292 research outputs found

    Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

    Full text link
    For current state-of-the-art DPLL SAT-solvers the two main bottlenecks are the amounts of time and memory used. In proof complexity, these resources correspond to the length and space of resolution proofs. There has been a long line of research investigating these proof complexity measures, but while strong results have been established for length, our understanding of space and how it relates to length has remained quite poor. In particular, the question whether resolution proofs can be optimized for length and space simultaneously, or whether there are trade-offs between these two measures, has remained essentially open. In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution. Our collection of trade-offs cover almost the whole range of values for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight. Using similar techniques, we show that these trade-offs in fact extend to the exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative. Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be transformed by simple variable substitution into a new formula F' such that if F has the right properties, F' can be proven in essentially the same length as F, whereas on the other hand the minimal number of lines one needs to keep in memory simultaneously in any proof of F' is lower-bounded by the minimal number of variables needed simultaneously in any proof of F. Applying this theorem to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our results.Comment: This paper is a merged and updated version of the two ECCC technical reports TR09-034 and TR09-047, and it hence subsumes these two report

    Conjunctions of Unate DNF Formulas: Learning and Structure

    Get PDF
    AbstractA central topic in query learning is to determine which classes of Boolean formulas are efficiently learnable with membership and equivalence queries. We consider the class Rkconsisting of conjunctions ofkunate DNF formulas. This class generalizes the class ofk-clause CNF formulas and the class of unate DNF formulas, both of which are known to be learnable in polynomial time with membership and equivalence queries. We prove that R2can be properly learned with a polynomial number of polynomial-size membership and equivalence queries, but can be properly learned in polynomial time with such queries if and only if P=NP. Thus the barrier to properly learning R2with membership and equivalence queries is computational rather than informational. Few results of this type are known. In our proofs, we use recent results of Hellersteinet al.(1997,J. Assoc. Comput. Mach.43(5), 840–862), characterizing the classes that are polynomial-query learnable, together with work of Bshouty on the monotone dimension of Boolean functions. We extend some of our results to Rkand pose open questions on learning DNF formulas of small monotone dimension. We also prove structural results for Rk. We construct, for any fixedk⩾2, a class of functionsfthat cannot be represented by any formula in Rk, but which cannot be “easily” shown to have this property. More precisely, for any functionfonnvariables in the class, the value offon any polynomial-size set of points in its domain is not a witness thatfcannot be represented by a formula in Rk. Our construction is based on BCH codes

    Tight Bounds on Proper Equivalence Query Learning of DNF

    Full text link
    We prove a new structural lemma for partial Boolean functions ff, which we call the seed lemma for DNF. Using the lemma, we give the first subexponential algorithm for proper learning of DNF in Angluin's Equivalence Query (EQ) model. The algorithm has time and query complexity 2(O~n)2^{(\tilde{O}{\sqrt{n}})}, which is optimal. We also give a new result on certificates for DNF-size, a simple algorithm for properly PAC-learning DNF, and new results on EQ-learning logn\log n-term DNF and decision trees

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    Minimizing DNF Formulas and AC 0 Circuits Given a Truth Table

    Get PDF
    For circuit classes R, the fundamental computational problem Min-R asks for the minimum R-size of a Boolean function presented as a truth table. Prominent examples of this problem include Min-DNF, which asks whether a given Boolean function presented as a truth table has a k-term DNF, and Min-Circuit (also called MCSP), which asks whether a Boolean function presented as a truth table has a size k Boolean circuit. We present a new reduction proving that Min-DNF is NP-complete. It is significantly simpler than the known reduction of Masek [31], which is from Circuit-SAT. We then give a more complex reduction, yielding the result that Min-DNF cannot be approximated to within a factor smaller than logN γ, for some constant γ 0, assuming that NP is not contained in quasipolynomial time. The standard greedy algorithm for Set Cover is often used in practice to approximate Min-DNF. The question of whether Min-DNF can be approximated to within a factor of o logN remains open, but we construct an instance of Min-DNF on which the solution produced by the greedy algorithm is Ω logN larger than optimal. Finally, we extend known hardness results for Min-TC0 d to obtain new hardness results for Min-AC0 d, under cryptographic assumptions

    Translating between Horn Representations and their Characteristic Models

    Full text link
    Characteristic models are an alternative, model based, representation for Horn expressions. It has been shown that these two representations are incomparable and each has its advantages over the other. It is therefore natural to ask what is the cost of translating, back and forth, between these representations. Interestingly, the same translation questions arise in database theory, where it has applications to the design of relational databases. This paper studies the computational complexity of these problems. Our main result is that the two translation problems are equivalent under polynomial reductions, and that they are equivalent to the corresponding decision problem. Namely, translating is equivalent to deciding whether a given set of models is the set of characteristic models for a given Horn expression. We also relate these problems to the hypergraph transversal problem, a well known problem which is related to other applications in AI and for which no polynomial time algorithm is known. It is shown that in general our translation problems are at least as hard as the hypergraph transversal problem, and in a special case they are equivalent to it.Comment: See http://www.jair.org/ for any accompanying file

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}
    corecore