33 research outputs found

    On the Deployment of Cognitive Relay as Underlay Systems

    Full text link
    The objective of this paper is to extend the idea of Cognitive Relay (CR). CR, as a secondary user, follows an underlay paradigm to endorse secondary usage of the spectrum to the indoor devices. To seek a spatial opportunity, i.e., deciding its transmission over the primary user channels, CR models its deployment scenario and the movements of the primary receivers and indoor devices. Modeling is beneficial for theoretical analysis, however it is also important to ensure the performance of CR in a real scenario. We consider briefly, the challenges involved while deploying a hardware prototype of such a system.Comment: 6 pages, 7 figures, 4 tables, accepted in Proceedings of CrownCom 2014, Oulu (Finland), June 2-4, 201

    Generalized detector as a spectrum sensor in cognitive radio networks

    Get PDF
    The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detecto

    On Optimum Causal Cognitive Spectrum Reutilization Strategy

    Get PDF
    In this paper we study opportunistic transmission strategies for cognitive radios (CR) in which causal noisy observation from a primary user(s) (PU) state is available. PU is assumed to be operating in a slotted manner, according to a two-state Markov model. The objective is to maximize utilization ratio (UR), i.e., relative number of the PU-idle slots that are used by CR, subject to interference ratio (IR), i.e., relative number of the PU-active slots that are used by CR, below a certain level. We introduce an a-posteriori LLR-based cognitive transmission strategy and show that this strategy is optimum in the sense of maximizing UR given a certain maximum allowed IR. Two methods for calculating threshold for this strategy in practical situations are presented. One of them performs well in higher SNRs but might have too large IR at low SNRs and low PU activity levels, and the other is proven to never violate the allowed IR at the price of a reduced UR. In addition, an upper-bound for the UR of any CR strategy operating in the presence of Markovian PU is presented. Simulation results have shown a more than 116% improvement in UR at SNR of -3dB and IR level of 10% with PU state estimation. Thus, this opportunistic CR mechanism possesses a high potential in practical scenarios in which there exists no information about true states of PU

    Robust Power Allocation for Energy-Efficient Location-Aware Networks

    Get PDF
    In wireless location-aware networks, mobile nodes (agents) typically obtain their positions using the range measurements to the nodes with known positions. Transmit power allocation not only affects network lifetime and throughput, but also determines localization accuracy. In this paper, we present an optimization framework for robust power allocation in network localization with imperfect knowledge of network parameters. In particular, we formulate power allocation problems to minimize localization errors for a given power budget and show that such formulations can be solved via conic programming. Moreover, we design a distributed power allocation algorithm that allows parallel computation among agents. The simulation results show that the proposed schemes significantly outperform uniform power allocation, and the robust schemes outperform their non-robust counterparts when the network parameters are subject to uncertainty.National Natural Science Foundation (China) (Project 61201261)National Basic Research Program of China (973 Program) (61101131)University Grants Committee (Hong Kong, China) (GRF Grant Project 419509)National Science Foundation (U.S.) (Grant ECCS-0901034)United States. Office of Naval Research (Grant N00014-11-1-0397)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie
    corecore