4,036 research outputs found

    Proof of the satisfiability conjecture for large k

    Full text link
    We establish the satisfiability threshold for random kk-SAT for all kk0k\ge k_0, with k0k_0 an absolute constant. That is, there exists a limiting density α(k)\alpha_*(k) such that a random kk-SAT formula of clause density α\alpha is with high probability satisfiable for α<α\alpha<\alpha_*, and unsatisfiable for α>α\alpha>\alpha_*. We show that the threshold α(k)\alpha_*(k) is given explicitly by the one-step replica symmetry breaking prediction from statistical physics. The proof develops a new analytic method for moment calculations on random graphs, mapping a high-dimensional optimization problem to a more tractable problem of analyzing tree recursions. We believe that our method may apply to a range of random CSPs in the 1-RSB universality class

    Pairs of SAT Assignment in Random Boolean Formulae

    Get PDF
    We investigate geometrical properties of the random K-satisfiability problem using the notion of x-satisfiability: a formula is x-satisfiable if there exist two SAT assignments differing in Nx variables. We show the existence of a sharp threshold for this property as a function of the clause density. For large enough K, we prove that there exists a region of clause density, below the satisfiability threshold, where the landscape of Hamming distances between SAT assignments experiences a gap: pairs of SAT-assignments exist at small x, and around x=1/2, but they donot exist at intermediate values of x. This result is consistent with the clustering scenario which is at the heart of the recent heuristic analysis of satisfiability using statistical physics analysis (the cavity method), and its algorithmic counterpart (the survey propagation algorithm). The method uses elementary probabilistic arguments (first and second moment methods), and might be useful in other problems of computational and physical interest where similar phenomena appear

    The Power of Unentanglement

    Get PDF
    The class QMA(k). introduced by Kobayashi et al., consists of all languages that can be verified using k unentangled quantum proofs. Many of the simplest questions about this class have remained embarrassingly open: for example, can we give any evidence that k quantum proofs are more powerful than one? Does QMA(k) = QMA(2) for k ≥ 2? Can QMA(k) protocols be amplified to exponentially small error? In this paper, we make progress on all of the above questions. * We give a protocol by which a verifier can be convinced that a 3SAT formula of size m is satisfiable, with constant soundness, given Õ (√m) unentangled quantum witnesses with O(log m) qubits each. Our protocol relies on the existence of very short PCPs. * We show that assuming a weak version of the Additivity Conjecture from quantum information theory, any QMA(2) protocol can be amplified to exponentially small error, and QMA(k) = QMA(2) for all k ≥ 2. * We prove the nonexistence of "perfect disentanglers" for simulating multiple Merlins with one

    Combinatorial approach to the interpolation method and scaling limits in sparse random graphs

    Full text link
    We establish the existence of free energy limits for several combinatorial models on Erd\"{o}s-R\'{e}nyi graph G(N,cN)\mathbb {G}(N,\lfloor cN\rfloor) and random rr-regular graph G(N,r)\mathbb {G}(N,r). For a variety of models, including independent sets, MAX-CUT, coloring and K-SAT, we prove that the free energy both at a positive and zero temperature, appropriately rescaled, converges to a limit as the size of the underlying graph diverges to infinity. In the zero temperature case, this is interpreted as the existence of the scaling limit for the corresponding combinatorial optimization problem. For example, as a special case we prove that the size of a largest independent set in these graphs, normalized by the number of nodes converges to a limit w.h.p. This resolves an open problem which was proposed by Aldous (Some open problems) as one of his six favorite open problems. It was also mentioned as an open problem in several other places: Conjecture 2.20 in Wormald [In Surveys in Combinatorics, 1999 (Canterbury) (1999) 239-298 Cambridge Univ. Press]; Bollob\'{a}s and Riordan [Random Structures Algorithms 39 (2011) 1-38]; Janson and Thomason [Combin. Probab. Comput. 17 (2008) 259-264] and Aldous and Steele [In Probability on Discrete Structures (2004) 1-72 Springer].Comment: Published in at http://dx.doi.org/10.1214/12-AOP816 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Relativized Propositional Calculus

    Full text link
    Proof systems for the Relativized Propositional Calculus are defined and compared.Comment: 8 page

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation
    corecore