this hyperparameter (see Appendix A.2). In
particular, our method performs well even for a short history of data and
therefore could also detect change-points that are close to each other in a
multiple change-point setting. Consequently, these experiments show that using
a data-driven graph similarity function leads to better performances in the
NCPD task than existing baselines, in various change-point scenarios.
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(a) Classification accuracy of pairs vs the community size s.
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(b) Change-point localisation error for different community
sizes.

Figure 4: Performances on the classification (a) and detection (b) tasks in the
“Birth 1" scenario.
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(a) Classification accuracy vs the intra-connectivity parameter p.
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(b) Change point localisation error for different intra-connectivity parameters p.

Figure 5: Performances on the classification (a) and detection (b) tasks in the
“Birth 2" scenario.
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(a) Classification accuracy vs the exchange rate h.
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(b) Change point localisation error for different exchange rates h.

Figure 6: Performances on the classification (a) and detection (b) tasks in the
“Swaps" scenario.

4.4 Correlation network from stock returns data
This data set comprising the cross-correlation networks of daily stock returns,
computed over a one-month interval, from the S&P 500 index in a period of
about 20 years (February 2000 - December 2020). Data sets of stock returns
have been previously analysed in different contexts. For online NCPD, Yu
et al (2021) and Barnett and Onnela (2016) consider the covariance matrices
of S&P 500 weekly log-returns respectively on the period between 1950 and
2000, and between 1982 and 2000, while Dubey et al (2021) analyses the weekly
log-returns of 29 stocks from the Dow Jones Industrial Average index, from
April 1990 to January 2012. Closely related to our problem, Chakraborti et al
(2020) and Samal et al (2021) cluster market behaviours in the USA S&P 500
and Japan Nikkei 225 stock networks during the period from 1985 to 2016.

In this analysis, we consider 685 stocks (therefore nodes in the dynamic net-
work) alongside additional information of their economic activity during each
month. The correlation networks are built from the time series of open-to-close
(intraday) and close-to-open (overnight) returns. Typically, there are 21 trading
days in a calendar month, hence each stock has associated a time series of
length 42, since each day of the month contributes with two returns. The result-
ing stock correlation matrix is the starting point for our network construction.
In addition, we employ the following stock properties as node attributes

• volatilities: the standard deviations of the above 42 open-to-close and
close-to-open returns, based on which the correlation network was built,
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• average daily volume, in shares, over the 21 days of the month,

• average shares outstanding, over the 21 days of the month.

We then construct an attributed and unweighted dynamic network GF =
((At,Xt))1≤t≤244 with 244 snapshots, and for each t, At ∈ {0, 1}685×685 and
Xt ∈ R685×4, using a truncation procedure of the correlation matrices between
stocks. More precisely, we set to 1 the matrix entries that are below the 0.1-
quantile and above the 0.9-quantile among the entries of all correlation matrices.
We note that after this preprocessing step, each graph snapshot is connected
and contains self-loops. A similar procedure has been applied in Yu et al (2021),
while other works transform the correlation matrices into complete weighted
graphs, e.g., by squaring the correlation coefficients (Chakraborti et al, 2020)
or computing the inverse of the ultra-metric distance (Samal et al, 2021). Here
we adopt the sparsifying approach to avoid dealing with a large complete graph.
In Table 1, we report some properties of the resulting network. Finally, we
standardize the node attributes matrices {Xt}1≤t≤244 across the timestamps:
for each column (i.e. each attribute) and each matrix, we center and scale its
values by the mean and standard deviation of all the values of this attribute in
the graph snapshots.

Although previous work reported changes in the behaviour of the stock market
following different economic or global events (Chakraborti et al, 2020), there
is no ground-truth knowledge of change-points for this dynamic correlation
network. However, there is strong evidence that some major events, such as
the ones listed in Table 2, have impacted the dynamics of stock returns and
their correlation (Barnett and Onnela, 2016). Therefore, we consider a self-
supervised training procedure (Liu et al, 2021) that first pre-estimates a set
of change-points in order to train our s-GNN with the procedure described in
Section 3.

We first divide our dynamic network into consecutive windows of 50%, 20%
and 30% graph snapshots as training, validation and test sequences. Then we
pre-estimate change-points in the training and validation sequences using the
following methodology. It is common practice to cluster stocks into market
sectors (Chakraborti et al, 2020), and we conjecture that this cluster structure
is reflected in the correlation network and is a proxy for the underlying state
of the financial market at a given time. Therefore, we consider the following
three-step procedure:

1. We estimate a cluster structure for each correlation matrix using a spectral
clustering algorithm based on the Symmetric Signed Laplacian (Gallier,
2016).

2. We compare the obtained node partitions in each pair of matrices using
the Adjusted Rand Index and use the latter as a pairwise measure of
similarity between correlation graphs. Then we apply a spectral clustering
algorithm based on the Normalised Symmetric Laplacian on the graph
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Financial network (T = 244, n = 685)

Mean Median Standard deviation

Number of edges per graph 46.3× 103 40.3× 103 23.6× 103

Edge density 0.20 0.17 0.10
Average degree 135 96 111
Average shortest path length 1.8 1.8 0.1
Diameter 2.8 3.0 0.5

Table 1: Mean, median and standard deviation of network statistics for the
snapshots in the correlation network of S&P index stock returns.

snapshots (i.e., each snapshot is given a label, interpreted as a state or
behaviour of the stock market).

3. We estimate change-points by “smoothing" the snapshots’ labels: we
compute the centroid timestamp of each cluster of snapshots and relabel
the latter with the labels of their closest centroid. These new labels now
define a partition of the temporal window into consecutive intervals, and
therefore pre-estimate change-points in network training sequence.

In the first step, we cluster each correlation matrix into k = 13 clusters; this
value is chosen by evaluating the silhouette index of the result clustering for
different number of clusters k ∈ {10, . . . , 20}. In the second step, we cluster the
similarity matrix between the graph snapshots based on the ARI (see Figure 11
in Appendix A) into C = 9 clusters. We note that in the first step, the clusters
correspond to sets of nodes (i.e., stocks) in each graph, while in the second
step, the clusters are sets of graph snapshots. The estimated change-points
obtained in the third step are plotted in Figure 12a.

Then for the training set, we sample N = 3000 pairs of graphs using the
“Random scheme" (see Section 3.3) and for the validation set, we use the
“Windowed scheme" with a window of size 12, which leads to 684 pairs. For
choosing the hyperparameters of the s-GNN, we test every configuration of
values with the learning rate in the set {10−5, 10−4, 10−3, 10−2}, the weight
decay in {10−6, 10−5}, the dropout rate in {0.05, 0.2, 0.4}, the output size of
the Sort-k layer in {50, 100, 200}, the number of hidden units in {32, 64, 128}.
We select the model with the highest F1-score on the validation set to make
predictions on the test set.

Finally, we compute our NCPD statistic (3) with a window size L = 6 over the
whole network sequence (i.e., training, validation and test), and qualitatively
interpret the time series 1−Zt(s, L) and the detected change-points, plotted in
Figure 7, and compared to baselines and the VIX volatility index in Figure 8.
We notably compare the peaks of the statistics with a timeline of major market
events listed in Table 2. We observe in Figure 7 that some of the detected
change-points coincides or happens soon after market events, in particular in
the test sequence from November 2014 to December 2020. During this period,
a group of peaks are observed around the Chinese Black Monday in August
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Major crashes Period Date

9/11 Financial Crisis 11/09/2001
Stock Market Downturn Of 2002 09/10/2002
US Housing Bubble 2005-2007
Lehman Brothers Crash 16/09/2008
DJ Flash Crash 06/05/2010
Tsunami/Fukushima 11/03/2011
Black Monday / Stock Markets Fall 08/08/2011
Chinese Black Monday 24/08/2015
Dow Jones plunge 02/2018 - 03/2018
WHO public emergency state (COVID-19) 30/01/2020

Table 2: Dates of major crashes and bubbles in the USA market.

2015, and two other large peaks are observed in March 2018 and December
2019, which could be attributed respectively to the Dow Jones index’s plunge
in February-March 2018 and the emergence of COVID-19 in late 2019. Note
that the World Health Organisation declared a Public Health Emergency of
International Concern in January 2020. In the training and validation period
(from February 2000 to October 2014), the peak in November 2005 could be
related to the US Housing Bubble, which spans a period between 2005 and 2007,
while the peak in February 2007 could also be linked to the latter event or to the
premises of the financial crisis of 2007-2008. Finally, the peaks in August 2009
and January 2012 are difficult to relate to one of the listed events in Table 2
(possibly the Stock Market Fall for the latter one). However, we note that these
events are not ground-truth change-points for the correlation network of stocks
and other factors unreported in this analysis may also influence its structure.

Nonetheless, in comparison to the baselines, our method is able to detect more
events. As can be observed in Figure 8, almost all baselines detect change-points
between 2010 and 2012, a period when several financial crashes happened such
as the 2010 Dow Jone flash crash, the Fukushima nuclear incident in March
2011 and the Stock Markets Fall of August 2011. However, most baselines fail
to detect anything outside this two-year period. One exception holds for the
CUSUM 2, which indicates network disruptions at roughly six periods: during
the financial crisis of 2007-2008, Dow Jones Flash Crash in 2010, the Stock
Market Fall in 2011, the Chinese Black Monday in 2015, the Dow Jones plunge
in 2018 and the consequences of the COVID-19 pandemic in 2020. However, this
method delimits some periods of disruptions rather than clear change-points.

One explanation could be that since our method benefits from using the stock
attributes previously listed, which are not taken into account by the baselines.
We therefore also tested our method using synthetic attributes (see Section 3.2)
and our results are reported in Figure 12d and 12c in Appendix B. We note
that our method with synthetic attributes detects much more change-points
( Figure 12c) than our method on the attributed network ( Figure 12b), and
is harder to interpret. We therefore conjecture that the stock attributes are
beneficial for our method on this data set.
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Figure 7: Change-point statistic 1−Zt(s, L) obtained with our graph similarity
learning algorithm on the dynamic correlation network of S&P 500 stock returns
from February 2000 to December 2020. This period covers a training period
from February 2000 to August 2010, a validation period from September 2010
to October 2014 and a test period from November 2014 to December 2020. Main
financial events that occured during this period are indicated with vertical red
bars. The detected change-points are marked with red stars, and correspond
to timestamps verifying (4) and at least 6 months away from the previously
detected change-point.

4.5 Correlation networks from physical activity
monitoring

This public data set2 was built for benchmarking time series classifiers on
physical activity monitoring (Reiss and Stricker, 2012b,a). This data contains
multivariate time series recorded from eight subjects wearing 3D inertial mea-
surement units (IMUs) and performing a protocol of 12 different physical
activities such as sitting, walking, descending and ascending stairs and vacuum
cleaning. The time series correspond to measurements from 3 IMUs positioned
on the subjects’ wrist, chest and ankle and containing 3-axis MEMS sensors
(an accelerometer, a gyroscope and a magnetometer) with a sampling period of
0.01s. Thus, the dimension of the time series is 27, and there are 8 time series
in total (one per subject).

Although this data has also been analysed in the change-point detection task
for time series (Zhang et al, 2020), to our knowledge, it has not been used
in the context of NCPD. However, previous work noted that the correlations
between pairs of axis are particularly useful for differentiating activities based
on translations such as walking, running or ascending stairs (Reiss and Stricker,
2012a). Therefore, similarly to Section 4.4, for each subject (i.e., each multi-
variate time series), we build a dynamic correlation network from the 27 time
series, where each node therefore corresponds to an IMU sensor’s axis and is
associated with a body part.

More precisely, we segment the time series into non-overlapping windows of 100
observations (i.e., a window of length one second) and compute the correlation
matrices of these time series over these windows. Then, the correlation matrices

2http://www.pamap.org/demo.html
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Figure 8: Change-point detection statistics obtained with our method and
the baselines on the dynamic correlation network of S&P 500 stock returns
from February 2000 to December 2020. This period covers a training period
from February 2000 to August 2010, a validation period from September 2010
to October 2014 and a test period from November 2014 to December 2020.
Main financial events are indicated with vertical red bars. The different rows
correspond, from top to bottom, to a timeline of known market events, our
NCPD statistic, the VIX volatility index and the baselines’ NCPD statistics.
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Subject Activity performed Number of
change-points

Number of
timestamps

1-4 5 6 7 12,13,16,17 24

1 X X X X X X 13 2490
2 X X X X X X 13 2618
3 X – – – X – 10 1732
4 X – X X X – 11 2302
5 X X X X X X 13 2709
6 X X X X X X 13 2487
7 X X X X X – 12 2314
8 X X X X X X 13 2606

Table 3: Properties of the dynamic networks obtained from the physical
activity monitoring data. Some activities are not listed because they have not
been performed by any of the subjects in this experiment.

{Ct}t are transformed into binary adjacency matrices At = 1|Ct|>η, t ∈ [T ]
with a chosen threshold η = 0.2. We thus obtain an unweighted, unattributed,
dynamic network with 27 nodes for each of the 8 subjects. Moreover, each
graph snapshot is labelled with the activity performed by the subject during
the corresponding temporal window. Therefore, a change of activity between
two consecutive snapshots corresponds to a change-point for the network. Table
3 summarises the characteristics of each network.

We then define two NCPD tasks to evaluate our method on, defined as follows.

• Individual-level NCPD. Each dynamic network (subject) is used sepa-
rately and segmented into train, validation and test set. Then we train
and test one s-GNN model per network, therefore the learnt graph simi-
larity function is subject-dependent. We note that in this setting, the test
sequence contains graphs with unseen activity labels.

• Cross-individual NCPD. The eight dynamic networks are combined
into a train, validation and test set and we train only one s-GNN model
for all sequences. In this case, our method learns only one graph similarity
function for all the subjects and its performances evaluated on all of them.

More precisely, in the Individual-level NCPD task, we randomly split each
dynamic network into 70% training and validation, and 30% test, by isolating a
test interval and a validation interval. The latter is a window of size 60 centered
around a uniformly sampled change-point, while the lower end of the test
interval is uniformly sampled in the whole sequence. We then sample 4000 pairs
from the training sequence and 1000 pairs from the validation interval, and train
and evaluate our method on each subject separately. In the Cross-individual
NCPD task, we design the following two evaluation settings.

1. Random split: we concatenate all the training, validation and test sequences
from the previous task, as well as the training and validation sets of pairs.
Then we subsample respectively 15000 and 3000 pairs with the Random
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scheme (see Section 3.3). Note that in this case, the s-GNN is trained
and tested on sub-sequences from every dynamic network.

2. Leave-one-subject-out (LOSO): in this setting we keep the whole sequence
of one subject for testing, and train and validate on the seven remaining
sequences. For the latter, we select validation intervals as in the previous
task, and sample 3000 training and 1000 validation pairs in each network.
Then we subsample 15000 and 3000 pairs from the aggregated training
and validation sets.

One can get an insight on the feasibility of these two tasks by looking at (a)
the similarity of adjacency matrices within each dynamic network, grouped
by activity labels; (b) the similarity of adjacency matrices within the same
activity, grouped by network (i.e., subject). We report in Appendix C.1 some
insights on the dissimilarity between activities and subjects, measured in terms
of the Frobenius distance. In Figure 16, we plot the average adjacency matrices
in each activity (the average of all matrices corresponding to the same activity)
from the first subject. We note that some of these matrices are quite similar,
like the ones for activities {1, 2, 3}, that correspond respectively to sitting, lying
and standing, which are all static activities. In Figure 17, we plot the Frobenius
distance between these matrices. We observe that the lowest values of this
distance matrix are mostly located on the diagonal, indicating that the graphs
that have the same label are more similar to each other than graphs with
different labels. In Figure 18, we represent the Frobenius distances between the
graphs of different subjects with the same label, for four activities. We observe
that for activities 5 and 7, the distances between matrices of different subjects
are bigger than the ones from the same subject, however this difference is not
always significant and does not seem to appear for activities 1 and 17. Figure 19
confirms this observation: we note that the average Frobenius distance between
the graphs with the same label and from different subjects is smaller than the
average distance between graphs with different labels.

Since the network is unattributed in this data set and the number of nodes
is small, we use the Identity encoding for the s-GNN. For our change-point
statistic, we use sliding windows of L = 20 timestamps. We report the perfor-
mances of our method and baselines in terms of the adjusted F1-score (Xu
et al, 2018) in Table 4, with a tolerance window of ±5 timestamps. Our method
has the best performance in most evaluation settings, and largely outperforms
the baselines in the LOSO scheme. This latter result seems to indicate that
the s-GNN is able to learn a graph similarity function that is generalisable to
unseen subjects, while the good performances in the Individual-level task
suggests that it can generalise to unseen activities.

5 Conclusion
In this work, we proposed a novel method for detecting change-points in
dynamic networks using a data-driven graph similarity function. The latter is
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Individual-level NCPD

Subject s-GNN-I Frobenius SC-NCPD CUSUM CUSUM 2

1 0.76 (0.20) 0.62 (0.31) 0.82
(0.14)

0.54 (0.30) 0.81
(0.20)

2 0.91
(0.11)

0.45 (0.22) 0.61 (0.08) 0.45 (0.12) 0.84
(0.11)

3 0.60
(0.18)

0.37 (0.14) 0.67
(0.15)

0.21 (0.27) 0.34 (0.26)

4 0.73
(0.18)

0.58 (0.26) 0.70
(0.08)

0.60 (0.07) 0.59 (0.22)

5 0.85
(0.19)

0.61 (0.22) 0.72 (0.16) 0.36 (0.24) 0.72
(0.13)

6 0.74
(0.19)

0.73 (0.22) 0.75
(0.17)

0.56 (0.30) 0.58 (0.16)

7 0.90
(0.13)

0.79
(0.19)

0.67 (0.35) 0.57 (0.23) 0.72 (0.37)

8 0.72 (0.24) 0.88
(0.13)

0.65 (0.14) 0.57 (0.28) 0.82
(0.13)

Cross-individual NCPD

Setting s-GNN-I Frobenius SC-NCPD CUSUM CUSUM 2

Random
split

0.81
(0.07)

0.75 (0.03) 0.75 (0.03) 0.59 (0.12) 0.80
(0.04)

LOSO 0.89
(0.02)

0.70 (0.20) 0.77
(0.06)

0.62 (0.11) 0.75 (0.12)

Table 4: Adjusted F1-score of our method and baselines in the Individual-
level and Cross-individual NCPD tasks on the physical activity monitoring
data. The red, respectively blue, bold values in each row denote the top best,
respectively second best, performing methods. The values in the parentheses
denote the standard deviation over 10 repetitions of the random splits train/-
validation/set, except for the leave-one-subject-out (LOSO) setting for which
mean and standard deviation are computed over the 8 folds.

learnt by a siamese GNN model, trained and validated on pairs of graphs from
the network sequence. This similarity function allows to effectively compare the
current graph to its short-term history for detecting potential displacements,
with a simple online statistic. We demonstrated the benefits of our method in
synthetic experimental settings of dynamic SBMs, and on two real-world data
sets of correlation networks, and concluded that our method is more accurate
at distinguishing graphs with different generative distributions and detecting
change-points, compared to existing baselines.

As previously noted, one main challenge posed by using a deep-learning based
model for NCPD is the training and validation procedures, which necessitate
either a data set with change-point labels, or an adequate unsupervised or self-
supervised learning procedure. Since the former is quite rare, a future direction
for this work could to develop the latter approach, for instance using data
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augmentation strategies (Carmona et al, 2021) for introducing artificial change-
points in the training set. Another possible extension would be to adapt our
framework to more general types of dynamic networks, e.g., snapshots with
varying node sets or with missing edges. In certain application domains, it may
well be the case that change-points phenomena are localized only in certain parts
of the network (as considered in some of our synthetic experiments), and are
not affecting the global structure. To this end, yet another interesting addition
to the current framework is to be able to pinpoint specifically which part of
the network is mainly driving the change-point, to enhance explainability.

Finally, testing the methodology on different types of networks, such as directed
networks, is an interesting direction to explore, especially in the context of
recent work in the literature that encodes various measures of causality or lead-
lag associations in multivariate time series as directed graphs (Bennett et al,
2022; Run, 2019). The structure of such weighted directed graphs may evolve
over time, which motivates the need for techniques for change-point detection, a
setting where adapting traditional spectral methods for change-point detection
would be challenging, due to the asymmetry of the adjacency matrix.
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A Additional details and analysis in the
synthetic experiments

In this section, we provide additional details on the hyperparameter selection
procedure in the synthetic networks of Section 4.3, and two supplementary
experiments, namely a sensitivity analysis of our method to the window size
parameter L and to the choice of pooling layer in the similarity module (see
Section 3).

A.1 Hyperparameter selection
In each scenario and difficulty level, we train our s-GNN over 100 epochs and
and validate using the F1-score. We select one set of hyperparameters of the
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s-GNN (i.e., learning rate, number of hidden units, dropout rate and size of
Sort-k layer) per scenario by searching over a grid of values in one difficulty
level, i.e., p = 0.03 in Scenario 1, s = 60 in Scenario 2, p = 0.06 in Scenario
3, and h = 0.1 in Scenario 4. For choosing the hyperparameters we test every
configuration of values with the learning rate in the set {0.001, 0.01}, the
dropout rate in {0.01, 0.05, 0.1}, the size of the Sort-k layer in {20, 40, 100},
the number of hidden units in {16, 32, 64}, and select the one with the highest
F1-score on the validation set.

For each graph distance baseline d, we use the training and validation sets
to choose a classification threshold θ such that the estimated label ŷi = 1 if
d(Gi1, G

i
2) < θ and ŷi = 0 otherwise (or reversely for the WL kernel).

A.2 Sensitivity to the window size
We evaluate the sensitivity of our NCPD method and the baselines to the
window size parameter L in the “Merge" scenario from Section 4.3. We recall
that this hyperparameter corresponds to the amount of past (and future for
some baselines) information needed to compute the NCPD statistic. It is
therefore also the minimal distance between change-points that a method can
detect. In this analysis, we test the performances of the methods using different
window sizes in a a synthetic setting from Section 4.3. More precisely, we
consider Scenario 1 (“Merge") and three difficulty levels (p = 0.3, 0.4, 0.5).

We report our findings in Figure 9. We note that our method is not very
sensitive to the window size, in particular our best variant (s-GNN-RW)
outperforms the baselines for all window sizes. We also remark that the two
methods based on the CUSUM statistic (CUSUM and CUSUM 2) have
better performances for larger L, and this effect is larger than for the other
baselines. In conclusion, the choice of window size in our NCPD statistic (3)
does not have a big impact on the performance of our method, and therefore
does not require to be finely tuned.

A.3 Sensitivity to the pooling layer
In this section, we test the importance of using a Sort-k pooling layer in our
similarity module (Figure 1b). We consider the “Birth 1" scenario from Section
4.3 and compare the performance of our method with Sort-k pooling (k = 100)
with the same method with Max or Average pooling. We report our findings
in Figure 10. We note that Max pooling does not have good performances in
this experiment and Average pooling has a higher variance than Sort-k, except
in the last (and easiest setting). It may be due to the fact that Max pooling
is less robust to the sparsity of the network than Sort-k and Average pooling,
and that the latter cannot detect local changes in the graphs since it averages
the displacement over the whole set of nodes. Therefore, we can conclude that
Sort-k pooling is more adapted to detect small distribution changes, while
being robust to the sparsity of edges.
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Figure 9: Performances on the detection task in the “Merge" scenario for
3 window sizes L = 6, 12, 24 in three difficulty levels: difficult (p = 0.3) (a),
moderate (p = 0.4) (b), easy (p = 0.5) (c).

B Additional results on the S&P 500 stock
returns data set

In this section, we first report additional figures illustrating the procedure for
pre-estimating change-points in the training and validation sequences of the
dynamic correlation network; secondly we analyse the network using the eigen-
entropy H(t), as previously done in Chakraborti et al (2020) on similar data.
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Figure 10: Localisation error of the s-GNN in the “Birth 1" scenario with
different choices of pooling layers in the similarity module, namely Sort-k, Max
and Average pooling.
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Figure 11: Matrix of Adjusted Rand Index values between the partitions
obtained for each pair of graph snapshots in the correlation network of S&P
500 stock returns. The first two digits denote the month, followed by the year.

This latter analysis also gives an insight on the possible market phases (i.e.,
the period in-between our estimated change-points).

In Figure 11, we plot the heatmap of the similarity matrix between the graph
snapshots in the training and validation sequences. We recall from Section 4.4
that the similarity score between pairs of snapshots is measured in terms of
the Adjusted Rand Index values between the stock partitions obtained for each
snapshots. We note that this similarity matrix seems to have a cluster structure;
in particular, high similarity scores can be found during the period of the
financial crisis from 2007 to 2011 and in 2001-2002. The clustering procedure of
this matrix with spectral clustering and a post-processing step (see 4.4) leads
to the pre-estimated change-points plotted in Figure 12a.

Moreover, we reproduce the analysis of the correlation graphs with the eigen-
entropy H(t) from Chakraborti et al (2020). The eigen-entropy of a graph is
defined as the entropy of the eigen-centrality vector, which is a L1-normalised
version of the principal eigenvector of the graph adjacency matrix. This principal
eigenvector is related to the relative ranks of the different stocks in the market
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(d) Network change-point statistic obtained with our method with the Identity
encoding.

Figure 12: Change-points estimated on the S&P 500 stock returns correlation
network by the pre-estimation procedure described in Section 4.4 (a) and by our
method on the attributed data (b) and on the non-attributed data (c). In the
latter case, we have used the Identity encoding as synthetic attributes and
the obtained network change-point statistic is reported in the last panel (d).

and its entropy measures the market “disorder". The correlation matrices C(t)’s
can be further decomposed into a market mode (principal eigen matrix) C(t)M
and a composite group plus random mode C(t)GR and their corresponding
eigen-entropy (HM (t), HGR(t) can be also computed (see Figure 13). This allows
to define a 3D-phase space where the graphs can be separated into types (e.g.
market anomalies, crashes, normal behaviour or highest disorder in Chakraborti
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Figure 13: Eigen-entropy of the correlation graph, the market mode and the
group plus random mode over time.

et al (2020)). A 2D visualisation of our graphs with their corresponding labels
is given in Figure 15a. The distribution of the average eigen-centrality vectors
in each class of graphs also indicates that the correlation structure changes in
the different phases (see Figure 14). Chakraborti et al (2020) also observe a
scaling behaviour by comparing the absolute entropy difference |H −HGR| and
the mean market correlation (see Figure 15b).

C Additional experimental results on the
physical activity monitoring data

C.1 Similarity between activities and subjects
Additional results on the similarity between activities and subjects are presented
in Figure 16, Figure 17, Figure 18, and Figure 19.

C.2 Sensitivity to the tolerance level
In this section, we investigate the sensitivity of our results presented in Table
4 to the tolerance level chosen to compute the adjusted F1-score Xu et al
(2018). We consider the Random split experiment in the Cross-Individual
task from Section 4.5, and we reproduce this experiment for different levels of
tolerance tol = {1, 3, 5, 7}. We report the numerical results in Table 5. We note
that our method has the best performance for all considered levels.
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Figure 14: Histogram of the values in the average eigen-centrality vector of
each class (phase) of graphs (the subplots correspond to different classes).
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(a) Entropy differences |H − HGR|
versus |H −HM |.

(b) Entropy differences |H −HM | ver-
sus mean market correlation.

Figure 15: Entropy differences |H −HGR| versus |H −HM | (in log scale) (a)
and entropy differences |H −HM | versus mean market correlation (b) for the
graphs in the financial correlation dynamic network. The colors indicate the
class of the graphs in our partition.

Cross-individual NCPD

Tolerance s-GNN-I Frobenius SC-NCPD CUSUM CUSUM 2

1 0.60
(0.30)

0.53 (0.22) 0.43 (0.32) 0.33 (0.24) 0.42 (0.30)

3 0.87
(0.25)

0.68 (0.20) 0.70 (0.31) 0.53 (0.24) 0.76 (0.29)

5 0.61
(0.27)

0.53 (0.20) 0.41 (0.32) 0.27 (0.22) 0.44 (0.31)

7 0.85
(0.28)

0.71 (0.21) 0.71 (0.30) 0.56 (0.25) 0.75 (0.29)

Table 5: Adjusted F1-score of our method (s-GNN) and baselines in the
Cross-individual NCPD task and the random split setting on the physical
activity monitoring data. The bold values in each row denote the top performing
method. The values in the parentheses denote the standard deviation over 10
repetitions of the random splits train/validation/set. We remark that different
rows corresponding to different tolerance levels essentially amounts to defining a
different set of ground truth change-points, and hence we should not necessarily
expect a monotonic relationship between tolerance versus the recovery accuracy
of all methods; the main take-away message here is that the s-GNN method
attains superior performance when compared to other baselines, for the same
tolerance level.
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Figure 16: Average adjacency matrices for each of the 12 activities performed
by Subject 1.
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(a) Distance between average adjacency
matrices per activity.

(b) Average (and standard deviation) dis-
tance between graphs grouped by activi-
ties.

Figure 17: Frobenius distance between graphs in the dynamic network
corresponding to Subject 1.
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(a) Activity 1 (b) Activity 2 (c) Activity 3

(d) Activity 4 (e) Activity 5 (f) Activity 6

(g) Activity 7 (h) Activity 12 (i) Activity 13

(j) Activity 16 (k) Activity 17 (l) Activity 24

Figure 18: Average (and standard deviation) Frobenius distance between the
graphs grouped by subjects for each activity label.
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Figure 19: Average Frobenius distance between graphs with the same label
grouped by subjects.
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6 | Conclusion

This closing chapter first provides a brief summary of the previous chapters, complemented by a

critical analysis of their limitations and a review of future work perspectives. Then, I conclude this

manuscript with some personal thoughts on the current state-of-the-art research on temporal point

processes and graphs.

6.1 Summary of the thesis

This manuscript contains four independent works that tackle the modelling challenges of discrete

data and interactive phenomena through the prism of temporal point processes and graphs. Each

work comprises novel results, methodology, and/or a numerical study of the statistical method. In

Chapters 2 and 3, the inference approach is Bayesian, nonparametric, and based on a temporal point

process model. In Chapters 4 and 5, the statistical method is model-free and built respectively from

graph spectral and deep learning algorithms. Nonetheless, random graph models are leveraged in

the latter works, for deriving theoretical guarantees, and/or validating our method.

In Chapter 2, a general class of nonlinear Hawkes processes has been analysed in the Bayesian

nonparametric framework. This flexible model allows to capture causal, excitating and inhibiting

interactions between entities, and is commonly applied to neurons spikes data. In this chapter, we

have notably established the concentration and consistency properties of the posterior distribution

under reasonable and easily verifiable assumptions on the prior distribution and the true model. To

prove these results, we have built new technical tools based on the concept of excursions, which

lead to an elegant analysis of the statistical properties of Hawkes processes, and potentially other

regenerative point processes. Moreover, we have exemplified our general results and provided

explicit posterior concentration rates for Hölder-smooth classes of functions and three families of

nonparametric priors.

In Chapter 3, we have extended some of the aforementioned results to the variational posterior

distribution, under mild conditions on the prior distribution, the model, and the variational class.

We have applied our general results to existing methods, including mean-field variational inference,

and introduced a spike-and-slab variational family to induce sparsity. Moreover, we propose a

novel adaptive and sparsity-inducing method via a model-selection approach, for which we have

designed practical algorithms in the sigmoid Hawkes model. In particular, we propose an efficient
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two-step procedure that can scale up to high-dimensional processes. We provided an extensive set

of numerical experiments on simulated data to test our variational Bayes algorithms, and showed

the comparative advantages of our approach over Monte-Carlo Markov Chains methods.

In Chapter 4, we have theoretically analysed the signed graph clustering problem and the perfor-

mance of spectral algorithms. We have first provided a thorough study of the SPONGEsym and

symmetric signed Laplacian methods. Then we have proposed and similarly analysed a regulari-

sation strategy for these algorithms. For graphs generated from a signed stochastic block model,

we have notably proved that these algorithms are able to recover the latent clusters under certain

favorable noise regimes, and under two regimes of edge sparsity, in particular the challenging

sparse graph regime. We have also empirically shown on simulated and real-world networks that

regularised spectral methods can perform well in sparse graphs, provided that the regularisation

parameters are suitably chosen.

In Chapter 5, we have proposed a novel methodology for detecting abrupt distribution changes in

discrete-time dynamic networks. Our method relies on learning a graph similarity function from

data, to effectively compare pairs of graphs. We have designed a novel, quite parsimonious, and

modular siamese graph neural network model that we tested on synthetic experimental settings of

dynamic stochastic block models, and on two real-world data sets of correlation networks. We have

empirically demonstrated that our method can adapt to different network distributions and types

of change points, after an adequate training procedure. In particular, we have empirically shown

that learning the similarity function allows to more effectively compare the current graph to its

short-term history, and therefore to detect displacements with a simple online statistic.

6.2 Limitations and perspectives for future work

In this section, I discuss certain limitations of the works comprised in this thesis, then propose ways

of extending our results and improving our methods.

6.2.1 On nonlinear Hawkes processes

In the results of Chapter 2, we cover some nonlinear Hawkes models commonly used in applications,

in particular the ones with the sigmoid and softplus functions as the nonlinearity. However, we

have only obtained partial results in the more challenging ReLU Hawkes model, which is a direct
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extension of the linear Hawkes model with signed interaction functions. In this model, when some

interaction functions are negative, the conditional intensity function λ(t|Gt) can be null for some t.

In fact, we have established posterior concentration rates in the shifted ReLU model, and in the

standard ReLU model under a strong, and not easily verified, additional assumption - needed in the

verification of the Kullback-Leibler condition.

More generally, estimating the link functions or their parameter is an open question in the nonlinear

Hawkes model. In our analysis, we have always assumed, except in the shifted ReLU and the

sigmoid models, that these nonlinearities were known, i.e., chosen a-priori by the statistician.

Besides, our asymptotic study of the nonlinear Hawkes model does not provide an insight on how

the difficulty of the estimation problem changes depending on these link functions. However, the

link functions crucially determine the property of the temporal point process, in particular the

positivity and boundedness properties of its intensity function. A practitioner applying the Hawkes

model for the first time might not know which one is more suitable to their particular data set.

Therefore, they might be wishing for a more flexible inference method, which would also estimate

the nonlinearity, or choose the best one amongst a set of predefined types (e.g., ReLU, sigmoid,

softplus, exponential,...).

Although the core of our contributions on the Hawkes model is mainly theoretical, Chapter 3 partly

tackles the computational challenges of implementing and deploying Bayesian nonparametric

inference methods. Several practical questions on the computation of the posterior distribution or

an approximate distribution could be further explored. In particular, the computation limits of our

two-step mean-field variational inference algorithm need to be empirically tested, both in terms of

dimensionality and detection threshold. Moreover, future work could be dedicated to designing

efficient variational Bayes algorithms for nonlinear Hawkes models beyond the sigmoid model.

In addition, developing faster and better MCMC methods would also be of interest for improving

coverage. For instance, the reversible jump approach of Donnet et al. (2020) for the linear model,

or more general nonparametric MCMC methods such as the Hamiltonian sampler of Mak et al.

(2021), could be adapted to the nonlinear Hawkes model.

Until now, we have considered temporal point processes with a fixed dimension K. Nonetheless,

the high-dimensional setting whereK → ∞ jointly with T → ∞, is also of interest for applications

of the Hawkes model in social network analysis and neuroscience. One perspective for future

work is therefore to analyse the properties of Bayesian nonparametric methods in this setting, in a
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suitable sparsity regime of the connectivity graph. Another practical task would be to parallelise

the computation of the posterior distribution, since each of the K factors can be independently

computed on a machine.

Finally, finding the minimax rate of estimation in the nonlinear Hawkes model, in the spirit of

Reynaud-Bouret and Schbath (2010) for the linear univariate model, would guarantee the optimality

of our estimators, as well as penalised projection estimators. From our analysis, we conjecture that

the minimax rates in the nonlinear and linear models are not different. We note that this theory

cannot be directly derived from the techniques of Reynaud-Bouret and Schbath (2010), which

fundamentally rely on the linearity of the conditional intensity. We are currently studying this

problem using our novel technical tools.

6.2.2 On signed and temporal graphs

In Chapter 4, the spectral algorithms for signed graph clustering have been studied in a simple signed

stochastic block model. One could therefore extend our results to more general stochastic block

models such as the degree-corrected stochastic block model, that includes degree-heterogeneity,

or the setting of polarized communities (Bonchi et al., 2019). In addition, extensions to directed,

attributed, or temporal graphs are well motivated by real world applications involving signed

networks.

Moreover, an open theoretical question on our regularisation strategy relates to the choice of

the positive and negative regularisation parameters γ+, γ−. Providing a data-driven approach to

tune these parameters would be of interesting in practical applications with very sparse networks.

Another interesting future line of work would be to adapt and compare the latest graph regularisation

techniques based on powers of adjacency matrices by Stephan and Massoulié (2019); Abbe et al.

(2020).

In Chapter 5, the proposed methodology for network change point detection relies on training a

deep-learning algorithm in a supervised way, and therefore hinges on the availability of labelled

data. This can be a limitation of learning-based methods in practice since dynamic network data

is rarely annotated with ground-truth change points. Consequently, developing unsupervised or

self-supervised learning procedures, for instance based on contrastive learning (Johnson et al., 2022)

or on data augmentation strategies (Carmona et al., 2021) could be an interesting improvement of

our method.
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Moreover, one inconvenient of our graph similarity learning algorithm is the lack of interpretability

of the similarity score, and therefore of the detected change points. Therefore, yet another interesting

addition to the current framework is to enhance the explainability and the trustworthiness of the

method. In particular, practitioners may be interested in understanding which specific part of the

network is mainly driving the dissimilarity and/or a detected change point.

Lastly, the simple online statistic used in our network change-point detection methodology may

not be optimal in settings where some delay in the detection of change point is acceptable. In

these cases, computing a two-sample statistic such as in the maximum mean discrepancy (Gretton

et al., 2006) or the Fisher discriminant ratio (Harchaoui et al., 2008), could potentially increase the

detection power of our method.

6.3 Concluding remarks

Jointly studying temporal point process models and graphs in this thesis has allowed me to address

inference problems with structure and dependence through distinct and complementary perspectives.

Besides, it has connected me with different scientific communities.

On the one hand, the framework of the Hawkes model for analysing event data may be considered

restrictive, or even out-dated, given the popularity of neural point processes models, and more

generally, of model-free inference methods. However, the main asset of the Hawkes model lies in

the interpretability of its parameter, and the causality structure between its components. Moreover, it

provides a sound probabilistic framework for studying event observations. Undoubtedly, parametric

methods in this model are still predominant amongst practitioners, possibly because of the current

availability of packages, and the computational complexity of nonparametric methods.

Moreover, it is worth stressing that analysing event data, possibly with some covariates, is a very

challenging inference set-up. It is often the case that events are wrongly reported or missing, and that

only a subset of components of the phenomenon are observed. For instance, neuroscientists often

record spike trains of few tens or hundreds of neurons in brains, which contain several billions of

neurons in total. Consequently, for this noisy data, Bayesian methods have the benefits of providing

uncertainty bounds, and our theory shows that now standard and well-studied nonparametric priors

can be used in this context. Nonetheless, a great advance for Bayesian nonparametric methods on

point processes would be the availability of a standard package.
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On the other hand, our approaches in the graph-structured data problems start from a task and the

design of an algorithm to solve it, instead of a data generative model. However, the utility and

applicability of learnt algorithms are mainly driven by empirical proof-of-tests in varied contexts

and on diverse data sources. This implies that statisticians developing these methods need access

to “good" data and efficient computational resources for testing their methods, which can be the

source of disparities amongst the machine learning research community.

Finally, there is a diversity of research approaches on networks and graphs, which interestingly

attracts researchers from different backgrounds, e.g., mathematics, physics, computer science,

and statistics. Exchanges between with the different communities in this field is therefore a great

opportunity to broaden the perspectives in network science.
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Özgür Şimşek and Jensen, D. (2008). Navigating networks by using homophily and degree.

Proceedings of the National Academy of Sciences, 105(35):12758–12762.

331



Appendices

332



A | Discrete-time Hawkes model: a case study of COVID-19

This chapter corresponds to the following article:

Browning, R., Sulem, D., Mengersen, K., Rivoirard, V., Rousseau, J. (2021) Simple discrete-

time self-exciting models can describe complex dynamic processes: A case study of COVID-

19. PLoS ONE 16(4): e0250015.

333



RESEARCH ARTICLE

Simple discrete-time self-exciting models can

describe complex dynamic processes: A case

study of COVID-19

Raiha BrowningID
1,2*, Deborah Sulem3, Kerrie Mengersen1,2☯, Vincent Rivoirard4☯,

Judith Rousseau3,4☯

1 School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia, 2 Australian

Research Council, Centre of Excellence for Mathematical and Statistical Frontiers, Brisbane, Australia,

3 Department of Statistics, University of Oxford, Oxford, United Kingdom, 4 Ceremade, Université Paris-
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Abstract

Hawkes processes are a form of self-exciting process that has been used in numerous

applications, including neuroscience, seismology, and terrorism. While these self-exciting

processes have a simple formulation, they can model incredibly complex phenomena. Tra-

ditionally Hawkes processes are a continuous-time process, however we enable these mod-

els to be applied to a wider range of problems by considering a discrete-time variant of

Hawkes processes. We illustrate this through the novel coronavirus disease (COVID-19) as

a substantive case study. While alternative models, such as compartmental and growth

curve models, have been widely applied to the COVID-19 epidemic, the use of discrete-time

Hawkes processes allows us to gain alternative insights. This paper evaluates the capability

of discrete-time Hawkes processes by modelling daily mortality counts as distinct phases in

the COVID-19 outbreak. We first consider the initial stage of exponential growth and the

subsequent decline as preventative measures become effective. We then explore subse-

quent phases with more recent data. Various countries that have been adversely affected

by the epidemic are considered, namely, Brazil, China, France, Germany, India, Italy,

Spain, Sweden, the United Kingdom and the United States. These countries are all unique

concerning the spread of the virus and their corresponding response measures. However,

we find that this simple model is useful in accurately capturing the dynamics of the process,

despite hidden interactions that are not directly modelled due to their complexity, and differ-

ences both within and between countries. The utility of this model is not confined to the cur-

rent COVID-19 epidemic, rather this model could explain many other complex phenomena.

It is of interest to have simple models that adequately describe these complex processes

with unknown dynamics. As models become more complex, a simpler representation of the

process can be desirable for the sake of parsimony.
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Introduction

The outbreak of the novel 2019 coronavirus disease (COVID-19) was declared a Global Health

Emergency of International Concern on 30th January 2020, and pronounced a Pandemic on

11th March 2020. It has since spread rapidly with over 116 million confirmed cases and more

than 2.5 million deaths as of 7th March 2021 [1]. Since the first reported case in December

2019, countries around the world have fought to contain the virus. In the absence of a vaccine,

countries implemented a range of non-pharmaceutical interventions and strategies to reduce

the spread of the virus, from measures such as social distancing, mask-wearing and contact

tracing, to complete city lockdowns and stay at home orders. These recommendations are

guided by mathematical and statistical modelling to quantify the efficacy of these measures

[2–9].

There is now an expansive collection of research dedicated to understanding the virus

from all perspectives, including its biological, epidemiological, clinical, economic and social

impacts. There is also a wealth of knowledge around prevention strategies to control the out-

break. In all of these, statistical and mathematical models are an essential aspect to gaining

meaningful insights into how the virus spreads and quantifying its various impacts. A popular

choice is compartmental models, with some considering the standard SIR (Susceptible-

Infected-Recovered) model [10–12], and further extensions in which additional states are

introduced [13–18]. As an alternative to compartmental models, others have used methods

such as branching processes to capture the spread of the virus through individual networks

[2, 3, 5], log-linear Poisson autoregressive models [19], and other probabilistic models of the

infection cycle of the virus [20]. Various models based on growth curves have also been pro-

posed, for example [21–23], who use logistic, exponential and Richards growth curves respec-

tively. More detailed approaches such as agent-based modelling have also been considered by

numerous authors [24–27].

A Hawkes process [28] is a stochastic, self-exciting process in which past events influence

the short-term probability of future events occurring. They are often used to explain many

phenomena that exhibit self-exciting properties, including neuroscience [29–31], crime and

terrorism [32–34], seismic activity [35] and social media [36]. Similarly, due to their conta-

gious nature it is also natural to represent infectious diseases, such as the current COVID-19

pandemic, as a Hawkes process.

Hawkes processes have been successfully applied to model epidemics and infectious dis-

eases. For example, for the Ebola outbreaks in West Africa and the Democratic Republic of

Congo [37, 38], the Hawkes process is found to outperform the SEIR (Susceptible-Exposed-

Infected-Recovered) mechanistic model in terms of short term prediction. Another study

employs an extension of the multivariate Hawkes process to understand the transmission

routes and regional connectivity for the dengue fever outbreak across regions in Australia

[39]. Rocky Mountain Spotty Fever has also been modelled using a recursive Hawkes process,

with the expected number of transmissions based on the current conditional intensity of the

Hawkes process [40]. Moreover [41], model invasive meningococcal disease using a spatiotem-

poral extension to the Hawkes process.

The spread of COVID-19 is an extremely complex process, with unknown disease dynamics

and huge variations in the preventative measures and responses of different countries. We pro-

pose a parsimonious model for COVID-19 deaths, namely discrete-time Hawkes processes

(DTHP) [32, 33, 42], to describe the complicated dynamics of the COVID-19 epidemic. In its

original form, the Hawkes process is a continuous-time point process; however, the DTHP

observes the occurrence of events at a discrete time resolution. Due to this construction, the

DTHP can directly model the available data (i.e. daily counts), without artificially imputing the
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data onto a continuous timeline, as is generally done in studies using continuous-time Hawkes

processes. We also introduce deterministic change points in this study, since the dynamics

of the spread vary abruptly as the pandemic progresses and preventative interventions are

introduced.

Alternative models, such as the mechanistic and growth curve models discussed previously,

primarily focus on estimating the model parameters that govern the system. Hawkes processes,

however, are more detailed, as individual events and their respective occurrence times directly

influence the likelihood of future events occurring. Hawkes processes also provide additional

insights into the infection dynamics of diseases by estimating the level of external cases

through the baseline parameter and the triggering kernel, which models the decay in infectivity

through time.

Hawkes processes and compartmental models are based on different mathematical princi-

ples and rely on different assumptions. However, their connection was explored by [43]. These

authors show that, via a modified, finite population variant of the Hawkes model for a particu-

lar choice of triggering kernel, the rate of events is equivalent to the SIR model’s infection rate.

While the SIR family of models is useful if more is known about the system dynamics, a sim-

pler model is often useful for phenomena where there are many unknowns. We show in this

study that our model is helpful for this purpose. Additionally, we explore the differences

between Hawkes, compartmental models and other approaches further in the discussion.

Related work

An approach to modelling the COVID-19 pandemic using self-exciting branching processes

has been suggested by [44]. These authors employ a continuous-time Hawkes model with a

nonparametric estimate of the reproduction number, R(t), the average number of secondary

cases produced by a single case of the virus. Both death counts and the number of confirmed

cases in the early stage of the epidemic, before April 1st, are modelled in three states of the

U.S., several European countries and China. Compared to SIR and SEIR models with a fixed

reproduction number, their Hawkes model with a dynamic parameter leads to lower estimates

of the basic reproduction number, R0. In the same line of work [45], consider several datasets

for the state of Indiana in the early stage of the epidemic. They also compare a nonparametric

estimate of the reproduction number, R(t), with an exponentially decreasing function and a

step-function, and find that the estimation of R is very sensitive to the type of input data (i.e.

deaths or cases), the data source, and the model choice. Similarly [46], adopt a continuous-

time Hawkes model with spatial covariates to model both the number of confirmed COVID-

19 cases and the number of deaths, for the U.S. at the county level. This study also considers a

time-varying reproduction number. Finally [47], also use the continuous-time Hawkes process

to illustrate the severity of the virus in France if no preventative action were to be taken.

Two similar approaches to ours are that of [48, 49]. The former proposes a two-phase con-

tagion model based on an extension of the Hawkes process. This study considers a continu-

ous-time Hawkes process, assume the rate of external events varies through time, and estimate

the change point in their model. The authors also assume there is no external excitation after

the change point. The latter of these is, to the authors’ knowledge, the most similar approach

to ours. These authors consider a discrete-time Hawkes process to describe the current

COVID-19 epidemic. This study focusses on estimating a time-varying reproduction number,

ignoring the influence of external activity and considering a fixed excitation kernel.

Several other approaches for modelling COVID-19 that incorporate change points have

been proposed to capture the dynamic nature of the pandemic. [50, 51] find that using com-

partmental models with time-varying infection rates, the estimated change points for Germany
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and South Africa, respectively, align with various government interventions in these countries.

[52] do not directly estimate the change points; instead, they propose a compartmental model

for Italy with piecewise model parameters partitioned into regular time intervals. Alternatively

[53], consider a combination of exponential and polynomial regression models to estimate the

optimal change points for the COVID-19 outbreak in India. While these studies consider only

a single country [54], examine several countries and introduce a single stochastic change point

into their compartmental model. [55] present a widespread study across 55 countries using a

partially observed Markov process with piecewise transmission rates.

Contributions

In the current literature, the continuous-time Hawkes process requires artificial imputation of

the daily count data onto a continuous time resolution, adding a significant computational

burden to the implementation and adding additional, potentially unnecessary, noise to the

model. We develop a multi-phase approach for the DTHP to directly model the reported daily

counts of the number of deaths caused by the virus.

The dynamics of the process before and after the enactment of preventative measures and

policy interventions to reduce the spread of the virus are inherently different. The majority of

the existing literature on modelling the COVID-19 pandemic using Hawkes processes con-

sider only the early stages of the pandemic. In this work, we develop a variant of the DTHP to

model the distinct phases of the COVID-19 epidemic. We modify the traditional Hawkes pro-

cess to account for this change in dynamics by including deterministic change points in the

model.

While [49] also study more recent data, these authors limit parameter estimation to the

reproduction number, and fix the remaining parameters of the Hawkes model. In our study,

we estimate the excitation kernel for additional flexibility. Regarding external events [48], also

assume there is no external excitation in the second phase of their two-phase model. We make

no such assumption, and believe considering external excitation throughout the entire course

of the pandemic is a valuable consideration. There are still travellers arriving from abroad, and

thus exogenous activity is still occurring in later phases at a lower rate. This is particularly rele-

vant as many countries have relatively relaxed quarantine requirements, which means that

travellers from abroad are still capable of spreading the virus. Although we study mortality

data in this analysis, we are able to make a connection between mortalities and infections. In

particular, we show in S1 Appendix that the rate of external events in our model can roughly

be interpreted as external infections, times the probability of death given infection. This link is

particularly useful in the absence of reliable infection data.

Change point models for Hawkes processes have been considered in other applications

[56]. However, these authors assume independence of the observed data between change

points, prohibiting events that occur within a time period to influence events in future time

periods. This type of model is inappropriate for this application, as the time periods are not

independent. While the behaviour of the process varies between time periods, the influence of

past events remains active in the memory of the process. Thus, the baseline parameters become

artificially inflated if events from different time periods are assumed to be independent. For

the current COVID-19 pandemic [49], introduce a method for detecting change points in the

reproduction number through augmenting their Hawkes model with state-space methods.

In particular for the COVID-19 epidemic, while other studies directly estimate the change

points or partition the timeline into regular intervals to reflect the evolving dynamics of the

epidemic, we propose a simple method that incorporates fixed change points. We do not esti-

mate the change points for our model, as it was fairly obvious where a reasonable change point
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was in these data, and this avoids complexity arising from different interventions being intro-

duced in each country, with varying levels of restrictions. Furthermore, the delays before tangi-

ble results are observed, in addition to the complex and hidden interactions underlying the

process, complicate the interpretation of estimated change points. We instead opt for this con-

sistent and simplistic definition of the change point for each country. The change points could

however be estimated for more complex trajectories.

We illustrate in this study how a simple model can be used to describe exceedingly complex

natural phenomena such as epidemics, and in particular the COVID-19 pandemic. Although

it is the same underlying phenomenon, all countries are unique concerning the spread of the

virus and the resultant response measures. Our simple model can capture these dynamics.

Additionally, while many other studies consider small-scale regions, such as individual coun-

ties in the U.S., we are also able to gain insights into the dynamics of the process at a higher-

level across entire countries.

Outline

First we define a general form of the DTHP, and contrast this with its continuous-time equiva-

lent. We then introduce the particular model used in the initial stage of this analysis for model-

ling COVID-19, incorporating a change point into the construction of the DTHP. Next, a brief

description of the data and inference methods are provided. Finally, the results for the ten

countries of interest are presented, and we also show the results from fitting our model to

more recent data. This is followed by a discussion and concluding remarks.

Methods

Discrete-time Hawkes process

The discrete-time Hawkes process is a self-exciting stochastic process whereby events occur at

regular intervals on a discrete-time scale. It follows a similar construction to the continuous-

time Hawkes process [28]. The conditional intensity function λ(t) characterises a Hawkes pro-

cess, and herein lies the difference between the continuous-time and discrete-time variants.

For the DTHP, λ(t) represents the expected number of events that occur at time interval t,
conditionally on the past. In contrast, for the continuous-time Hawkes process, λ(t) is the

instantaneous rate of an event occurring at time t. The DTHP model also has an extra layer of

flexibility compared to its continuous-time counterpart as the underlying data generating pro-

cess can be selected as any counting distribution with conditional mean λ(t).
Consider a linear univariate discrete-time Hawkes process N, where N(t) represents the

number of events up to time interval t. N(t) is dependent on the history of events up to but not

including time t, denoted by Ht−1 = {ys: s� t − 1}, where ys represents the observed number of

events in a given time interval s. Furthermore, N(t) − N(t − 1) represents the number of event

occurrences at time t, and thus,

lðtÞ ¼ EfNðtÞ � Nðt � 1ÞjHt� 1g

¼ mþ a
X

i:ti<t

yti gðt � tiÞ ð1Þ

where μ represents the baseline mean of the process and the second term represents the self-

exciting component of the Hawkes process, describing the expected number of events during a

particular interval t given previous events. The triggering kernel g(t − ti) describes the influ-

ence of past events on the intensity of the process, given the time elapsed since event i, where

t> ti. In this study, we specify the triggering kernel to be a proper probability mass function
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with strictly positive integer-valued support. Since the sum of the excitation kernel over Zþ is

equal to 1, one can interpret the non-negative magnitude parameter a 2 R�0 as the expected

number of subsequent events produced by a single event [33].

Model

Daily counts of the reported number of deaths of the novel coronavirus COVID-19 are mod-

elled using the discrete-time Hawkes process, where the number of events observed on day t,
namely yt, are distributed according to the random variable, Y(t), which has conditional mean

E(Y(t)|Ht−1) = λ(t) as defined in Eq (1). In this analysis Y(t) is assumed Poisson distributed,

thus YðtÞ � PðlðtÞÞ. The Poisson distribution is selected as it has an intuitive interpretation

regarding the generation of daily death counts on a given day, and because it is a natural

approximation of a binomial distribution with a large population and low death rate. More

detail is given in S1 Appendix. Thus, for the proposed DTHP model, the probability that day t
has y events is,

PðYðtÞ ¼ yjlðtÞÞ ¼
lðtÞye� lðtÞ

y!

First we consider an initial period up to 25th July 2020, to determine some initial modelling

assumptions and study the model performance in the early stages of the pandemic. The condi-

tional intensity function λ(t) is altered from Eq (1) to allow for a change point in the process,

since the DTHP with fixed parameters is unable to capture the complex dynamics for an epi-

demic of this scale. The parameters of the DTHP implicitly incorporate environmental and

social characteristics that are significant for the spread of the disease, and these characteristics

change after preventative measures are introduced. Thus, if the dynamic nature of the epi-

demic is not taken into account, the model averages the estimated parameters, combining the

effects of the initial explosive phase of the pandemic with the downward trend that follows

after the implementation of preventative measures.

In the initial period of analysis, to accommodate this shape, we assume in our analysis that

two phases can adequately separate the underlying dynamics. Namely, these phases are the ini-

tial period where the virus is spreading rapidly and the following period of reduced contagion

resulting from the introduction of preventative measures and policies. Many complex interac-

tions are occurring in the deaths process. For example, as medical professionals become more

familiar with the virus and treatments are improved, medical facilities are better equipped to

deal with COVID-19 patients in critical condition requiring ICU [57, 58]. However, this can

be offset by increased demand for hospital beds, resulting in medical facilities becoming over-

whelmed and unable to care for all patients that require hospital treatment. Therefore, rather

than making explicit assumptions about the underlying processes driving the death dynamics,

we link our Hawkes model on the death dynamics to a similar infection model, as we discuss

in S1 Appendix.

Thus, we first retrospectively define a single change point at time T1, where T1 is the maxi-

mum value of deaths, to capture the different dynamics of the epidemic at two distinct stages

of the outbreak.

The triggering kernel g(t − ti) is selected as a geometric excitation kernel, g(t − ti;β) = β(1 −
β)t − ti−1. The exponential distribution is one of the most commonly used triggering kernels for

continuous-time processes. Thus we choose the geometric kernel as it can be shown to

be equivalent to the exponential distribution in the context of discrete time. The parameter β
represents the success probability in the geometric distribution, and thus the average of the
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excitation kernel is 1

b
. We also express the expectation of the maximum excitation time in

terms of the parameters of the model in S2 Appendix.

The conditional intensity function before T1 is calculated using one set of model parame-

ters, (μ1, α1, β1). After T1, the intensity function is calculated using a new set of parameters,

(μ2, α2, β2) for the second phase in the epidemic. Thus for one change point at time T1, λ(t) is

given by,

lðtÞ ¼

(
m1 þ a1

P
i:ti<t

yti g1ðt � tiÞ; t � T1

m2 þ a2

P
i:ti<t

yti g2ðt � tiÞ; t > T1

ð2Þ

It is straightforward to extend Eq (2) to allow for additional change points. While the

majority of this paper considers only the initial stage of the pandemic up to 25th July 2020, we

consider subsequent phases after this date as a set of additional analysis. This is to demonstrate

how our model can be extended beyond the initial phases of the pandemic, as new data will

continue to become available each day for the foreseeable future.

Although we consider the deceased population rather than the infected population, there is

a connection between the two under some simplifications. Thus studying deaths is useful for

understanding the infection dynamics as well. This is advantageous particularly in the early

stages of a pandemic, when no reliable data on infections are available. We do not go into the

details here, but the key outcome of this is that α, β and a function of μ are interpreted with

respect to infections, not deaths. The full derivation is available in S1 Appendix. As this

approximation relies on the assumption of a large population and a low death rate, we would

not expect this model to be reasonable for other time series where the rate of occurrence is

high, such as COVID-19 recoveries.

For a time series of T days and a given country, the log-likelihood function for this DTHP

model with retrospective change point, T1, up to an additive constant K, is then,

logLðyjμ;α; βÞ ¼

K þ
XT1

t¼1

yt log ðm1 þ a1

X

i:ti<t

ytib1ð1 � b1Þ
t� ti� 1
Þ � m1 þ a1

X

i:ti<t

ytib1ð1 � b1Þ
t� ti � 1

 !" #

þ
XT

t¼T1þ1

yt log ðm2 þ a2

X

i:ti<t

ytib2ð1 � b2Þ
t� ti � 1
Þ � m2 þ a2

X

i:ti<t

ytib2ð1 � b2Þ
t� ti � 1

 !" #

Data

We use data gathered by the Johns Hopkins University [59] in this work. These data come in

the form of daily counts of confirmed cases or deaths by country and region. In this analysis,

the number of daily reported deaths for a selection of countries, namely Brazil, China, France,

Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States, are consid-

ered. We select these countries to represent a global sample of countries that have been

adversely affected by the coronavirus outbreak. It is important to note that the definition of

deaths due to COVID-19 varies between countries. These differences are ignored in our

modelling.

The reported number of deaths was considered a more reliable response variable than the

reported number of cases. This is due to data issues that can arise when considering the num-

ber of confirmed cases, such as lack of testing or differing testing rates between countries, dif-

ferences in definitions and differences in the timing for reporting of cases. Additionally, to
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mitigate the effect of systematic influences in reporting, such as lower reporting on weekends

[50], the data is smoothed over a rolling window of seven days. The start of the observation

window, t1, for each country is defined as the time the number of deaths exceeds ten. Fig 1

shows the smoothed volume of daily deaths for the countries under consideration up to 25th

July 2020.

For the initial stage of this analysis, we consider data up to 25th July 2020. We define a sin-

gle change point, T1, as the time where the maximum number of deaths occurs, for the coun-

tries with sufficient data in the downward phase of the epidemic by the end of the initial study

period. Where there is insufficient evidence for the downward trend, for example, in India and

Brazil, no change point was introduced, and only a single phase was modelled. Moreover, the

trend for Brazil showed evidence of the curve flattening; however, there was insufficient data

for this second phase. Thus the end of the observation window for Brazil is fixed on 1st June

2020. Additionally, as China, India, Spain and the United States experienced large deviations

from the current trend towards the end of the observed data, earlier endpoints of 13th April

2020, 12th June 2020, 15th June 2020 and 21st June 2020 were imposed respectively. This

avoids the anomalous spikes at the end of these series, since it was not clear whether these

aberrations were real or due to reporting definitions or other errors. The endpoint for the

remaining countries was set as 25th July 2020. We later extend our analysis to include more

recent data, to demonstrate the utility of our model in later phases of the pandemic. A descrip-

tion of the data processing for this is in the relevant Results section.

Fig 1. Observed data. Daily volume of deaths due to COVID-19 for the countries selected in this analysis.

https://doi.org/10.1371/journal.pone.0250015.g001
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Parameter inference

Parameter estimation is undertaken using Bayesian methods. We consider a range of prior

choices for the baseline parameters μ1 and μ2, and perform leave-future-out cross validation

with Pareto smoothed importance sampling [60] to assess the performance of each prior

choice. The priors considered are,

m1; m2 �

logNð1; 1Þ

logNð5; 1:5Þ

Gammað2; 2Þ

Gammað5; 1Þ

Uð0;1Þ;

8
>>>>>>>>>><

>>>>>>>>>>:

where the first term of the log-normal priors represents the mean of the random variable itself,

as opposed to the mean of the variable’s natural logarithm.

Cross validation with Pareto smoothed importance sampling relies on the expected log pre-

dictive density (ELPD), for which a larger value indicates a better model fit. We calculate the

ELPD in each country for each of the baseline parameter prior choices, and these results are

provided in S1 Table. Based on this analysis, there is no obvious choice of prior that consis-

tently outperforms the rest for each country. On the contrary, the difference in the ELPD is

marginal between priors. The remainder of this paper presents the results for μ1, μ2� Gamma

(5, 1), as this is most frequently the highest ELPD, and if not the maximum, is generally very

comparable.

Flat priors are selected for α1, α2, β1 and β2 such that,

• pða1; a2Þ / Ið0;1Þ2ða1; a2Þ

• β1, β2� U(0, 1)

A Metropolis-adjusted Langevin step [61] is used to jointly update α1 and β1, and also to

jointly update α2 and β2. Denoting the parameters at iteration t by α(t), β(t), the proposals α�, β�

are simulated from,

a�

b
�

" #

� N
� aðtÞ

b
ðtÞ

" #

þ
�2

2
G

Daða
ðtÞ; b

ðtÞ
Þ

Dbða
ðtÞ; b

ðtÞ
Þ

2

4

3

5; �2G
�

ð3Þ

where Dα(.) and Dβ(.) are the gradients of logL with respect to α and β respectively, G is a pre-

conditioning matrix accounting for covariance between parameters and � is the step size in the

Metropolis-adjusted Langevin algorithm.

The MCMC chain was run for 60,000 iterations discarding the first 20,000. The pre-condi-

tioning matrix G was taken as the covariance matrix from an implementation of the standard

Metropolis-Hastings algorithm for each country. The R code and data required to replicate

this study are available on Github (https://github.com/RaihaTuiTaura/covid-hawkes-paper).

Results

We first present results from the initial analysis considering data up to 25th July 2020. Fig 2

presents the 95% posterior intervals around the estimated conditional intensity function λ(t)
against the observed data for each country. The estimated intensity function on day t,
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represents the expected number of events on day t and very closely follows the observed num-

ber of deaths. It is also extremely reactive to minor deviations from the observed trend, and

more volatile times in the observed data result in wider posterior intervals to account for

increased uncertainty in the trend of the data.

Diagnostic plots, including MCMC trace plots, autocorrelation between the MCMC sam-

ples and pairwise correlation between parameters were examined and suggest the algorithm

has converged. Further details on the posterior distributions of the model parameters, conver-

gence and model diagnostics are provided in S3 Appendix.

Fig 2. Observed deaths versus estimated deaths. The observed number of deaths (black dots) compared to the 95% posterior interval for the estimated

expected number of events, i.e. λ(t) (solid red ribbon).

https://doi.org/10.1371/journal.pone.0250015.g002
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Tables 1–3 present the posterior median and corresponding 80% posterior intervals for the

model parameters. Further details for the other baseline parameter priors considered can be

found in S4 Appendix. In most countries, the posterior interval for μ2 is consistently lower

than μ1, indicating a reduction in the baseline rate of events from the beginning to later stages

of the epidemic. The exception to this is the U.S. The results for the U.S. are highly sensitive

to the prior choice; thus, wider priors return higher posterior estimates than expected when

Table 1. Phase 1 versus Phase 2 median and 80% intervals for baseline parameters, μ1 and μ2.

Country μ1 μ2

Italy 4.39 (3.18,5.71) 1.17 (0.69,1.8)

France 4.57 (3.38,5.91) 1.57 (0.97,2.28)

Spain 5.78 (4.06,7.6) 0.49 (0.28,0.76)

Germany 4.17 (2.89,5.54) 0.95 (0.59,1.39)

Sweden 4.05 (2.88,5.44) 1.79 (1.05,2.68)

U.K. 4.51 (3.08,6) 2.42 (1.32,3.75)

U.S. 4.08 (3.13,5.15) 4.1 (2.16,7.12)

China 8.92 (6.29,11.73) 0.82 (0.48,1.22)

Brazil 4.18 (2.98,5.52) -

India 2.81 (2.02,3.72) -

https://doi.org/10.1371/journal.pone.0250015.t001

Table 2. Phase 1 versus Phase 2 median and 80% intervals for magnitude parameters, α1 and α2.

Country α1 α2

Italy 1.07 (1.05,1.09) 0.94 (0.93,0.95)

France 1.1 (1.08,1.11) 0.92 (0.91,0.93)

Spain 1.11 (1.09,1.13) 0.96 (0.95,0.97)

Germany 1.06 (1.03,1.09) 0.91 (0.89,0.93)

Sweden 1.07 (1.01,1.13) 0.92 (0.89,0.95)

UK 1.14 (1.11,1.17) 0.95 (0.95,0.96)

US 1.07 (1.06,1.07) 0.97 (0.97,0.98)

China 1.07 (1.01,1.15) 0.8 (0.76,0.84)

Brazil 1.03 (1.02,1.04) -

India 1.1 (1.07,1.13) -

https://doi.org/10.1371/journal.pone.0250015.t002

Table 3. Phase 1 versus Phase 2 median and 80% intervals for triggering kernel parameters, β1 and β2 and the means of their respective geometric distributions, β� 11

and β� 12 .

Country β1 β2 β� 11 β� 12

Italy 0.88 (0.8,0.95) 0.55 (0.48,0.63) 1.136 (1.053,1.25) 1.818 (1.587,2.083)

France 0.97 (0.92,0.99) 0.64 (0.58,0.7) 1.031 (1.01,1.087) 1.562 (1.429,1.724)

Spain 0.96 (0.9,0.99) 0.91 (0.85,0.95) 1.042 (1.01,1.111) 1.099 (1.053,1.176)

Germany 0.65 (0.57,0.75) 0.51 (0.45,0.59) 1.538 (1.333,1.754) 1.961 (1.695,2.222)

Sweden 0.42 (0.32,0.54) 0.5 (0.39,0.62) 2.381 (1.852,3.125) 2 (1.613,2.564)

UK 0.79 (0.68,0.91) 0.56 (0.5,0.62) 1.266 (1.099,1.471) 1.786 (1.613,2)

US 0.99 (0.98,1) 0.77 (0.66,0.89) 1.01 (1,1.02) 1.299 (1.124,1.515)

China 0.4 (0.28,0.56) 0.43 (0.35,0.54) 2.5 (1.786,3.571) 2.326 (1.852,2.857)

Brazil 0.83 (0.73,0.93) - 1.205 (1.075,1.37) -

India 0.33 (0.26,0.41) - 3.03 (2.439,3.846) -

https://doi.org/10.1371/journal.pone.0250015.t003
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compared to other countries. In an earlier analysis, this behaviour was also prevalent for Swe-

den and the U.K., although it disappeared when considering a longer time series. This implies

that there may be insufficient information in the data for the U.S. to reliably learn the model

parameters for the second phase. However, without alternative data, it is not possible to

improve modelling for the U.S. by considering a longer time series. This is due to a large

anomaly at the end of the series, as discussed in the Data section. Nonetheless, it highlights the

importance of having sufficient training data and being cautious when interpreting parameter

estimates.

The magnitude parameter in the second phase, α2, is also consistently lower than the

parameter for the first phase, α1. With a posterior probability (greater than 80%), it can be said

for all countries that α1 > 1 and α2 < 1. This implies the process is explosive before the change

point and becomes stationary after the change point, likely driven by the introduction of inter-

ventions to reduce the rate of infection.

The parameters for the geometric triggering kernel, β1 and β2, are similar for Sweden and

China. However, for the remaining countries where two phases are considered, the kernel

parameter for the first phase, β1, is larger than β2, indicating that the self-excitation has a lon-

ger memory in the second phase. For reference, β = 0.4 in the geometric kernel corresponds to

an average of 2.5 days for the self-excitation, with the majority of the mass occurring within

one week, whereas β = 0.9 is shorter, corresponding to an average self-excitation of just over 1

day with approximately 2 days of total memory.

Model fit

Several measures are used to assess model fit. First, the model’s capability to interpolate miss-

ing data is evaluated. Then in-sample and out-of-sample posterior predictive checks are con-

sidered. The purpose of prediction in this study is to assess model fit and to discover what can

be learned about the process retrospectively.

The first measure of model fit considers how accurately the model can recover missing

data. We randomly remove 10% of observations across the entire time series and treat the

missing data as parameters in the model to estimate. Table 4 describes the number of interpo-

lated data points for which the observed value lies within both the 95% and 80% credible inter-

vals (CrI) of the posterior distributions for the missing data. Further details can be found in S5

and S6 Appendices. The proportion of data points correctly interpolated is generally high

when considering the 95% credible intervals. This reduces when considering the 80% interval,

however, is still high for most countries, capturing at least half of the missing data points.

Table 4. Number of missing data points with actual value within 95% and 80% CrIs, out of the total number of

missing data points.

Country 95% CrI (average) 80% CrI (average)

France 11/14 7.4/14

Italy 13/15 11/15

Germany 13.4/14 10.2/14

Spain 8/11 6.2/11

Sweden 12.6/13 10.4/13

U.K. 11.8/14 9.2/14

China 8.6/9 7.2/9

U.S. 8.6/11 5.4/11

Brazil 6.6/8 4.6/8

India 7.8/9 6.8/9

https://doi.org/10.1371/journal.pone.0250015.t004
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The exception to this is the U.S., with just less than half of the missing data points accurately

interpolated.

Prediction is a difficult task, particularly for complex phenomena such as the COVID-19

pandemic. For this particular model, more recent events have a larger impact on the intensity

of the process. Thus prediction performed at a time where abnormal behaviour is occurring

will be highly uncertain and often unreliable. Moreover, a prediction is only realistic in the

short term and generally only at times where there is no evidence of abnormal behaviour. This

is consistent with other models in the literature [37, 38, 62–64]. Thus we consider in-sample

and out-of-sample posterior predictive checks in this study as a measure of model fit only.

In-sample prediction is performed by generating sample paths of the process for the range

of model parameters obtained and comparing these to the observed time series. In particular, a

random selection of posterior samples is taken, and the entire time series is simulated from

these draws. The posterior predictive intervals from these simulations compared to the

observed data are given in Fig 3. In general, the intervals for these simulations encapsulate or

are very close to the observed data, however, they can be extremely wide and often underesti-

mate the volume of events in the initial phase of the outbreak. This is likely due to variation in

the assumed Poisson data generating distribution, and relatively wide priors on the baseline

parameters for the first phase, resulting in a wide range of possible sample paths. Additionally,

these sample paths did not adequately capture the observed trend in the U.S. However, we find

that including the data from the first phase in the model and predicting the second phase

results in improved accuracy of the posterior predictive intervals for all countries. These results

are presented in Fig 4.

Out-of-sample (O.O.S.) validation is also performed for each country as a measure of

model fit. First, we consider the initial phase of the epidemic before the change point. The

model is trained on data from the first 15 days of the sample, followed by a 5-day O.O.S. pre-

diction. We then repeat this process, increasing the length of the training period by 5 days

until the change point. As shown in Fig 5, these predictions are reliable only in the short term,

and become more unreliable as the end of the first phase approaches. The first phase predic-

tions grow exponentially and quickly surpass the actual growth of the process, as the observed

curve flattens due to the effects of preventative measures that have been implemented.

O.O.S. prediction is also considered for the second phase of the model, after the change

point. We first train the model on data from the first phase and 15 days of the second phase.

We then repeat the same procedure as described above with 10-day O.O.S. predictions. The

downward trajectory of the infection cycle is more stable than the upward trajectory, so we

consider a longer prediction duration. The posterior predictive intervals are generally very

accurate for all countries, as seen in Fig 5. Compared to the O.O.S. validation performed for

the first phase, the improvements in accuracy observed in the second phase are likely due to

the stationarity of the process in the second phase, resulting in more predictable trends. For

both phases, the accuracy of O.O.S. predictions depends on the endpoint of the training period

for the model, and the type of behaviour preceding any predictions.

While we do not attempt to predict the course of the epidemic in this study, we do find that

O.O.S. predictions may indicate when the peak in the number of events is approaching. This

could be useful in countries that have not yet experienced a decline in the number of daily

events, for example, Brazil and India in this study. Posterior predictive intervals that surpass

the growth rate in the observed data indicate, and could pre-empt, the downward phase of the

epidemic. Conversely, where the predictive intervals do encapsulate the observed data, it is

unlikely that the peak is being approached. This is evident in Fig 5, where the curve for Brazil

is flattening, resulting in unreliable O.O.S. predictions, compared to the more reliable predic-

tions in India due to the strong upward trend.
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Fitting subsequent phases

As the pandemic progresses further waves of infection, and thus deaths, are inevitable and will

continue to be of interest for the foreseeable future, particularly as a vaccine is rolled out and

new variants of the virus are discovered. There is no obvious endpoint to the pandemic, how-

ever it is of interest to investigate subsequent waves of infection as well. To address this, we

extend our main analysis to determine whether our proposed model is applicable over a longer

time period.

Fig 3. In-sample validation. The observed number of deaths (black dots) compared to the 95% posterior predictive interval for the estimated expected

number of events, i.e. λ(t) (grey ribbon).

https://doi.org/10.1371/journal.pone.0250015.g003
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We consider mortality data from the endpoint of our initial analysis, up to 4th February

2021. Countries with inadequate data to inform another phase were cut short. As such, the

observation period for Brazil, U.K and U.S end on 7th January 2021, 24th January 2021 and

12th January 2021 respectively. Furthermore, for many countries there is a period of very low

mortality in between the first and second waves of infection, and we do not consider this

period. Additionally, China has not experienced a second wave, and thus it is excluded from

this subsequent analysis.

Fig 4. In-sample validation, conditioned on data from the first phase. The observed number of deaths (black dots) compared to the 95% posterior

predictive interval for the estimated expected number of events, i.e. λ(t) (grey ribbon).

https://doi.org/10.1371/journal.pone.0250015.g004
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Change points were selected where there were obvious changes in the trajectory, in a similar

fashion as the main analysis. The starting point of the second wave was selected as the time

where either the 2 week or 4 week rolling average increases by 50% in a single week. The choice

between a 2 or 4 week rolling average is chosen based on which more closely aligns to the start

of the second wave upon visual inspection. We note that automatic change point detection

algorithms such as the CUSUM algorithm [65] were considered, however, they are not appro-

priate for our model. These algorithms are generally based on the mean of the time series.

Given the self-exciting nature of our model, changes in the intensity of the process do not

Fig 5. Out-of-sample validation. The observed number of deaths (black dots) compared to the 95% posterior predictive interval for the estimated

expected number of events, i.e. λ(t) using various training datasets (grey ribbons).

https://doi.org/10.1371/journal.pone.0250015.g005
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necessarily indicate changes in the underlying model parameters. The change points selected

can be found in S7 Appendix.

Comparing the parameter estimates between the initial analysis and this subsequent analy-

sis, several observations can be made. The full table of estimates can be found in S2 Table. Gen-

erally, while the baseline parameter μ in the initial analysis shows a reduction between the first

and second phases, in subsequent phases the baseline mean begins to increase again. This is

potentially due to the relaxing of restrictions and the opening of international borders. The

magnitude parameter α acts as expected, in other words it is less than 1 for phases with a

downward trajectory and greater than 1 for phases with an upward trajectory. In the initial

analysis, β is generally close to 1 in the first phase and reduces in subsequent phases.

Fig 6 shows the estimated intensity function against the observed data for the subsequent

analysis. We find that the estimated intensity follows very closely to the observed data, as is

also seen in the main analysis. We also consider in-sample (Fig 7) and out-of-sample validation

(Fig 8), in the same manner as the main analysis. These both show promising results, with

both in-sample and out-of-sample predictions aligning very closely to the observed data. The

residuals, in this case referring to the difference between the observed data and the estimated

intensity, for all phases in both the initial and subsequent analysis are provided in S8 Appendix,

and show that the models for both sets of analyses are reasonable.

Discussion

There are many strengths to our work, and some important considerations that needed to be

made. We first discuss the main findings of this analysis. This is followed by detailing the limi-

tations and potential extensions. Lastly we compare our model methodology to several popular

approaches for modelling this type of phenomena.

DTHP model

Infectious diseases have previously been studied using Hawkes processes. However, the scale,

severity and uncertainty of the current COVID-19 pandemic make it a very challenging prob-

lem, providing a unique opportunity to evaluate the capacity of Hawkes processes in describ-

ing an incredibly complex process. Another source of complexity arises from the definition of

what constitutes a COVID-19 death, which differs between countries. This analysis finds that

by modifying the DTHP to incorporate change points, our model can adequately capture the

overall process as distinct phases, while quickly reacting to and accommodating for some level

of abnormal behaviour.

The findings of this work can also quantify the dynamics of these distinct phases in the pan-

demic. Our results from the initial analysis show that for the baseline parameters, the back-

ground rate in the second phase, μ2, is lower than that for the first phase, μ1. This is analogous

to a reduction in the baseline level of exogenous events, possibly related to reduced travel and

general mobility. Another factor could be increased levels of community transmission, affect-

ing the self-exciting component of the intensity function, and thus placing less emphasis on

the baseline component. In subsequent phases, μ begins to increase again, which suggests an

increase in movement between countries. The exception to this is the U.S., for the reasons

stated in previous sections. The baseline parameter could also be affected by the definition of a

reported COVID-19 death, as this differs between countries. For example, when the criteria

for reporting a death excludes cases where the person suffers from other illnesses in addition

to the virus, this could result in an inflated baseline rate, as secondary events from unreported

cases could be present in the data.
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Our initial results for the magnitude parameters show, with a high degree of certainty, that

for the first phase α1 is greater than 1, and for the second phase α2 is less than 1. This exhibits

the distinct differences between phases, as a magnitude parameter greater than 1 indicates the

process itself is non-stationary, and similarly a magnitude parameter less than 1 suggests a sta-

tionary process. This pattern is also evident in the analysis of subsequent phases. We discuss

Fig 6. Observed deaths versus estimated deaths (subsequent analysis). The observed number of deaths (black dots) compared to the 95% posterior

interval for the estimated expected number of events, i.e. λ(t) (solid red ribbon), for the subsequent analysis.

https://doi.org/10.1371/journal.pone.0250015.g006
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below the similarities between the magnitude parameters in our model and the reproduction

number in standard epidemiological models.

The triggering kernel parameter in the first phase, β1, is higher than that for the second

phase, namely β2, for all countries except Sweden and China. This could suggest that in later

stages of the epidemic when preventative measures have been implemented, the time between

transmission is longer, as there is less opportunity for transmission. The two exceptions to

this, Sweden and China, are on opposite ends of this spectrum. While China enforced very

Fig 7. In-sample validation for subsequent analysis, conditioned on data from the initial analysis. The observed number of deaths (black dots)

compared to the 95% posterior predictive interval for the estimated expected number of events, i.e. λ(t) (grey ribbon), for the subsequent analysis.

https://doi.org/10.1371/journal.pone.0250015.g007
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strict lockdown and quarantine requirements, Sweden adopted a soft approach to lockdown.

Large β1 values could also be an indication of instability in the initial phase of the pandemic,

leading to difficulty in predicting and discerning patterns in the data. Additionally, this could

be a result of death data being less reliable in early phases, as the process of counting COVID-

19 deaths was not yet established.

Fig 8. Out-of-sample validation (subsequent analysis). The observed number of deaths (black dots) compared to the 95% posterior predictive interval

for the estimated expected number of events, i.e. λ(t) using various training datasets (grey ribbons) for the subsequent analysis.

https://doi.org/10.1371/journal.pone.0250015.g008
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Throughout the initial stage of this analysis, we have found difficulty in fitting the proposed

model for the U.S. In particular, the posterior estimates for the baseline parameter are uncer-

tain as they are heavily influenced by the prior choice. Additionally, in-sample posterior pre-

dictive checks found that the sample paths produced by the estimated model parameters do

not resemble the observed trend. We consider the U.S. an anomaly, as their response to the

virus by the relevant state-level authorities varied widely between states. While this is also true

to an extent for other countries, the heterogeneity across the country was arguably more signif-

icant for the U.S., implying that the proposed model may need to be applied at a more granular

level of regions to obtain more reliable results.

Despite our approach being able to accurately capture the dynamics of this complex pro-

cess, we now address some limitations and extensions that could be considered. As the epi-

demic is still ongoing, new data is becoming available each day, and the model must be re-fit

and tuned each time the data is updated. While we somewhat manually select change points in

this analysis, an algorithm suitable to this model with automatic selection of the number of

change points and their respective locations could also be considered. Additional change

points need to be determined carefully as there must be sufficient information in each time

series to inform parameter estimation. Another consideration is flexible Bayesian nonparamet-

ric splines [66] or other methods to provide time-varying parameters. However, the identifia-

bility and existence of this model would need to be established. One could also consider

different triggering kernels, including nonparametric kernels in order to improve the flexibil-

ity of the model. Another possible extension is considering covariates related to COVID-19

deaths, such as the number of people travelling and number of hospitals per capita.

Comparison with other approaches

Here we discuss several of the many approaches that have been considered to model the ongo-

ing COVID-19 epidemic, and the different perspectives they provide compared to our DTHP

model. Compartmental models such as the SIR family of models are among the most popular

methods for epidemic modelling. They are more detailed and consider the mechanics of the

infection cycle, separating the population into categories such as susceptible, infected and

recovered or deceased. Our DTHP model is simplified in the sense that we consider only death

events. We chose to model deaths instead of infection numbers as the latter data was very

unreliable in the beginning due to lack of testing and different testing policies across countries.

However, as we show in S1 Appendix, as a first-order approximation, the death dynamics are

helpful to understand the infection dynamics. This approximation is convenient when the

infection data are unreliable, as occurred in the early stages of the COVID-19 pandemic. In the

presence of data uncertainty such as this, the SIR model requires additional terms to account

for this measurement error.

To compare the two frameworks, it is helpful to consider a stochastic variation of the SIR

model as a bivariate Poisson process, comprised of infection and recovery events. Infection

events are then governed by a Poisson process where the rate is based on the transmission rate

and the current size of the susceptible and infected populations, corresponding to the rate of

infection in the deterministic SIR model. Our model differs as we consider a discrete time

scale, the daily number of events is Poisson-distributed and, conditioned on past events, the

rate of events each day is given by Eq (2).

Another significant difference between our model and standard compartmental models is

that the latter considers a finite population. In its original form, the Hawkes model assumes

that there will be immigrant events arriving at a rate of the baseline mean μ indefinitely, imply-

ing an infinite population. However, finite population variants of the Hawkes model do exist
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[43]. This differs from the SIR model, which naturally considers a finite population whereby

the infection dies out once herd immunity is achieved. The impact of this difference is negligi-

ble in our modelling because we predominantly model the pandemic’s initial phases, where

not enough of the population has been infected or vaccinated to achieve herd immunity. This

may not be the case for more prevalent diseases such as the flu, however both models are rea-

sonable. As the flu season ends, there will still be new infections throughout the year, however

on a smaller scale.

Hence our approach provides a simple model for unknown and volatile phenomena such

as the COVID-19 pandemic, particularly in the early stages of the outbreak. Unlike the com-

mon flu, where the dynamics and course of infection are well understood and relatively pre-

dictable, COVID-19 is a new and unexplored domain. The various interventions that take

place simultaneously result in complex interactions that complicate the dynamics of the pro-

cess. Our focus is on the early stages of the epidemic where there is a great deal of uncertainty

and volatility. The SIR model family is useful for phenomena where the mechanics are well

known. However, complicated variants of these models are required to capture the complexity

of this pandemic. Our simple model is useful in describing this early stage in the pandemic

when there are still many unknowns. Our model also introduces randomness and flexibility

that is not afforded in standard compartmental models. This allows our model to adapt to sys-

tem changes induced by government interventions quickly.

The family of SIR models naturally follow the pattern of infections and deaths rising to a

peak and then falling due to a reduction in the susceptible population. However, this is not the

cause of the fall observed in the early stage of the pandemic. Instead, the fall is driven by exter-

nal factors such as social distancing measures, temperature, and improvement in treatments,

to name a few. SIR family models have also incorporated change points or time-varying

parameters to account for these alternative drivers [51, 52]. Given our analysis’s retrospective

nature, the change points were quite obvious, and we did not estimate them. However, our

Hawkes model can be easily augmented to induce this shape naturally. For example, we

could consider a mixture of Hawkes processes for each of these distinct phases, estimate the

unknown (or known) change points, or incorporate time-varying parameters.

Another more complex approach is that of agent-based modelling. These are more detailed

than compartmental models, and are very useful if you have an understanding of the underly-

ing mechanisms. Recent papers using this approach for the COVID-19 epidemic, referenced

in the introduction, reveal the non-random nature of the underlying stochastic processes.

Based on fluctuations in social participation and certain biological factors, they lead to the

infection spreading, hospitalisation, and eventually to fluctuations of the fatality rate.

Alternatively, one could consider an even more straightforward approach, such as a piece-

wise exponential model. However, the Hawkes process allows for uncertainty in the model

that is not possible with the exponential growth model, which is very strict and captures only

the data trend. Allowing fluctuations in the data—particularly for volatile phenomena such as

the current pandemic—is an essential aspect of providing a realistic model. The exponential

model also becomes less appropriate as the pandemic progresses. In later phases, there are

complex interactions that result in trajectories that are inherently not exponential. These are

uncertain times, and our model strikes a balance between modelling the dynamics of the

whole infection cycle and fitting a generic exponential model. We model some fluctuations

motivated by the physical process, but with a simpler model than many others considered in

the literature.

While there are many alternative approaches available, the Hawkes model is also a natural

model for describing self-exciting phenomena. It provides a flexible and stochastic framework

for modelling, and the parameters in our model provide interesting insights into the
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pandemic. Namely, α is the average number of secondary infections and is related to the repro-

duction number, a
b

is related to the average time an infected individual has infected someone,

and μ relates to the occurrence of external excitations, or rather contaminations weighted by

the probability of death given contamination. The β parameter on its own also indicates how

the time between infections changes throughout time.

The reproduction number, defined as the number of secondary infections from a single

case, is a crucial parameter in epidemiological models. Similarly, the magnitude parameters in

our model, given by α, also represent the expected number of secondary cases caused by a sin-

gle parent event. While their respective interpretations are similar at a superficial level, α is not

directly comparable to reproduction numbers in epidemiological models. This is due to differ-

ences in model assumptions and the underlying mathematical frameworks, as our model’s

magnitude parameters do not provide the same information as the effective reproduction

number. The effective reproduction number informs the level of herd immunity that will

bring the virus under control, and the proportion of new infections that must be prevented to

change the trend of events from increasing to decreasing [67], whereas our model parameters

do not. However, we note that, similarly to reproduction numbers, if α> 1 in our model there

is exponential growth in the number of events and α< 1 leads to a stationary model, which

translates into a decrease in the number of deaths if the phase begins at a time with a high

event intensity. We also consider a static variable that fundamentally averages over the whole

period, rather than varying through time as the effective reproduction number would. We do

this as reasonable change points were fairly obvious in the dataset used for this analysis. How-

ever, for more complex trajectories, other authors [44, 45] consider a Hawkes model with a

time-varying magnitude parameter, which they refer to as a dimensionless reproduction num-

ber. This approach could inform the change point’s location by observing when the magnitude

parameter goes below 1. The change points could also be estimated, for example using the

method suggested in [68].

Other key epidemiological parameters are generation times and serial intervals, which

describe the time between infection and development of symptoms, respectively, for a pair of

individuals. Our model does not capture this type of information, as we do not consider the

relationship between specific pairs of individuals. As a result, it is not possible to obtain param-

eters such as growth rates, which are often of interest in epidemiological models. However, we

can gain insight into an alternative temporal aspect of the contagion. The geometric triggering

kernel in our model describes how the probability of contagion changes as time elapses. More

precisely, we can determine, for a given day, the influence of past events on the expected num-

ber of events for that day.

Conclusion

The utility of our model is not restricted to the current coronavirus epidemic, and could be

used as a simple model to describe a much broader range of complex phenomena. We have

demonstrated through this study that the proposed model is a simple, yet powerful tool for

explaining an incredibly complex process. In general, models that attempt to describe complex

processes can become increasingly complicated, as more intricate details are embedded and

accounted for in the modelling. Thus having a parsimonious model that is flexible enough to

competently capture the dynamics of a complex process, without adding too much additional

complexity, is very desirable.

In particular for the current pandemic, this study shows that our simple discrete-time

Hawkes process can capture the dynamics for different countries, despite the complexities

involved with each country’s unique response to the virus. The same underlying biological
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process is affecting countries in different ways, and there is a significant difference in the

impact and severity of the pandemic across different countries. Additionally, the actions that

have been taken to stop the spread, and the timing of these also vary widely. These different

behaviours between countries mean that the evolution of the pandemic for an individual coun-

try is very intricate within itself, and involves many unseen and complex hidden interactions

that we cannot model directly. However, the proposed model, while being very simple, can

capture these trends surprisingly well.

To adequately model the entire course of the pandemic, we find that we must make provi-

sions as there are multiple distinct phases. Initially, there is exponential growth as the virus

spreads, followed by a period of reduced infection rates as actions are taken to slow the spread.

These distinct behavioural differences throughout the evolution of the epidemic must be

acknowledged, as a single DTHP applied to the entire time series provides uninformative and

uninterpretable parameter estimates. Hence a model that accounts for these different phases,

such as the model presented in this work, is required.

Fitting a DTHP to the epidemic has led to some other unique insights. Our results show

that a discrete-time model is appropriate for this application, avoiding unnecessary computa-

tional burden as well as additional noise due to artificial data imputation, as is required for the

continuous-time model. This model also provides to an extent, interpretable parameters and

an indication of the changing dynamics between distinct phases of the pandemic. We show

that despite unique circumstances for individual countries, including the type and timing of

non-pharmaceutical interventions, population demographics, and the overall impact of the

virus, the model is flexible and can also accomodate some level of volatility in the data. Fur-

thermore, one of the most surprising outcomes of this analysis is that, at the country level, a

very simple DTHP model fits remarkably well to the number of deaths, thus capturing the

dynamics of the COVID-19 pandemic.
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Abstract

Data-driven algorithms for detecting anomalies in times series data are ubiquitous, but
generally unable to provide helpful explanations for the predictions they make. In this
work we propose a post-hoc explainability method that is applicable to any differentiable
anomaly detection algorithm for time series. Our method provides explanations in the
form of a set of diverse counterfactual examples, i.e., multiple perturbed versions of the
original time series that are similar to the latter but not considered anomalous by the
detection algorithm. Those examples are informative on the important features of the time
series and the magnitude of changes that can be made to render it non-anomalous for the
explained algorithm. We call our method counterfactual ensemble explanation, and test it on
two deep-learning-based anomaly detection models. We apply the latter to univariate and
multivariate real-world data sets and assess the quality of our explanations under several
explainability criteria such as Validity, Plausibility, Closeness and Diversity. We show that
our algorithm can produce valuable explanations; moreover, we propose a novel visualization
of our explanations that can convey a richer interpretation of a detection algorithm’s internal
mechanism than existing post-hoc explainability methods. Additionally, we design a sparse
variant of our method to improve the interpretability of our explanation for high-dimensional
time series anomalies. In this setting, our explanation is localized on only a few dimensions
and can therefore be communicated more efficiently to the model’s user.

1 Introduction

Anomaly detection in time series is a common data analysis task that can be defined as identifying outliers,
i.e., observations that do not belong to a reference distribution. For instance, anomaly detection is leveraged
to localize a defect in computing systems, disclose a fraud in financial transactions, or diagnose a disease
from health records Blázquez-García et al. (2021). Detected outliers often call for further investigation,
therefore, the recipient of a detection algorithm outputs generally needs to be able to interpret the algorithm’s
predictions. Consequently, providing explanations for models that detect anomalies has practical relevance,
all the more in the setting of multivariate time series data, where model interpretation is an even more
challenging task. This is however a still understudied problem, in particular for machine learning models.

In general, an anomaly detection model classifies each timestamp of a time series as anomalous or not. Several
state-of-the-art models involve complex deep learning (DL) classifiers, such as LSTMs Malhotra et al. (2015),
RNNs Audibert et al. (2020) or TCNs Bai et al. (2018); Carmona et al. (2021), whose internal mechanisms are
opaque. This lack of transparency can prevent these models from being deployed in consequential contexts
Brown et al. (2018); Bhatt et al. (2020). Prior work has proposed to include interpretable blocks in machine
learning models for anomaly detection (e.g., attention mechanism in RNNs Brown et al. (2018)) or design
model-specific explainability methods (e.g., feature-importance scores for Isolation Forests Carletti et al.
(2021)). Our work is orthogonal to these methods: we propose a post-hoc and model-agnostic explainability
method that can be applied to any existing differentiable anomaly detection model.

The majority of existing post-hoc explainability methods for time series models aims at estimating feature-
saliency scores Crabbe & van der Schaar (2021); Pan et al. (2020). The latter ranks the features of the
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input data in terms of their relative contribution to the model’s prediction. Although these techniques
have provided valuable insights in image classification tasks (Fong et al., 2019), it is often a weak form of
explanation for anomalies in time series. In fact, they essentially indicate that the time series values at the
anomalous time stamps are salient, therefore providing redundant information compared to the anomaly
detection model (see for instance Figure 1b, where the salient features are highlighted in green). In practice,
a user of an anomaly detection model might be interested in (a) knowing what can be changed in the input
data to avoid encountering the anomaly again in the future (preferentially with minimal cost), and (b)
understand the model’s sensitivity to a particular anomaly. Our proposed method provides explanations
satisfying these two requirements.

Counterfactual explanation denotes a type of explainability method that provides insight on the sensitivity
of a model’s predictions to a change in the input data. They have notably been proposed for interpreting
time series classifiers Ates et al. (2021); Delaney et al. (2021); Karlsson et al. (2020). A counterfactual
example (or for short, a counterfactual) is an instance-based explanation in the form of a perturbed input on
which the model’s prediction value is different from the model output on the original data. It thus indicates
what modifications of the input must be made to obtain a different prediction. It is generally defined as an
instance X ′ minimizing a cost function such as Wachter et al. (2018):

L(X,X ′, y′, λ) = λ(f(X ′)− y′)2 + d(X,X ′),

where X and f are respectively the original input and the prediction model that need to be explained, y′ is
a desired output value (e.g. a different predicted label in classification contexts), d(., .) is a distance on the
input space and λ is a trade-off parameter. In their basic definition, they are closely related to adversarial
examples Verma et al. (2020), however, their properties and their utility are distinct. Adversarial examples
are often weakly constrained and used as hard instances to train more robust models, whereas counterfactuals
are designed as plausible examples for interpreting an existing model’s predictions.

In the context of anomalies detected by a time series model, counterfactual methods aim at generating
modified time series (or sub-sequences) that do not contain anomalous observations according to the detection
model. With the additional constraint that counterfactuals are somehow similar to the original time series,
these time series instances therefore correspond to the closest normal or expected behaviour according to
the explained model. For example, when the time series is a temporal record of a patient’s blood glucose
level with abnormally high values, a counterfactual example can be an alternative record with levels in a
non-critical interval. Hence, counterfactual explanations can reveal the boundaries of the normal time series
distribution according to the prediction model.

However, a single counterfactual is generally only a partial explanation, satisfying a particular trade-off
between predefined criteria Russell (2019). One extension of counterfactual explanation consists in providing
an ensemble (or set) of diverse counterfactual instances Russell (2019); Mothilal et al. (2020); Dandl et al.
(2020). Nonetheless, this extension has not been previously considered in the context of time series anomaly
detection models. Besides, more broadly, there is no existing strategy to effectively communicate these
more complex counterfactual explanations to the model’s user. In this work, we propose an approach for
generating counterfactual ensemble explanations for anomaly detection models in time series, as well as a
visualization method of these explanations.

More precisely, we make the following contributions:

• We introduce a model-agnostic and post-hoc method that explains the predictions of any differ-
entiable anomaly detection model for time series. For any given input and prediction value, our
explanation, called counterfactual ensemble explanation, is a set of counterfactual examples sat-
isfying different trade-offs between pre-defined criteria. In practice, these examples can be used
individually as actionable explanations, or analysed together to investigate the model’s sensitivity
to perturbations of the input.

• We design a sparse variant of our method for high-dimensional time series anomalies, which have been
much less studied and generally harder to interpret. In this context, we constraint our counterfactual
explanation to make changes only on a few dimensions of the input time series, so that it can be
communicated more efficiently to the explanation’s recipient.
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• We propose an interpretable visualization of our counterfactual ensemble explanation. Our rep-
resentation shows the range of possible perturbations gaining insight on the model’s local decision
boundary and sensitivity. Thus, our visualization can increase the actionability of the counterfactual
explanation, when the time series features are mutable.

• We investigate the value of our method on two deep-learning anomaly detection models, applied to
univariate and multivariate real-world time series data sets. We quantify the quality of our ensemble
explanations using metrics previously proposed in other data domains, namely Validity, Plausibil-
ity, Closeness and Diversity. We note that ensemble explanations have never been considered in
the context of time series anomalies, therefore there is not yet an equivalent competitive method.
However, we also design a naive counterfactual ensemble method that we numerically compare to
in our experiments.

Figure 1 illustrates our proposed method, and its novelty in contrast to existing explainability methods for
time series models. In this univariate example with a spike outlier, a feature-saliency explanation method
essentially highlights the time series features near the anomaly (Figure 1b). Besides, a (single) counterfactual
explanation proposes a whole new subsequence where the largest feature changes are localized at the anomaly
(Figure 1c). In comparison, our ensemble explanation (Figure 1d) is (a) sparse, in the sense that it is localized
on a few time series features (the anomaly) (b) optimal in that it minimally modifies these features and (c)
rich by diversifying the possible perturbations (see Figure 1e, showing a few examples from our ensemble).

After succinctly reviewing existing work in explainability for time series models and counterfactual explana-
tions in Section 2, we describe the general set-up in Section 3. In Section 4, we present our approach. Then
in Section 5, we demonstrate the effectiveness of our method on DL-based models and benchmark anomaly
detection data sets. Finally, we discuss our results and propose possible future developments in Section 6.

2 Related work

Explainability methods for users of machine learning models have developed along two paradigms: building
models with interpretable blocks or designing model-agnostic methods that can be applied to any model
already deployed. For time series data, RETAIN Choi et al. (2016) incorporates an attention-mechanism in
an RNN-based model while Dynamic Masks Crabbe & van der Schaar (2021) is a model-agnostic algorithm
that produces sparse feature-importance masks on time series using dynamic perturbation operators. In fact,
many methods for time series adapt algorithms designed for tabular or image data: for instance, TimeSHAP
Bento et al. (2021) extends SHAP, a feature-attribution method that approximates the local behaviour of
a model with a linear model using a subset of features. Another interesting line of work interprets CNNs
for time series models using Shapelet Learning Ma et al. (2020). Shapelets are subsequences that are learnt
from a dataset to build interpretable time series decompositions.

Nonetheless, previously cited work for time series are feature-saliency estimation methods. Although they
are notably helpful to localize the important parts of time series (in terms of their contribution to the model’s
prediction), they can only weakly explain anomaly detection models. Moreover, instance- or example-based
explanations can be more easily interpreted by a non-expert person Wachter et al. (2018). These methods
explain a prediction on a single instance by comparing it to another real or generated example, e.g., the
most typical examplar of the observed phenomenon (a prototype Hautamaki et al. (2008)) or a contrastive
examplar related to a distinct behaviour (a counterfactual Ates et al. (2021); Delaney et al. (2021); Karlsson
et al. (2020)). For time series classifiers, counterfactuals can be generated by swapping the values of the
most discriminative dimensions with those from another training instance Ates et al. (2021). In a causal
inference setting, Chernozhukov et al. (2021) construct counterfactual time series as linear combinations of
control groups. Unfortunately, these approaches can yield implausible subsequences, that do not belong to
the data manifold Carletti et al. (2021), e.g., by breaking correlations between the dimensions of multivariate
time series. The Native Guide algorithm Delaney et al. (2021) does not suffer from the previous issue but
uses a perturbation mechanism on the Nearest Unlike Neighbor in the training set using the model’s internal
feature vector. Lastly, for a k-NN and a Random Shapelet Forest classifiers, Karlsson et al. (2020) design a
tweaking mechanism to produce counterfactual time series.
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However, these methods necessitate knowledge of the model’s internal mechanism and/or access to its training
dataset, which can be expensive. Additionally, these counterfactual explanations suffer from the so-called
Rashomon effect Molnar (2019), i.e., the fact that several equally-good perturbed examples might exist and be
informative for the model’s user. In this case, one might benefit from knowing multiple ones, before choosing
the most helpful example in a specific context Mothilal et al. (2020). For linear classifiers of tabular data, a set
of diverse counterfactuals can be obtained by sequentially adding constraints along the optimization iterations
of the perturbation algorithm Russell (2019), whereas the Multi-Objective Counterfactuals algorithm Dandl
et al. (2020) records multiple perturbed examples generated along the iterations of a genetic algorithm.
These counterfactual sets therefore contain different trade-offs between conflicting criteria. While in the
previous methods, diversity is not explicitly enforced, the DiCE algorithm Mothilal et al. (2020) includes a
penalization on counterfactuals’ similarity based on Determinantal Point Processes. In a similar fashion, for
image classifiers, DiVE Rodriguez et al. (2021) perturbs the latent features in a Variational Auto Encoder and
penalises pairwise similarity between perturbations, while Karimi et al. (2020) propose a general framework
for generating counterfactual examples with diversity constraints in heterogeneous data. Our paper differs
from these works since it considers the problem of generating diverse counterfactual explanations for the time
series domain. In particular, we leverage specific time series perturbation mechanisms in order to obtain
plausible examples.

To the best of our knowledge, we propose the first method that provides diverse counterfactual explanations
for time series. As previously noted Crabbe & van der Schaar (2021), this data domain requires specific
treatment of temporal dependencies, therefore existing methods for tabular data cannot be directly applied.
Besides, having a diverse set of counterfactual explanations can be particularly helpful for time series where
the actionable or mutable features are not known in advance. We introduce our method in the context of
anomaly detection, however we believe that our approach could be adapted to other tasks on time series data.
Moreover, previous works proposing diverse counterfactual explanations have not discussed the additional
challenge of communicating efficiently a set of examples compared to a single one. The visual representation
we propose can be related to the “What-If Tool" Wexler et al. (2020), an interactive visual tool designed
for general ML model elicitation. Before exposing our method, we describe the general set-up in the next
section.

3 General set-up

In this work, we assume that anomalies in a time series are unpredictable and out-of-distribution subse-
quences. Hence, an anomaly is a significant deviation from a given reference behaviour. In the remainder,
we will not make a distinction between anomaly, outlier and anomalous/abnormal/atypical observation.
Not-anomalous data points will be considered as belonging to the data distribution, and denoted as the
reference/normal/typical/expected behaviour. We will also refer to the latter as the context.

For the description of the general set-up, we introduce the following notations: for an integer k ∈ N, [k]
denotes the set {i; 1 ≤ i ≤ k} and for x ∈ R, let x+ = max(0, x). For a vector v ∈ Rn, we denote vi its i-th
coordinate and for X ∈ Rm×n a matrix or multivariate time series, Xi denotes respectively the i-th row or
the i-th observation.

3.1 Anomaly detection model

We assume that we are given an anomaly detection model which we can use to predict anomalies on a time
series of any given length. We consider a general setting where time series are multivariate and the model
processes all dimensions (or channels) jointly. More precisely, we denote X ∈ RT×D a time series with T
time stamps and D dimensions. The prediction function of the model, denoted by f , is used to classify
each timestamp t ∈ [1, T ] of X as "anomalous" (i.e., label 1) or "not-anomalous" (i.e., label 0). In fact, the
prediction f(X) ∈ RT is a vector of anomaly scores for each timestamp (e.g., probability scores of being
anomalous) which transforms into a vector of 0-1 labels using the model’s classification rule (e.g. a threshold
on these scores). Note that the dimension of the vector f(X) might be smaller than T if the model needs a
warm-up interval.
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In practice, these models often detect anomalous time stamps by subdividing time series into smaller time
windows and classifying the latter (therefore each timestamp or a subset of them in these sub-windows). In
other works, to output a prediction on a single timestamp, the "receptive field" of a model is generally a
fixed-size (typically small) window. Let’s denote W ∈ RL×D a window of size L and consider the following
general set-up: the window W = [WC ,WS ] is subdivided by the model into two parts, with WC ∈ R(L−S)×D

a context part (that can be empty if the context is implicit once the model is trained) and WS ∈ RS×D a
suspect part, for which the model makes a prediction. More precisely, f(W ) ∈ RS is the anomaly score of
the window WS and, without loss of generality, we suppose that f(W ) ∈ [0, 1]S . We also denote θ ∈ [0, 1]
the anomaly detection rule, i.e., a label 1 is given to WS if for some i ∈ [S], f(W )i > θ.

Examples of anomaly detection models with the previously described mechanism are NCAD Carmona et al.
(2021), where the context window has typically thousands of time stamps and the suspect window has 1 to
5 time stamps, and USAD Audibert et al. (2020), where W = WS and L = 5 or 10. In the latter case, the
context is implicit and the whole training set is considered as normal data and thus the context of anomalies
detected in a test time series.

3.2 Counterfactual explanation

In most cases, a single anomaly is a short subsequence, and can therefore be contained in one or few contiguous
subwindows WS . For ease of exposition, we suppose that an anomaly is contained in one suspect window.
An example is shown in Figure 1a where a suspect window WS (highlighted in red) contains an anomaly.
A counterfactual example for model f detecting an anomaly in WS (i.e., for some i ∈ [S], f(W )i > θ), is
an alternative window W̃ = [WC , W̃S ] such that all predicted labels are 0 (i.e., for any i ∈ [S], f(W̃ )i < θ).
Since the context of the anomaly is also key to its detection by the model, and if W does not contain a
context window WC , we choose to add in the counterfactual example W̃ a fixed size window WC , that
immediately precedes W in the time series. Note that we implicitly suppose that anomalies are not too close
to each other so that the additional context window does not contain any anomaly. With a slight abuse of
notations, we still denote W̃ the obtained counterfactual example.

3.3 Properties of counterfactual explanations

There are four largely consensual properties that convey value and utility to counterfactual explanations in
the context of model elicitation Verma et al. (2020):

1. Validity or Correctness: achieving a desired model output, e.g., changing the predicted class label
in classification; this is the key goal of a contrastive explanation.

2. Parsimony or Closeness: minimally and sparsely changing the original input; this is motivated by
practical feasibility of the counterfactual if the input features are actionable, and by readibility of
the information communicated to the model’s user.

3. Plausibility: counterfactual explanations need to contain realistic examples of normal subsequences.

4. Computational efficiency: being computable within a reasonable amount of time and with acceptable
computing resources.

In the context of an anomaly detected in a time series, property (1) is equivalent to flipping the anomaly
detection model’s prediction label from 1 to 0 (i.e., achieving a anomaly prediction score below the classifier
threshold). Property (2) can be enforced by restricting the perturbation of the input on a small window
containing the anomaly (i.e., the suspect window WS) and on few dimensions of the time series (if the
anomalous features are only located on some channels). Property (3) requires that the counterfactual belongs
to the normal data distribution. If the latter is not known or estimated, this criterion can be complicated to
evaluate, but some prior knowledge such as the time series’ regularity, seasonality, or bounds can be leveraged.
Property (4) potentially depends on the specific setting, in particular the cost of using the model’s prediction
function or its gradient, and the size of the dataset. However, in our context, we assume that accessing the
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(a) Original time series window

(b) Feature-saliency map

(c) Counterfactual example

(d) Our counterfactual ensemble explanation

(e) Counterfactual examples from our ensemble explanation

Figure 1: Comparison between existing explainability methods for time series and ours, in the context of
anomaly detection. The original input (1a) is a univariate time series window containing an anomalous subse-
quence (a spike outlier, highlighted in red) and the anomaly detection model is NCAD (see Section 5.1.2). The
subsequent panels represent the explanations from a feature-importance method (Dynamic Masks Crabbe &
van der Schaar (2021)) (1b), an instance-based method (counterfactual example) (1c) and our method (1d).
In (1b), the important timestamps have saliency scores closed to one (green color code). In (1d), all the
examples from our counterfactual ensemble, which only span the anomalous sub-window, are plotted; the
orange color map indicates their anomaly scores (between 0 and 1) given by the explained model. In (1e),
we additionally plot five counterfactual examples from this ensemble.
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training set of the detection model is particularly expensive, since the latter often decomposes the time series
into small windows, leading to a large number of actual training inputs for long time series.

Unfortunately, those properties are often conflicting (e.g., parsimony and plausibility in the context of a
spike outlier), therefore a single counterfactual example can only achieve a particular trade-off between them.
In the next paragraph, we motivate the use of counterfactual ensembles (or sets) as more comprehensive
explanations.

3.4 Diversity as an additional property

When the data features are actionable , the counterfactual example informs on the localization and magnitude
of change that can be applied to the original time series to obtain non-anomalous data. However, the best
or feasible trade-off between the pre-defined criteria might depend on the particular anomaly or user’s
range of action. In absence of this prior knowledge, previous work Mothilal et al. (2020); Russell (2019)
added diversity, or range of perturbation, as one informative criterion. In particular, a set of counterfactual
examples can increase the likelihood of finding a helpful explanation Rodriguez et al. (2021).

In this sense, an ensemble of counterfactual explanations for an opaque model is more insightful if the
user can discriminate between feasible and non-feasible counterfactual examples when given a set of them.
However, this qualitative statement is difficult to quantify in practice since there for most data sets, there is
no ground-truth for the notion of actionability of counterfactual explanations.

Moreover, we also argue that this additional complexity in the explanation should be adequately commu-
nicated to the explanation’s recipient, e.g., with a suitable visualization. Intuitively, the latter should be
informative on the different possibilities of features changes and the particular trade-off achieved by a coun-
terfactual example. In Section 5.4, we propose a representation for time series, where all counterfactual
examples can be visualized together with their anomaly score under the explained model. One example is
shown in Figure (1d) and several case studies are represented in Figure 2.

4 Methodology

In this section, we present our method for generating counterfactual ensemble explanations. Our approach
for differentiable anomaly detection models is described in § 4.1 and can be delineated into two variants,
whose respective uses depend on prior knowledge of the data distribution. The first one, called Interpretable
Counterfactual Ensembles (ICEs) (§ 4.1.1), can be applied without any domain knowledge input. The second
one, called Dynamically Perturbed Ensembles (DPEs) (§ 4.1.2), leverages dynamic perturbation operators
(Crabbe & van der Schaar, 2021), which induce a modification of a time series according to a pre-defined
mechanism. Next, we design sparse variants of this approach, where the perturbations are restricted to a few
dimensions of the input (high-dimensional) time series (§ 4.2). Finally, we describe an alternative method
for generating our counterfactual ensemble when the model’s gradient information is not available (§ 4.3).

4.1 Gradient-based counterfactual ensemble explanations

Most counterfactual algorithms (e.g., Native Guide Delaney et al. (2021), Growing Spheres Laugel et al.
(2018), DiCEMothilal et al. (2020)) rely on adequately perturbing the inputW and optimise the perturbation
to enforce some properties of the perturbed example. In our method, using the notations of Section 3, we
first define an objective function over a single counterfactual example W̃ = [WC , W̃S ], then use a gradient-
descent algorithm starting at the original time series to minimize it. The ensemble of examples is built
along the optimization path by collecting adequate perturbations. We define two variants of our method:
one, called Interpretable Counterfactual Ensemble (ICE), that is a completely unspecified, and another one,
Dynamically Perturbed Ensemble (DPE), where one can input some domain knowledge and specify a dynamic
perturbation mechanism Crabbe & van der Schaar (2021).
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4.1.1 Interpretable Counterfactual Ensemble (ICE)

In this variant, the objective function on a counterfactual example is defined as follows:

LICE(W̃ ) = Lpred(W̃ ) + Lc(W̃ ) + Ls(W̃ ), (1)

where the first term accounts for the Validity property via a hinge loss on the prediction score on W̃ , i.e.,

Lpred(W̃ ) = (f(W̃ )− c)+,

with c ∈ [0, 1] is a margin parameter. The second term in equation 1 enforces the Closeness constraint via a
penalty similar to the elastic net Zou & Hastie (2005), here using the Frobenius and the L1 matrix distances:

Lc(W̃ ) = λ1

S
√
D
‖W̃ −W‖1 + λ2

SD
‖W̃ −W‖F ,

where λ1, λ2 > 0 are regularization parameters. Finally, the third term of equation 1 enforces Plausibility
through temporal smoothness (see for instance Crabbe & van der Schaar (2021)):

Ls(W̃ ) = λT
(S − 1)D

D∑

i=1

S−1∑

t=1
|[W̃S ](t+1)i − [W̃S ]ti|,

with λT > 0. The assumption behind this constraint is that normal time series are not too rough and
smoother than abnormal windows, therefore realistic perturbations should also be quite smooth.

4.1.2 Dynamically Perturbed Ensemble (DPE)

In this variant, one can specify the perturbation mechanism to obtain the counterfactual ensemble using a
dynamic perturbation operator Crabbe & van der Schaar (2021) and a map that spatially and temporally
modulates this perturbation. This notably allows to specify the lengthscale of change in the perturbation
operator. More precisely, a map is a matrix M ∈ [0, 1]S×D that accounts for the amount of change applied
to a timestamp and a dimension in the suspect window WS . A value close to 1 in M indicates a big change
while a value close to 0 indicates a small change. Here, the dynamic perturbation operator is a Gaussian
blur which takes as input a time series window W , a timestamp t ∈ [L − S,L], a dimension i ∈ [D] and a
weight m ∈ [0, 1], and is defined as:

πG(W, t, i,m) =
∑L
t′=1 Wt′i exp(−(t− t′)2/2(σmax(1−m))2)
∑L
t′=1 exp(−(t− t′)2/2(σmax(1−m))2)

,

with σmax ≥ 0, a hyperparameter tuning the blur’s temporal bandwidth. We note that the bigger this
parameter is, the larger is the smoothing effect of the perturbation. The latter is called dynamic in the sense
that it modifies a timestamp using its neighbouring times. We also refer to Crabbe & van der Schaar (2021)
for more examples of dynamic perturbation operators.

Finally, for a given map M , a perturbed suspect window is given by [W̃S(M)]ti = π(W,L−S+ t, i, 1−Mti),
t ∈ [S], i ∈ [D]. The objective function is then written in terms of the perturbation map as:

LDPE(M) = Lpred(W̃ (M)) + λ1

S
√
D
‖M‖1 + λ2

SD
‖W − W̃ (M)‖F

+ λT
(S − 1)D

D∑

i=1

S−1∑

t=1
|M(t+1)i −Mti|, (2)

where the first term is the hinge loss, and the second and fourth terms account for the sparsity and smoothness
constraints, in this case applied on M rather than W̃ as in equation 1.
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Algorithm 1 Gradient-based counterfactual ensemble explanation algorithm.
Input: The anomalous time series window W , the anomaly detection model f , the anomaly threshold θ,

the learning rate η , the number of iterations T , the number of counterfactual examples N .
W̃ 0 = W
I = {}
for t = 1, . . . , T do

Do one step of Stochastic Gradient Descent W̃ t = W̃ t−1 − η∇L(W̃ t−1)
if ∀i ∈ [S], f(W̃ t)i < θ then

Add W̃ t to I
end if

end for
J = |I|/N .
Subsample every J-th elements of I.

Output: The set of N counterfactual examples I.

4.1.3 Optimization and complexity.

Our algorithm for differentiable models has the following steps (see also our pseudo-code in Algorithm
1). We first initialize the counterfactual W̃ at the original anomalous window W . Then, we minimize
the objective function equation 1 or equation 2 using T iterations a Stochastic Gradient Descent (SGD)
algorithm. At each iteration t = 1, . . . , T , we evaluate the anomaly detection model at the current value W̃ t

and if ∀i ∈ [S], f(W̃ t)i < θ, we add W̃ t to a set I. After T iterations, we subsample N counterfactuals from
the set I to obtain a diverse counterfactual ensemble. In practice, by choosing T around 1000, N around
20-30, and an adequate learning rate, the size of the set I will be much larger than N and for simplicity, we
regularly subsample I, ordered by the iteration rank of the examples. Complexity-wise, our method therefore
requires to query the anomaly detection model and its gradient at each iteration of the SGD algorithm.

We note that in our method, we do not select only the global optimum of our objective functions, but we
collect a set of examples along the optimisation path, as long as these examples are non-anomalous. Our
heuristic is that by initializing at the original time series, we hope to collect counterfactual examples that
are close to the original time series, for a large range of hyperparameters values. Moreover, since defining an
optimal counterfactual given the Closeness and Plausibility criteria for each anomaly is not easy to specify,
the different examples found along the optimization path achieve different trade-offs between the terms in the
objective function. In fact, these examples can be seen as solutions of optimization problems with different
sets of weights (hyperparameters) in this objective. Note that similar strategies to ours have been previously
used for generating ensemble of counterfactuals in distinct data domains, e.g., in Dandl et al. (2020); Russell
(2019); Ley et al. (2022).

Other potential candidates for enforcing diversity. We now discuss other candidates from literature
for enforcing diversity in counterfactual explanations. There are three notable alternative strategies: a)
define an objective function over a set of counterfactual examples and include a proximity penalty between
the examples, as in Mothilal et al. (2020); Ley et al. (2022); b) select the optima of our objective function
for N sets of hyperparameters (e.g., chosen over a grid); and c) select the optima of our objective function
for N random initialization points of our algorithm. For strategy a), solving such an objective is much
more cumbersome for a large number of features and counterfactual examples. In fact, Ley et al. (2022)
note that using a Determinantal Point Process penalty like in Mothilal et al. (2020) requires expensive
computations of matrix determinants. Besides, using instead a penalty based on pairwise distances like in
Bhatt et al. (2021) may be particularly challenging for time series where non-standard distances must be
computed. As for strategy b), solving the optimization problem for T sets of hyperparameters would be
much less computationally efficient, and in practice, T would need to be much larger than what we use
in our method to obtain N valid counterfactuals since most of the hyperparameter configurations would
fail. Finally, additionally to being less computationally efficient, we found that strategy c) is not enough to
enforce diversity and often leads to redundant solutions in our experiments. This empirical observation has
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been previously noted by Ley et al. (2022) in a different data context and may be due to the fact that a
fixed set of hyperparameters induces a “strong" minimum of the objective function.

4.2 Sparse counterfactual explanations for high-dimensional time series

A high-dimensional time series would result in a similarly high dimensional explanations. On the other hand,
prior work argues that humans prefer simpler explanations Miller (2019). Therefore, one may obtain a simpler
explanation by restricting the counterfactual ensemble explanation to span as few dimensions as possible.
In this case, the explanation can be more easily visualized and the counterfactual is more actionable, since
it then requires to change a minimal number of channels. Besides, anomalies often tend to be concentrated
on few dimensions, for instance, when a small subsample of monitoring metrics take abnormal values in
a servers network Su et al. (2019b)). Therefore, explanations for these anomalies should also reflect their
low-dimensional property. For these reasons, we design a sparse version of our gradient-based method that
constraints the counterfactual ensemble explanation to be spatially sparse (i.e., sparse or parsimonious in
the perturbed dimensions).

4.2.1 Sparse ICE

In the sparse version of ICE, we restrict the number of perturbed dimensions by introducing a vector
w ∈ [0, 1]D and a matrix Z ∈ RS×D, and defining W̃S(w,Z) = (w ⊗ 1)� Z + ((1− w)⊗ 1)�WS . The role
of w is to select the dimensions in WS that are perturbed with Z. We then consider an objective function
in terms of (Z,w):

LICE,SP (w,Z) = (f(W̃ (w,Z))− c)+

+ λ1√
D
‖w‖1 + λ2

SD
‖W − W̃ (w,Z)‖F

+ λT
(S − 1)D

D∑

i=1

S−1∑

u=1
|Z(u+1)i − Zui|. (3)

Contrary to equation 1, where the sparsity penalization is applied globally (i.e., both temporally and spa-
tially), the previous objective enforces spatial sparsity through the L1-penalisation on w. Another way to
see that is to re-interpret objective equation 1 as objective equation 3 with w = (1, 1, . . . , 1), Z = W̃S and
replace the L1-penalisation on w by λ1

S
√
D
‖Z −WS‖1.

4.2.2 Sparse DPE

We apply the same idea to the DPE variant by enforcing the perturbation maps to be spatially sparse. More
precisely, we define M(w, t) = t⊗ w with w ∈ [0, 1]D and t ∈ [0, 1]T and a loss function in terms of (w, t):

LDPE,SP (w, t) = (f(W̃ (w, t))− c)+

+ λ1√
D
‖w‖1 + λ2

SD
‖W − W̃ (w, t)‖F

+ λT
S − 1

S−1∑

u=1
|tu+1 − tu|. (4)

Here the smoothness constraint is applied on t to guarantee thatM is also smooth in the temporal dimension.

4.3 Gradient-free approach: Forecasting Set

If the anomaly detection model is non-differentiable, we propose an alternative algorithm that generates a
counterfactual ensemble explanation using an appropriate sampling mechanism. The pseudo-code for this
approach is given in Algorithm 2. We describe the steps in detail here. Machine learning models for time
series data sometimes rely on sampling in the context of probabilistic forecasting. Here, we will train an
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Algorithm 2 Gradient-free counterfactual ensemble explanation algorithm.
Input: The anomalous time series window with its context subwindow W = [WC ,WS ], the anomaly de-

tection model f , the anomaly threshold θ , the training data D, a probabilistic forecasting model g,
W = [WC ,WS ], the number of draws T .
Train the model g to predict on D
Obtain the predictive distribution g(WC)
IFS = {}
for t = 1, . . . , T do

Sample from g(WC): W (t)
F ∼ g(WC)

if ∀i ∈ [S], f([WC ,W
(t)
F ])i < θ then

Add W̃ t = [WC ,W
(t)
F ] to IFS

end if
end for

Output: The set of counterfactual examples IFS = {}.

auxiliary probabilistic forecasting method and use it as a generative model of counterfactual subsequences.
More precisely, given an input window WC ∈ RL−S×D, our auxiliary model g outputs a distribution over
a forecast horizon of S time stamps, g(WC), from which one can sample forecasting paths. We therefore
sample T windows W (t)

F ∼ g(WC), t ∈ [T ], then select the ones that are not anomalous according to the
anomaly detection model, i.e., our counterfactual ensemble is given by:

IFS = {W (t)
F ; t ∈ [T ] st ∀i ∈ [S], f([WC ,W

(t)
F ])i < θ}.

Note that one could also subsample the set IFS to obtain a fixed number N of examples. Intuitively, since
the probabilistic forecasting model is trained to learn the data distribution, it generates realistic forecast
samples. However, the sampling model is oblivious to the original input WS and therefore the forecasting
samples are not restricted to be minimally distant from it. Therefore, in this approach, the Closeness and
Sparsity properties are not explicitly accounted for. Nonetheless, one could refine this method by selecting
the samples which are closer to the original instance. In our experiments, we study the general behaviour
of this method without implementing this minor change. In Section 5, we will construct and evaluate this
approach with a Feed Forward Neural Network (FFNN) for univariate data and a DeepVAR model Salinas
et al. (2019) for multivariate data from the GluonTS package (Alexandrov et al., 2020) 1.

5 Experiments

In this section, we test and compare the performances of our method on two differentiable models, and the
relative advantages of its five variants (i.e., ICE, DPE, FS, Sparse ICE, Sparse DPE) in multiple contexts.
For this analysis, we have considered two DL anomaly detection models, NCAD Carmona et al. (2021)
and USAD Audibert et al. (2020), and four benchmark time series datasets. We report in Section 5.4 a
qualitative evaluation of our counterfactual ensemble explanations and their visualization, and in Section
5.5, a quantitative analysis under the previously defined criteria. Note that this study does not include
a comparison to existing baselines, since counterfactual ensemble explanations have not been previously
considered for time series data. Although some algorithms such as DiCE Mothilal et al. (2020) exist in the
context of tabular data, we do not use them in our context since perturbation methods are adapted to each
data domain Crabbe & van der Schaar (2021). Nonetheless, for the sake of comparison, we also include a
naive baseline, which mechanism is described in Section 5.1. Section 5.2 and Section 5.3 provide additional
details on the explainability metrics and the hyperparameters selection procedure.

1https://ts.gluon.ai/stable/ (accessed on September 11th 2022)

11



Under review as submission to TMLR

5.1 Experimental set-up

5.1.1 Datasets

To evaluate our explainability method, we test it on four data sets that are used to benchmark anomaly
detection algorithms on time series, see for example Carmona et al. (2021); Su et al. (2019a); Audibert et al.
(2020):

• KPI: 2 this data set contains 29 univariate time series. It was released in the AIOPS data competi-
tion and consists of Key Performance Indicator curves from different internet companies in 1 minute
interval.

• YAHOO: 3 this data set was published by Yahoo labs and consists of 367 real and synthetic
univariate time series.

• Server Machine Dataset (SMD): 4 this dataset contains 28 time series with 38 dimensions,
collected from a machine in large internet companies Su et al. (2019a).

• Soil Moisture Active Passive satellite (SMAP): 5 this NASA data set published by Hundman
et al. (2018) contains 55 times series with 25 dimensions.

The main properties of these data sets are summarized in Table 1. These datasets are suitable for evaluating
our explainability method since it contains synthetic and real time series anomalies, in diverse time series
domains: Key Performance Indicators, server machines, satellite data, etc. We use these datasets since these
are commonly used by SOTA anomaly detection methods Carmona et al. (2021); Su et al. (2019a); Audibert
et al. (2020). We note that for these data sets, ground-truth labels of anomalies are available. However, this
data does not contain additional context or information on the anomalies, consequently there is no ground-
truth explanation, a fortiori counterfactual example. This is however a common setup in explainability, and,
when user studies are not feasible, one needs to resort to proxies for performing a quantitative evaluation
Verma et al. (2020). In Section 5.2, we will define our explainability metrics, which have been previously
proposed in multiple data domains (see for instance Mothilal et al. (2020) and Verma et al. (2020)).

More precisely, we use the test sets of each dataset, which correspond to the last 50% time stamps of each
time series Carmona et al. (2021). When needed, the training and validation sets contain respectively the
first 30% and subsequent 20% time stamps. We note that all these datasets have ground-truth anomaly
labels on the test set, and in our evaluation, we only compute counterfactual ensemble explanations for the
ground-truth anomalies detected by each model (i.e., the True Positives).

In practice, our method could be applied on all the detected anomalies, i.e., on both the True Positives
(TPs) and the False Positives (FPs) (i.e., the observations with anomalous predicted labels that are not
ground-truth anomalies). However, we consider a practical case where the user is able to analyse only the
true anomalies (i.e., the TPs ) and wants to know what changes would render this input non-anomalous.
However, we also performed a complementary analysis to test our method on FPs (see Appendix B.2). These
experiments indicate that the performance of our method on FPs is better in terms of our explainability
metrics than on TPs. One explanation for this empirical observation is that a small perturbation of the
original FP anomalies is often enough to find good counterfactual explanations using our method. Since
explaining TPs is more challenging than FPs, we focus on TPs in the main text and report the FP experiments
in Appendix B.2.

5.1.2 Anomaly detection models

In our experimental evaluation, we have selected two differentiable SOTA models with distinct temporal
neural networks mechanisms. The first one, Neural Contextual Anomaly Detection (NCAD) Carmona et al.

2https://github.com/NetManAIOps/KPI-Anomaly-Detection (accessed on September 11th 2022)
3https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70 (accessed on September 11th 2022)
4https://github.com/NetManAIOps/OmniAnomaly (accessed on September 11th 2022)
5https://github.com/khundman/telemanom (accessed on September 11th 2022)
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(2021), uses a temporal convolutional network and subdivides time series into windows that include a context
part. The second one, UnSupervised Anomaly Detection (USAD) Audibert et al. (2020), is based on a LSTM
Auto-Encoder and predicts anomalies on suspect windows without explicit context windows. Neither of these
models are interpretable-by-design, but both have SOTA performances on the benchmark anomaly detection
datasets and reasonable training times (around 90 min). Before evaluating our explainability method, we
train these models using the procedure described in their respective papers. More details on these models
and their detection performance on the benchmark datasets are reported in Appendix A.

5.1.3 Naive counterfactual ensemble explanation

As previously noted, there is no existing method for generating an ensemble of counterfactual examples for
time series. We therefore propose a simple interpolation baseline that does not require any training nor
optimization procedure. The main idea is similar to the Forecasting Set approach, but here the sampling
mechanism is "naive". For each tested window W containing an anomaly in WS , we draw a sample by
interpolating the anomalous window WS and a constant window with a random weight. The constant
window repeats the observation from the timestamp immediately before the anomaly, i.e., [WC ]L−S . Thus,
for i ∈ [N ], a sample W̃naive,i

S is defined as:

W̃naive,i
S = wiWS + (1− wi)X−1, (5)

where wi
i.i.d.∼ U [0, 1] and X−1 = [[WC ]L−S , . . . , [WC ]L−S ] ∈ RS×D. As in Section 4.3, we also select the

samples that are not anomalous under the model, i.e., the naive counterfactual ensemble is finally:

IN = {W̃naive,i = [WC , W̃
naive,i
S ]; i ∈ [N ] st ∀t ∈ [S], f(W̃naive,i)t < θ}

5.2 Explainability metrics

To evaluate the utility of our method, we compute the following metrics as proxies of the criteria defined in
Section 3:

• Failure rate: This metric accounts for the Validity or algorithm Correctness criteria. For the
gradient-based methods (DPE, ICE and their sparse variants), it is defined as the percentage of
times our method fails to output an ensemble of N counterfactual examples. For the Forecasting
Set approach and naive sampling baseline, the failure rate corresponds to the rejection rate of the
sampling scheme.

• Distance: The Closeness criterion is measured in terms of the Dynamic Time Warping (DTW)
distances between each example of the counterfactual ensemble and the original anomalous window.
The DTW distance is generally more adapted to time series data than the Euclidean distance.

• Implausibility: since the Plausibility property is not easy to evaluate without expert knowledge
of the particular data domain, we decompose it into the three following proxy metrics that cover
different notions of deviation from an estimated normal behaviour:

– DTW distance to a reference time series, here, the median sample from the Forecasting Set
approach (Implausibility 1);

– Temporal Smoothness (Implausibility 2), defined as

D∑

i=1

S−1∑

t=1
|[W̃S ](t+1)i − [W̃S ]ti|.

– Negative log-likelihood under the probabilistic forecasting distribution g, if available (Implau-
sibility 3).

We compute the latter metrics for each example of the counterfactual ensemble explanation.
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• Diversity: the range of values spanned in a counterfactual ensemble is evaluated by the variance
of the counterfactual examples at each timestamp.

• Sparsity correctness: for multivariate time series, if additional information on the anomalous
dimensions in the ground-truth anomalies is available, we compute the precision and recall scores of
the sparse variants of DPE and ICE in identifying the dimensions to perturb.

5.3 Hyperparameters selection

The hyperparameters of our counterfactual explanation method with the gradient-based approaches are
selected by testing all configurations of λ1 = λ2, λT in the set {0.001, 0.01, 0.1, 1.0}, σmax in {3, 5, 10} and
the learning rate of the SGD algorithm in {0.01, 0.1, 1.0, 10.0, 1000.0, 10000.0}. As an explainability method
can be finely tuned on a particular problem and dataset, the configurations could be evaluated on all the
anomalies in the test set. However, for computational time efficiency reasons, we run this evaluation on 100
randomly chosen anomalies, then evaluate the final performance of the chosen configuration on the entire
test set. An exception holds for the the SMAP dataset, which contains less than 100 anomalies detected
by the models, therefore we run the configurations’ evaluation on the whole test set. For each dataset and
detection model, we select the set of hyperparameters having the minimal Implausibility 2, given that the
failure rate is kept under a pre-defined level, (see Figures 7, 8, 9 and 10 and tables in Appendix D). We
note that here focusing on the Implausibility 2 criterion is an arbitrary choice, and one could use instead any
other explainability metric. Moreover, we run the SGD algorithm for 1000 iterations and select a maximum
of N = 100 counterfactual examples along the optimization path. The hyperparameters of the probabilistic
models in the Forecasting Set approach are reported in Table 8 in Appendix D. Finally, in order to provide
a ready-to-use method, we also suggest a default set of hyperparameters in Table 13 in Appendix D. For
all datasets, models and approaches, we use suspect windows of S = 10 time stamps and margin parameter
c = 0.

5.4 Qualitative analysis

Similarly to image classification settings Zeiler & Fergus (2013), visualizations in the time series domain can
be human-friendly tools to communicate model explanations, in particular in univariate or low-dimensional
settings. In our time series anomaly detection context, we propose to visualize our counterfactual ensemble
explanation together with the original time series for which a prediction was made, possibly with an added
context window (see Section 3) and on a restricted number of channels. Since the anomaly prediction
score given by the explained model is a scalar, we can leverage a color scale to indicate the score of each
counterfactual example in the ensemble.

On Figure 2, we present a visualization of our method on two anomalies from the KPI dataset, detected by
NCAD and USAD. On each panel, we plot a sub-window of the original time series containing anomalous
features in the last 10 time stamps, as well as each counterfactual example given by a variant of our method
applied to one of the detection model. Each counterfactual only differs at the anomalous features and the
color scheme indicates its anomaly score under the explained model. We argue that this representation
allows to deem the range of time series values and prediction scores spanned by the different counterfactuals
in our ensemble explanation, and therefore effectively informs on the model’s sensitivity and local decision
boundary.

We can then visually compare the different variants of our method and the explanations for two detection
models. We observe that the counterfactual ensemble explanation from DPE (in red color scale), ICE (in
green), and FS (in purple) are quite dissimilar, although they all globally lessen the amplitude of the spike
outliers’ features. In fact, on the one hand, DPE produces counterfactual ensembles that are less diverse
than the other approaches, and relatively close to the original input. This is coherent with the fact that
the perturbations are constrained by the dynamic mechanism. On the other hand, ICE’s counterfactual sets
cover a much larger range of values and therefore allows to visualize more clearly how the anomaly score
evolves for different magnitudes of the spikes. This explanation may thus be more informative here since it
spans a larger range of time series values. In contrast, the counterfactual ensembles generated by FS do not
have the aforementioned interpretation but seem to visually correspond to the expected behaviour given the
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shape of the context windows. The previous preliminary observations seem consistent for the two models
and confirmed on several other anomalies (see for instance the additional visualizations in Appendix C).

In summary, our counterfactual ensemble explanations effectively contain diverse perturbations of the input
time series. These perturbations trigger a change in the detected label of the anomalous sub-sequence, with
a small number of altered features. The three approaches, ICE, DPE and FS, bring different insights on
the model’s prediction, the time series distribution and the possible perturbations to apply to change the
former. Their relative advantages may therefore depend on the particular time series context and usage of
the counterfactual explanation.

Figure 2: Time series windows containing an anomaly and our counterfactual ensemble explanations, ob-
tained with DPE (first row), ICE (second row) and FS (third row) from the KPI dataset. The first (resp.
second) column corresponds to an anomaly that has been detected by NCAD (resp. USAD). Each window
includes a context part of 115 time stamps and an abnormal part of 10 time stamps at the end of the win-
dow. The original observations are plotted in blue, while the counterfactual examples appear in red, green
or purple color scales for respectively DPE, ICE and FS.
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Dataset Dimensions Number of time
series

Total number of
time stamps

Total number of
anomalies in test

set
KPI 1 29 5922913 54560
Yahoo 1 367 609666 2963
SMD 38 28 1416825 29444
SMAP 25 55 584860 57079

Table 1: Succinct description of the four benchmark datasets

5.5 Numerical evaluation

The numerical results discussed in this section are obtained in the set-up described in Section 5.1. However,
for parsimony of exposition, our results on the KPI and the SMAP datasets have been moved to Appendix
B. We also add a partial sensitivity analysis of our method in Appendix E.

The results on univariate datasets (see Table 2 and Table 5 in Appendix B.1), show that our method has
fairly small failure rates (except for the Yahoo dataset and the USAD model). In particular a rate smaller
than 10% can be achieved with at least one variant in most pairs (model, dataset), leading to a consequent
improvement over the naive procedure. We note that while the DPE variant seems to be valid more often
than ICE on the NCAD model, it is the contrary for the USAD model; this difference is possibly due to the
distinct internal mechanisms of these models.

Moreover, the analysis of the other explainability metrics supports the qualititative interpretation from Sec-
tion 5.4. The Distance metric confirms than the gradient-based approaches, DPE and ICE, provides in almost
all cases the closest counterfactuals in average, i.e., the least perturbed examples. Note that it sometimes
occurs that the naive baseline has a small distance, however it always have a high failure rate. Besides, the
Implausibility metrics validate the observation that FS generates the most realistic counterfactual examples
in average, in particular in terms of Implausibility 1 (distance to median forecast sample) and Implausibility
3 (NLL under the probabilistic forecasting distribution). This is in fact quite expected since these quantities
are directly derived from the forecasting sampling scheme. However, these counterfactuals are less smooth
(higher score in Implausibility 2) than for DPE and ICE, which regularize the time series smoothness in the
objective functions equation 2 and equation 1.

Finally, DPE and ICE provide a more diverse counterfactual ensemble in most cases in general, but their
relative ranking is not clear from these experiments. We conjecture that this metric is particularly sensitive
to the learning rate of the SGD algorithm, and the subsampling procedure after the objective minimization
(see Section 4.1). In Appendix E, we test our first hypothesis on a small sample of anomalies. We observe in
this case that the Diversity criterion is consistently higher for ICE, and greatly increases with the learning
rate, at the cost of a higher failure rate.

The numerical results on the multivariate data sets are reported in Table 3 and Table 6 in Appendix B.1.
These experiments showcase that our method also generates valid counterfactual ensemble explanations in
this setting, with even a failure rate of 0% for the USAD model. Our method fails more frequently on
the NCAD model, however, the sparse variants are more often successful. This indicates that imposing
a sparsity constraint over the modified dimensions also helps to find valid counterfactuals. Consistent
with the univariate datasets, FS produces the most realistic counterfactual examples while the gradient-
based approach achieves a better Distance score. We note that in this case the Implausibility 3 metric is
not available since the forecast distribution likelihood function in the DeepVAR model is not available 6.
Moreover, the sparse variants seem to correctly identify some of the anomalous channels (precision greater
than 0.6 for the USAD model).

Nonetheless, we noted the greater difficulty of tuning the hyperparameters of our method and ranking its
variants on these high-dimensional datasets compared to univariate data. In the latter, the default set of

6https://ts.gluon.ai/stable/api/gluonts/gluonts.model.deepvar.html?highlight=deepvar#module-gluonts.model.
deepvar (accessed on September 11th 2022)
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NCAD on Yahoo
Method Failures (%) Distance Implausibility

1
Implausibility

2
Implausibility

3
Diversity

DPE 9.2 2.49 (4.91) 1.23 (1.37) 1.42 (2.19) 2.21 (4.76) 0.01
ICE 17.4 1.54 (1.21) 0.78 (1.37) 2.26 (1.67) 1.40 (5.17) 0.05
FS 56.6 6.06 (16.38) 0.27 (0.22) 3.36 (1.99) -0.29

(0.79)
0.10

Naive 72.2 2.69 (5.29) 1.04 (1.26) 1.32 (1.74) 1.89 (3.34) 0.05
USAD on Yahoo

Method Failures (%) Distance Implausibility
1

Implausibility
2

Implausibility
3

Diversity

DPE 29.1 5.20 (18.00) 6.42 (26.81) 0.42 (2.00) 3.74 (6.96) 0.05
ICE 25.5 6.66 (25.54) 2.68 (11.46) 0.40 (1.16) 2.48 (4.61) 3.23
FS 65.1 14.48

(46.03)
0.48

(0.72)
0.55 (0.58) -0.11

(1.12)
0.61

Naive 45.8 4.82
(18.36)

2.85 (16.31) 0.52 (1.60) 3.25 (6.00) 3.19

Table 2: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the Yahoo dataset and the NCAD (first panel) and USAD (second panel)
anomaly detection models. We report the average scores and standard deviations (in brackets) over the
counterfactual ensembles. We recall that Implausibility 1 is the DTW distance to the median forecasting
sample, Implausibility 2 is the temporal smoothness, and Implausibility 3 is the negative log-likelihood under
the probabilistic forecasting output distribution. For all metrics except Diversity, we assume that a lower
value is better, and the best score is highlighted in bold.

hyperparameters achieves an acceptable performance and allows to quickly compare the relative advantages
of an approach for a specific pair (detection model, dataset). We therefore conclude by recalling that
example-based explainability methods for multivariate time series are still in their early development, and
providing general methods and tuning procedures to generate useful explanations over the instances of a
dataset is still an open problem.

6 Discussion & Conclusion

In this work, we have introduced a novel type of post-hoc explainability method called Counterfactual
Ensemble Explanation for anomaly detection models in time series. Our approach is model-agnostic, can
be applied to any differentiable detection model, and is delineated into different variants according to the
context. With DPE, one can apply a domain-specific perturbation mechanism to the input time series,
while ICE does not require such specification. For high-dimensional time series, our sparse variants, Sparse
DPE and Sparse ICE provide counterfactual examples modifying only a few dimensions of the time series.
Additionally, we have proposed a gradient-free approach that uses a probabilistic forecasting technique as a
generative scheme and can be applied to any detection model.

Our real-world experiments on four benchmark data sets show that the counterfactual framework, augmented
with an ensemble approach, improves the interpretability of two deep-learning models and the anomalies the
latter detects. In particular, our visualization tool allows to gauge the change in anomaly scores with respect
to a large perturbation range of time series features. In the absence of competitive methods, we quantitatively
compare our explanations to a naive counterfactual ensemble method using several explainability metrics.

In comparison to existing model-agnostic explainability methods for time series, our approach conveys more
quantitative information on the model’s sensitivity that a feature-saliency approach such as DynaMask
(Crabbe & van der Schaar, 2021) and a richer contrastive explanation than single-counterfactual methods
such as Delaney et al. (2021); Ates et al. (2021). Nonetheless, our proposed counterfactual ensemble expla-
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NCAD on SMD
Method Failures (%) Precision /

Recall
Distance Implausibility

1
Implausibility

2
Diversity

DPE 17.1 - 8.46
(13.07)

50.76
(110.40)

12.12
(28.13)

1.21

ICE 42.9 - 79.62
(120.27)

23.69
(28.24)

47.73
(58.32)

4639.11

Sparse DPE 20.0 0.22 / 0.10 36.12
(77.87)

29.03
(54.36)

5.61 (11.30) 4687.05

Sparse ICE 20.0 0.20 / 0.33 26.01
(37.07)

62.65
(107.25)

10.88
(16.72)

174.39

FS 30.0 - 78.46
(157.57)

1.62 (2.33) 1.49 (1.31) 35.88

Naive 79.8 - 25.06
(53.66)

45.45
(93.03)

9.42 (18.79) 3255.92

USAD on SMD
Method Failures (%) Precision /

Recall
Distance Implausibility

1
Implausibility

2
Diversity

DPE 0.0 - 139.02
(261.44)

258.31
(464.18)

41.19
(79.11)

23339.20

ICE 0.0 - 31.81
(9.27)

342.19
(708.88)

22.64
(45.16)

0.52

Sparse DPE 0.0 0.68 / 0.07 115.48
(206.46)

293.70
(679.88)

19.84
(34.98)

105.45

Sparse ICE 0.0 0.61 / 0.28 216.44
(316.05)

172.58
(475.15)

8.35
(17.52)

477.43

FS 0.0 - 366.57
(672.44)

18.10
(48.25)

8.57
(20.63)

12175.65

Naive 73.4 - 49.83
(60.13)

475.42
(879.38)

27.45
(45.43)

649.44

Table 3: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the SMD dataset and the NCAD (first panel) and USAD (second panel)
anomaly detection models. We report the average scores and standard deviations (in brackets) over the
counterfactual ensemble. We recall that Implausibility 1 is the DTW distance to the median forecasting
sample and Implausibility 2 is the temporal smoothness. For all metrics except Diversity, Precision and
Recall, we assume that a lower value is better, and the best score is highlighted in bold.
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nation for time series models is an attempt in the interpretation of these models using diverse instance-based
methods, in particular in the challenging high-dimensional context.

Although our method offers greater flexibility, better explainability performances and specific interpretation
might be achieved if more assumptions are put on the detection model. In particular, similarly to Rodriguez
et al. (2021), we could adapt our gradient-based approach to use the internal representations of the model
rather than the raw time series. Moreover, aggregating the information contained in diverse explanations is
still an open problem. One possible extension of our ensemble method would be to provide a rank over the
counterfactual examples according to a utility or feasibility metric.

Broader Impact Statement

We do not see any direct negative impact of our work, however ethical concerns could come from the type
of time series data our methodology is applied to. Moreover, our method does not rank the counterfactuals
in the set of solutions, and their acceptability needs to be assessed by a domain expert. An extension of our
method could be to include fairness constraints in the optimisation objective to obtain “fair" counterfactuals.
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A Technical details and performance of the selected anomaly detection models

In this section, we provide some technical details on the two anomaly detection models selected for the
evaluation of our explainability method reported in Section 5. In Table 4, we report their anomaly detection
performance on the benchmark datasets, after training with the hyperparameter sets reported in their
respective papers when available. Otherwise, we select the models’ hyperparameters on a validation set
(20% of the time series) using the best adjusted F1-score.

Neural Contextual Anomaly Detection (NCAD) Carmona et al. (2021) : This method splits
time series into subwindows (W i)i and embeds them using a temporal convolutional network (TCN). Each
W i is subdivided into a context part and a suspect part (typically much smaller than the former), i.e.,
W i = [W i

C ,W
i
S ]. An embedding of the context window W i

C is also computed by the TCN, then the distance
between the embeddings of Wi, denoted zi, and W i

C , denoted ziC , is evaluated. The algorithm finally labels
W i
S as anomalous if the latter distance is greater than a chosen threshold, i.e, if d(zi, ziC) > η with d(., .)

the Euclidean distance for instance and η > 0. The intuition behind this method is that a large distance
between the embeddings of a window and its context part means that the suspect part induces a significant
shift of ziC in the embedding space. Since the embedding of the context window should reflect the normal
behaviour, this deviation thus indicates the presence of an anomaly in W i

S . For our experiments, we use the
open-source implementation. 7

UnSupervised Anomaly Detection (USAD) Audibert et al. (2020): This reconstruction model
splits time series into subwindows that are reconstructed by a LSTM-based AutoEncoder. The latter contains
a neural network, called encoder, that embeds each window into a latent representation, and another neural
network, called decoder, that maps back the embedding into the original input space. The reconstruction
error, i.e., the distance in the time series domain between the original input and the reconstructed output,
is used as an anomaly score (a high value of this error leads to the corresponding window to be labelled as
anomalous). We use the open source implementation provided by the authors 8 and the hyperparameters
provided in the paper for the two multivariate data sets, i.e. SMD and SMAP. For the KPI dataset, the final
USAD model is trained for 80 epochs and has windows of size 5, hidden size of 10 and downsampling rate
of 0.01. For the Yahoo data, the window size is 10, hidden size of 10 and downsampling rate of 0.05.

Model KPI Yahoo SMD SMAP
NCAD 0.789 0.772 0.806 0.922
USAD 0.946 0.741 0.643 0.972

Table 4: F1-scores of the two anomaly detection models, i.e., NCAD and USAD, on the four benchmark
datasets.

7https://github.com/Francois-Aubet/gluon-ts/tree/adding_ncad_to_nursery/src/gluonts/nursery/ncad
8https://curiousily.com/posts/time-series-anomaly-detection-using-lstm-autoencoder-with-pytorch-in-python/
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NCAD on KPI
Method Failures (%) Distance Implausibility

1
Implausibility

2
Implausibility

3
Diversity

DPE 3.9 5.94 (15.78) 2.16 (4.71) 3.21 (29.62) 2.74 (2.57) 1.18
ICE 19.6 3.08 (1.21) 15.31

(115.12)
31.67

(206.70)
2.07 (2.06) 0.26

FS 6.0 32.05
(173.76)

0.21 (0.20) 2.42 (1.97) -0.56
(1.14)

0.12

Naive 53.4 11.82
(74.03)

2.90 (4.49) 4.57 (7.64) 3.48 (2.51) 0.54

USAD on KPI
Method Failures (%) Distance Implausibility

1
Implausibility

2
Implausibility

3
Diversity

DPE 5.0 25.22
(121.60)

9.40 (65.02) 1.03 (8.16) 3.13 (3.47) 13.10

ICE 3.5 6.52 (7.30) 4.99 (63.31) 0.50 (4.43) 1.27 (1.98) 0.28
FS 6.8 38.56

(189.88)
0.33

(0.29)
0.38 (0.28) -0.08

(1.12)
0.26

Naive 45.4 31.93
(154.62)

2.77 (3.93) 1.42 (6.01) 2.81 (2.48) 69.88

Table 5: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the KPI dataset and the NCAD (first panel) and USAD (second panel) anomaly
detection models. We report the average scores and standard deviations (in brackets) over the counterfactual
ensemble. We recall that Implausibility 1 is the DTW distance to the median forecasting sample, Implausi-
bility 2 is the temporal smoothness, and Implausibility 3 is the negative log-likelihood under the probabilistic
forecasting output distribution. For all metrics except Diversity, we assume that a lower value is better, and
the best score is highlighted in bold.

B Additional numerical results

In this section, we report quantitative evaluations of our explainability method that could not be included in
the main text due to space limitation. This section notably contains the results on two benchmark datasets
using the procedure described in Section 5, and an additional analysis on False Positives.

B.1 Numerical evaluation on the KPI and SMAP datasets

The results on the KPI and SMAP dataset are respectively in Table 5 and Table 6. Note that these results
are included in the discussion in Section 5.5.

B.2 Numerical evaluation on False Positives

In the practical use of anomaly detection models, explanations can also be needed when the model wrongly
detects an anomaly in a time series. We recall that we call False Positives the anomalies detected by the
model that are not ground-truth anomalies. We present here a numerical evaluation on the False Positives
detected by NCAD in the KPI benchmarck dataset. The results in Table 7 can be compared to the results
obtained on True Positives (i.e., the ground-truth, detected anomalies) reported in the first panel of Table 5
. We observe that in this case ICE achieves 0% failure rate (instead of almost 20 %), and the naive method
has also a significantly smaller number of failures. Moreover, all methods seem to perform better in terms
of the Distance and Implausibility metrics. This is probably due to the fact that False Positives need less
perturbation to become not anomalous for the model, e.g. if they lie close to the model’s local decision
boundary. Therefore they may inherently be less distant to the normal behaviour than True Positives and
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NCAD
Method Failures (%) Diversity Distance Implausibility

1
Implausibility

2
DPE 41.7 0.002 0.19 (0.40) 0.21 (0.28) 0.01 (0.03)

DPE sparse 27.8 0.004 0.22 (0.42) 0.29 (0.38) 0.03 (0.04)
ICE 5.6 0.067 0.26 (0.14) 0.39 (0.37) 0.15 (0.09)

ICE sparse 23.6 0.016 0.15 (0.08) 0.22 (0.21) 0.09 (0.06)
FS 87.6 0.012 0.56 (0.77) 0.05 (0.04) 0.05 (0.04)

Naive 84.5 0.003 0.06 (0.08) 0.09 (0.03) 0.02 (0.03)
USAD

Method Failures (%) Diversity Distance Implausibility
1

Implausibility
2

DPE 0.0 0.02 0.62 (0.65) 0.96 (0.53) 0.06 (0.05)
DPE sparse 0.0 0.02 0.78 (0.85) 0.82 (0.50) 0.05 (0.06)

ICE 0.0 0.17 0.74 (0.75) 0.87 (0.43) 0.04 (0.03)
ICE sparse 0.0 0.18 0.72 (0.76) 0.88 (0.42) 0.06 (0.02)

FS 56.8 0.02 2.23 (1.14) 0.09 (0.01) 0.10 (0.03)
Naive 46.9 0.01 0.14 (0.04) 0.23 (0.02) 0.07 (0.02)

Table 6: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the SMAP dataset and the NCAD (first panel) and USAD (second panel)
anomaly detection models. We report the average scores and standard deviations (in brackets) over the
counterfactual ensemble. We recall that Implausibility 1 is the DTW distance to the median forecasting
sample and Implausibility 2 is the temporal smoothness. For all metrics except Diversity, Precision and
Recall, we assume that a lower value is better, and the best score is highlighted in bold.

thus easier instances for our counterfactual explanation method. Besides, the Diversity metric is smaller for
DPE and ICE, likely as another effect of the smaller amount of perturbation needed.

NCAD
Method Failures (%) Distance Implausibility

1
Implausibility

2
Implausibility

3
Diversity

DPE 8.8 2.22 (1.87) 2.44 (2.50) 2.36 (2.05) 2.15 (2.22) 0.02
ICE 0.0 4.36 (3.00) 0.28 (0.45) 0.61 (0.34) 0.22 (0.93) 0.12
FS 6.6 4.17 (2.91) 0.30 (0.31) 3.54 (3.61) -0.22

(0.95)
0.43

Naive 33.3 2.74 (2.22) 2.19 (2.43) 2.97 (2.56) 2.79 (2.29) 0.16

Table 7: Performance of our explainability method and the naive baseline in terms of Validity, Closeness,
Plausibility and Diversity on the false positives in the KPI data detected by the NCAD model. We report
the average scores and standard deviations (in brackets) over the counterfactual ensemble. We recall that
Implausibility 1 is the DTW distance to the median forecasting sample, Implausibility 2 is the temporal
smoothness, and Implausibility 3 is the negative log-likelihood under the probabilistic forecasting output
distribution. For all metrics except Diversity, we assume that a lower value is better, and the best score is
highlighted in bold.

C Complementary visualizations of the explanations

In this section, we report additional visualizations of our counterfactual explanations, as well as illustrations
of the sparsity induced by the sparse variants of DPE and ICE. Figures 3 and 4 are visualizations applied
to the univariate datasets and respectively the NCAD and USAD. The advantage of Sparse ICE compared
to the plain version ICE is shown in Figure 5, where only four channels of the multi-dimensional time series
window are plotted. For this anomaly, only one of these dimensions contains an anomalous observation
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Figure 3: Anomalous windows and counterfactual ensemble explanations obtained with DPE (first row),
ICE (second row) and FS (third row) on anomalies in the KPI data set detected by the NCAD model. The
columns correspond to two different anomalies. The windows include a context part of 115 time stamps and
an abnormal part of 10 time stamps. The original sub-sequence is plotted in blue, while the explanations
are in red, green or purple colors for the different variants.

but the counterfactual explanation obtained with the plain ICE perturbs four of them. In contrast, the
Sparse ICE variant keeps two dimensions without anomalous features unchanged, leading to a more accurate
and readable explanation on this particular anomaly. Similarly, Figure 6 shows two perturbation maps
corresponding to examples generated by DPE and its sparse variant. While the plain DPE produces globally
sparse maps (i.e., in the temporal and dimensional features), Sparse DPE is sparse in dimensions, leading
to perturbed examples with few modified channels.

D Illustration of the hyperparameters selection

In this section, we illustrate the hyperparameters selection procedure for our gradient-based method. For
each dataset and model, we run our algorithm with several configurations as described in Section 5.3 and
select the final one using the failure rate and the Implausibility 1 metric. More precisely, we select a threshold
of acceptable failure rate (e.g., 10% or 20%), then amongst the configurations achieving a lower value of the
latter, we select the one with the lowest Implausibility 1 value. Figures 7, 8, 10 and 9 show the values of
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Figure 4: Anomalous windows and counterfactual ensemble explanations obtained with DPE (first row),
ICE (second row) and FS (third row) on anomalies in the KPI and Yahoo data sets detected by the USAD
model. The rows correspond to different anomalies. The windows include a context part of 115 timestamps
and an abnormal part of 10 timestamps. The original subsequence is plotted in blue, while the explanations
are in red, green or purple colors for the different variants.
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(a) ICE

(b) Sparse ICE

Figure 5: Counterfactual explanation obtained with ICE (a) and the sparse variant (b). The different
rows correspond respectively to the first, third, ninth and twelfth dimensions of a subsequence in the SMD
dataset. Amongst them, only the fourth two (twelfth dimension) contains an anomalous observation in the
last timestamp of the displayed window, detected by the NCAD model. While ICE (a) modifies all the
plotted dimensions, Sparse ICE only perturbs the third and fourth (i.e., the ninth and twelfth dimension).
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(a) DPE (b) Sparse DPE

Figure 6: Perturbation maps of counterfactual examples in the explanations generated by DPE (a) and its
sparse variant (b) on one anomaly in the SMD dataset detected by NCAD. We recall that the rows of each
mask correspond to the different dimensions of the time series and the columns to the successive timestamps
in the suspect window (see Section 4). The color bars on the right sides of the maps indicate the values
(between 0 and 1) of these maps along the time series features.

Dataset Model type Number of
layers

Hidden size training
epochs

learning
rate

prediction
length

KPI FFNN 1 32 100 0.001 10
Yahoo FFNN 1 32 100 0.001 10
SMD DeepVAR 4 40 150 0.001 10
SWaT DeepVAR 4 40 150 0.001 10

Table 8: Hyperparameters of the Probabilistic Forecasting models used in the gradient-free approach on the
four benchmark datasets.

these metrics for all explored configurations for each model and dataset. Lastly, in Tables 9, 10, 11 and
12, we report the selected configurations for respectively DPE, ICE, Sparse DPE and Sparse ICE on the
benchmark datasets. Besides, the hyperparameters of the gradient-free approach can be found in Table 8.

Dataset Perturbation σmax learning rate λ2 λT
NCAD-KPI Gaussian blur 3.0 0.01 0.01 0.1
NCAD-Yahoo Gaussian blur 10.0 0.01 0.001 0.1
NCAD-SMD Gaussian blur 20.0 0.01 0.0 1.0
NCAD-SMAP Gaussian blur 10.0 0.01 1.0 1.0
USAD-KPI Gaussian blur 3.0 0.01 0.001 1.0
USAD-Yahoo Gaussian blur 10.0 0.01 0.001 1.0
USAD-SMD Gaussian blur 20.0 0.1 0.001 0.01
USAD-SMAP Gaussian Blur 20.0 0.01 0.01 0.1

Table 9: Hyperparameters of the DPE algorithm on the four benchmark datasets.
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Figure 7: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the KPI dataset. The metrics are computed over a validation set
of 5 time series and the failure rate’s threshold is 10% (red dotted line).

Dataset learning rate λ1 λ2 λT
NCAD-KPI 0.1 0.01 0.01 1.0
NCAD-Yahoo 0.1 0.01 0.01 1.0
NCAD-SMD 0.1 0.01 0.01 0.1
NCAD-SMAP 0.1 0.1 0.1 1.0
USAD-KPI 0.1 0.001 0.001 1.0
USAD-Yahoo 0.1 0.001 0.001 1.0
USAD-SMD 1000.0 0.01 0.01 1.0
USAD-SMAP 1.0 0.001 0.001 1.0

Table 10: Hyperparameters of the ICE algorithm on the four benchmark datasets.
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Figure 8: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the Yahoo dataset. The metrics are computed over a validation
set of 15 time series and the failure rate’s threshold is 25% (red dotted line).

Dataset Perturbation σmax learning
rate

λ1 λ2 λT

NCAD-
SMD

Gaussian
blur

20.0 0.1 0.01 0.01 0.1

NCAD-
SMAP

Gaussian
Blur

10.0 0.01 0.1 0.1 0.1

USAD-SMD Gaussian
Blur

20.0 0.01 0.01 0.01 1.0

USAD-
SMAP

Gaussian
Blur

20.0 0.1 0.01 0.01 0.1

Table 11: Hyperparameters of the Sparse DPE algorithm on the two benchmark multivariate datasets.

Dataset learning rate λ1 λ2 λT
NCAD-SMD 0.1 0.01 0.01 0.1
NCAD-SMAP 0.1 0.1 0.1 1.0
USAD-SMD 10000.0 0.01 0.01 0.1
USAD-SMAP 1.0 0.001 0.001 1.0

Table 12: Hyperparameters of the Sparse ICE algorithm on the two benchmark multivariate datasets.
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Figure 9: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the SMAP dataset. The metrics are computed over a validation
set of 40 time series and the failure rate’s threshold is 25% (red dotted line).

Variant Perturbation σmax learning
rate

λ1 λ2 λT N

ICE - - 0.1 0.01 0.01 0.01 100
DPE Gaussian

Blur
3.0 0.01 - 0.1 0.01 100

Table 13: Default set of hyperparameters for our gradient-based counterfactual ensemble method.
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Figure 10: Implausibility measures 1 (left column) and 2 (right column) versus failures rates for different sets
of hyperparameters of the ICE and DPE algorithms and their sparse variants applied to the NCAD (first
row) and USAD (second row) models on a the SMD dataset. The metrics are computed over a validation
set of 6 time series and the failure rate’s threshold is 40% for NCAD and 20% for USAD (red dotted lines).
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Figure 11: Diversity of the counterfactual ensemble (left) and failure rate of our counterfactual method
(right) versus the learning rate of the SGD algorithm for the two variants of our method, ICE and DPE.

E Sensitivity of the Diversity criterion to the learning rate parameter

In this section we report a small-scale study of the influence of the learning rate in the SGD algorithm
on the Diversity metric, in our gradient-based approach. We evaluate the latter metric on 10 anomalies
detected by the NCAD model in the KPI dataset, obtained with DPE and ICE with learning rates in the
set {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}. The other hyperparameters of our method are the same as in
Section 5.5. Figure 11 shows the evolution of the Diversity score (left panel) and failure rate (right panel)
when the learning rate increases. We observe that the diversity is always higher for ICE than DPE, and
dramatically increases when the learning rate is greater than 1 for the former. However, failure rate also
skyrockets for high learning rates.
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