# On a Connectivity Threshold for Colorings of Random Graphs and Hypergraphs 

Michael Anastos<br>Carnegie Mellon University, Pittsburgh PA 15213, USA<br>manastos@andrew.cmu.edu

Alan Frieze
Carnegie Mellon University, Pittsburgh PA 15213, USA
alan@random.math.cmu.edu


#### Abstract

Let $\Omega_{q}=\Omega_{q}(H)$ denote the set of proper $[q]$-colorings of the hypergraph $H$. Let $\Gamma_{q}$ be the graph with vertex set $\Omega_{q}$ where two vertices are adjacent iff the corresponding colorings differ in exactly one vertex. We show that if $H=H_{n, m ; k}, k \geq 2$, the random $k$-uniform hypergraph with $V=[n]$ and $m=d n / k$ hyperedges then w.h.p. $\Gamma_{q}$ is connected if $d$ is sufficiently large and $q \gtrsim(d / \log d)^{1 /(k-1)}$. This is optimal to the first order in $d$. Furthermore, with a few more colors, we find that the diameter of $\Gamma_{q}$ is $O(n)$ w.h.p, where the hidden constant depends on $d$. So, with this choice of $d, q$, the natural Glauber Dynamics Markov Chain on $\Omega_{q}$ is ergodic w.h.p.


2012 ACM Subject Classification Theory of computation
Keywords and phrases Random Graphs, Colorings, Ergodicity
Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.36
Category RANDOM
Funding Alan Frieze: Research supported in part by NSF grant DMS1661063.

## 1 Introduction

In this paper, we will discuss a structural property of the set $\Omega_{q}$ of proper $[q]$-colorings of the random hypergraph $H=H_{n, m ; k}$, where $m=d n / k$ for some large constant $d$. Here $H$ has vertex set $V=V(H)=[n]$ and an edge set $E=E(H)$ consisting of $m$ randomly chosen $k$-sets from $\binom{[n]}{k}$. Note that in the graph case where $k=2$ we have $H_{n, m ; 2}=G_{n, m}$. A proper $[q]$-coloring is a map $\sigma:[n] \rightarrow[q]$ such that $|\sigma(e)| \geq 2$ for all $e \in E$ i.e. no edge is mono-chromatic. Then let us define $\Gamma_{q}=\Gamma_{q}(H)$ to be the graph with vertex set $\Omega_{q}$ and an edge $\{\sigma, \tau\}$ iff $h(\sigma, \tau)=1$ where $h(\sigma, \tau)$ is the Hamming distance $|\{v \in[n]: \sigma(v) \neq \tau(v)\}|$.

Notation. $\quad f(d) \gtrsim g(d)$ if there exists a function $\varepsilon(d)>0$ such that $\lim _{d \rightarrow \infty} \varepsilon(d)=0$ and $f(d) \geq(1+\varepsilon(d)) g(d)$ for $d$ large.

Then let

$$
\begin{equation*}
\alpha=\left(\frac{(k-1) d}{\log d-5(k-1) \log \log d}\right)^{\frac{1}{k-1}}, \quad \beta=3 \log ^{3 k} d \tag{1}
\end{equation*}
$$

We prove the following.

- Theorem 1. Suppose that $k \geq 2$ and $p=\frac{d}{\binom{n-1}{k-1}}$ and $m=\binom{n}{k} p$ and that $d=O(1)$ is sufficiently large. Then
(i) If $q \geq \alpha+\beta+1$ then w.h.p. $\Gamma_{q}$ is connected.
(ii) If $q \geq \alpha+2 \beta+1$ then the diameter of $\Gamma_{q}$ is $O(\alpha \beta n)$ w.h.p.

© Michael Anastos and Alan Frieze;
licensed under Creative Commons License CC-BY

Note that $\Gamma_{q}$ connected implies that the Glauber Dynamics, which in essence is a random walk on $\Gamma_{q}$, is ergodic. At the moment we only know that Glauber Dynamics is rapidly mixing w.h.p. when $q \geq(1.76 \ldots) d$, see Efthymiou, Hayes, Štefankovič and Vigoda [6]. So, it would seem that the connectivity of $\Gamma_{q}$ is not likely to be a barrier to randomly sampling colorings of sparse random graphs.

In the Statistical Physics literature the definition of $\Gamma_{q}$ may be that colorings $\sigma, \tau$ are connected by an edge in $\Gamma_{q}$ whenever $h(\sigma, \tau)=o(n)$. Our theorem holds a fortiori if this is the case.

We note that the lower bound for $q$ is close to where the greedy coloring algorithm succeeds w.h.p. For the case $k=2$ this follows from Shamir and Upfal [15]. For $k \geq 3$, the authors could not find relevant literature. Nevertheless the claim follows (partially) from the current paper. In particular, Lemmas 13 and 14 show that the greedy coloring algorithm uses at most $\alpha+\beta$ colors. Furthermore, a simple argument based on the size of an independent set selected by the greedy algorithm shows that the number of colors required is close to $\alpha$.

We should note that it has shown, for $k=2$ by Molloy [14] and for $k \geq 3$ by Ayre and Greenhill [3], that w.h.p. there is no giant component in $\Gamma_{q}$ if $q \lesssim \frac{d}{\log d}$. . It is somewhat surprising therefore that w.h.p. $\Gamma_{q}$ jumps very quickly from having no giant to being connected. One might have expected that $q \gtrsim \frac{d}{\log d}$ would simply imply the existence of a giant component. In Physics terminology, this implies a short non-reconstruction phase between uniqueness and reconstruction.

Prior to this paper, it was shown in [13] that w.h.p. $\Gamma_{q}, q \geq d+2$ is connected. The diameter of the reconfiguration graph $\Gamma_{q}(G)$ for graphs $G$ has been studied in the graph theory literature, see Bousquet and Perarnau [5] and Feghali [7]. They show that if the maximum sub-graph density of a graph is at most $d-\varepsilon$ and $q \geq d+1$ then $\Gamma_{q}(G)$ has polynomial diameter. Using Theorem 1 of [5] we can show a linear bound on the diameter with a small increase in the number of colors, See (ii) of Theorem 1.

Theorem 1 falls into the area of "Structural Properties of Solutions to Random Constraint Satisfaction Problems". This is a growing area with connections to Computer Science and Theoretical Physics. In particular, much of the research on the graph $\Gamma_{q}$ has been focussed on the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan, Hetterich, Rassman and Vilenchik [4], or the clustering threshold, e.g. Achlioptas, Coja-Oghlan and Ricci-Tersenghi [1], Molloy [14] or the condensation threshold, e.g. Ayre, Coja-Oghlan and Greenhill [2] or the rigidity threshold, e.g. Ayre and Greenhill [3]. Other papers heuristically identify a sequence of phase transitions in the structure of $\Gamma_{q}$, e.g., Krząkala, Montanari, Ricci-Tersenghi, Semerijan and Zdeborová [11], Zdeborová and Krza̧kala [16] or Gabrié, Dani, Semerjian and Zdeborová [9]. The existence of these transitions has been shown rigorously for some other CSPs. One of the most spectacular examples is due to Ding, Sly and Sun [10] who rigorously showed the existence of a sharp satisfiability threshold for random $k$-SAT.

Section 3 describes a property $(\alpha, \beta)$-greedy-colorability such that if $H$ has this property then $q \geq \alpha+\beta+1$ implies that $\Gamma_{q}$ is connected. Section 4 proves that $H_{n, m ; k}, k \geq 2$, is ( $\alpha, \beta$ )-greedy-colorable for $\alpha, \beta$ defined in (1).

The paper uses some of the ideas from [12] which showed there is a giant component in $\Gamma_{q}\left(G_{n, m}\right), m=d n / 2$ w.h.p. when $q \geq c d / \log d$ for $c>3 / 2$.

## 2 Outline argument

We show that with the values $\alpha \approx((k-1) d / \log d)^{1 /(k-1)} \gg \beta$ given in (1) then w.h.p. $H=H_{n, m ; k}$ has the property that any greedy coloring of $H$ will need at most $\alpha$ maximal independent sets before being left with a graph without a $\beta$-core. (See Lemma 13.) We call the colorings found in this way, good greedy colorings and we refer to this property as
$(\alpha, \beta)$-greedy-colorability. Any good $(\alpha, \beta)$-coloring uses at most $\alpha+\beta$ colors. It follows from this, basically using the argument from [12], that if $\sigma \in \Omega_{q}$ and $q \geq \alpha+\beta+1$ then there is a good path in $\Gamma_{q}$ to some good greedy coloring $\sigma_{1}$.

Suppose now that $\sigma_{1}, \tau_{1}$ are good greedy colorings. If $q \geq \alpha+\beta+1$ then there is a color $c$ that is not used by $\sigma_{1}$. From $\sigma_{1}$ we move to $\sigma_{2}$ by re-coloring vertices colored 1 in $\sigma_{1}$ by c. Then we move from $\sigma_{2}$ to $\sigma_{3}$ by coloring with color 1 , all vertices that have color 1 in $\tau_{1}$. At this point, $\sigma_{3}$ and $\tau_{1}$ agree on color 1. $\sigma_{3}$ may use more than $\alpha+\beta$ colors and so we move by a good path from $\sigma_{3}$ to a coloring $\sigma_{4}$ that uses at most $\alpha+\beta$ colors and does not change the color of any vertex currently with color 1 . Here we use the fact that $H_{n, m ; k}$ is $(\alpha, \beta)$-greedy-colorable. After this, it is induction that completes the proof.

## $3(\alpha, \beta)$-Greedy-Colorability

The degree of a vertex $v \in V$ in a hypergraph $H=(V, E)$ is the number of edges $e \in E$ such that $v \in e$. (For completeness, we will state several things in this short paper that one might think can be taken for granted.)

Let $H=(V, E)$. A $\beta$-core of $H$ is a maximal subgraph of $H$ in which every vertex has degree at least $\beta$. For every $U \subset V$, if the subgraph $H[U]$ of $H$ induced by $U$ does not have a $\beta$-core then there is an ordering $\left\{u_{1}, u_{2}, \ldots, u_{|U|}\right\}$ of the vertices in $U$ such that every vertex in $u_{\ell} \in U$ has degree at most $\beta-1$ in the sub-hypergraph induced by $\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$. (Here, we mean by induced that the edges of $H[U]$ are the edges of $H$ contained entirely in $U$.)

If a hypergraph $H$ does not have a $\beta$-core then we can color it with at most $\beta$ colors. Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordering on $V$ where for every $i$, there are at most $\beta-1$ edges that contain $v_{i}$ and are contained in $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. Such an ordering must exist when there is no $\beta$-core. We can color the vertices in the order $v_{1}, v_{2}, \ldots, v_{n}$ and assign to $v_{i}$ a color that is not blocked by the neighbors that precede it. A color $c$ is blocked for vertex $v$ by vertices $w_{1}, w_{2}, \ldots, w_{k-1}$ if $e=\left\{v, w_{1}, \ldots, w_{k-1}\right\} \in E(H)$ and $w_{1}, w_{2}, \ldots, w_{k-1}$ have already been given color $c$.

Next let $V_{1}, V_{2}, \ldots, V_{\alpha}$ be a sequence of disjoint independent sets of $H$ such that for each $j \geq 1, V_{j}$ is maximal in the sub-hypergraph $H_{j}$ induced by $V \backslash \bigcup_{1 \leq i<j} V_{i}$. (A set of vertices is independent if it contains no edges.) We say that such a sequence is a maximally independent sequence of length $\alpha$. Note that we allow $V_{j}=\emptyset$ here, in order to make our sequences of length exactly $\alpha$.

- Definition 2. We say that a hypergraph $H$ is $(\alpha, \beta)$-greedy-colorable if there does not exist a maximally independent sequence of length $\alpha$ such that $V \backslash \bigcup_{i \leq \alpha} V_{i}$ has a $\beta$-core.

The main result of this section is the following.

- Theorem 3. Let $H$ be $(\alpha, \beta)$-greedy-colorable. If $q \geq \alpha+\beta+1$ then, $\Gamma_{q}(H)$ is connected. In addition if $q \geq \alpha+2 \beta+1$ then, the diameter of $\Gamma_{q}(H)$ is $O(\alpha \beta n)$.

Later, in Section 4 we will show that $H_{n, m ; k}, k \geq 2$ is $(\alpha, \beta)$-greedy-colorable, for suitable values of $m, \alpha, \beta$, viz. the values given in (1).

- Lemma 4. Let $H=(V, E)$ be an $(\alpha, \beta)$-greedy-colorable hypergraph and $V_{1} \subseteq V$ be a maximal independent set of $V$. Set $V^{\prime}=V \backslash V_{1}$ and let $H^{\prime}$ be the subgraph of $H$ induced by $V^{\prime}$. Then $H^{\prime}$ is $(\alpha-1, \beta)$-greedy-colorable.

Proof. Assume that $H^{\prime}$ is not $(\alpha-1, \beta)$-greedy-colorable. Then there exists a partition of $V^{\prime}$ into $V_{1}^{\prime}, \ldots, V_{\alpha-1}^{\prime}$ such that for $j \in[\alpha-1], V_{j}^{\prime}$ is a maximal independent set of $V^{\prime} \backslash \bigcup_{\ell<j} V_{\ell}^{\prime}$ and $W^{\prime}=V^{\prime} \backslash \bigcup_{\ell \leq \alpha-1} V_{\ell}^{\prime}$ has a $\beta$-core. For $j \in[\alpha-1]$ set $V_{j+1}=V_{j}^{\prime}$. Furthermore set $W=V \backslash\left(\underset{1 \leq \ell \leq \alpha}{ } \bar{V}_{\ell}\right)=V^{\prime} \backslash\left(\bigcup_{\ell \leq \alpha-1} V_{\ell}^{\prime}\right)=W^{\prime}$. Then $V_{1}, \ldots, V_{\alpha}$ is a maximal independent sequence of length $\alpha$ and $W$ has a $\beta$-core which contradicts the fact that $H$ is $(\alpha, \beta)$-greedycolorable.

- Lemma 5. Let $H$ be a hypergraph, $\alpha, \beta \geq 0$ and $q \geq \alpha+\beta+1$. Let $W \subseteq V$ be such that the subgraph of $H$ induced by $W$ has no $\beta$-core. Furthermore let $\sigma$ and $\tau$ be two colorings of $H$ such that
(i) They agree on $V \backslash W$.
(ii) They use only $\alpha$ colors on the vertices in $V \backslash W$.
(iii) $\tau$ uses at most $\beta$ colors on $W$ that are distinct from the ones it uses on $V \backslash W$.

Then there exists a path from $\sigma$ to $\tau$ in $\Gamma_{q}(H)$.
Proof. Without loss of generality we may assume that $\sigma$ and $\tau$ use $[\alpha]$ to color $V \backslash W$. The proof that follows is an adaptation to hypergraphs of the proof in [12] that $\Gamma_{q}(G)$ is connected when a graph $G$ has no $q$-core. Because $W$ has no $\beta$-core there exists an ordering of its vertices, $v_{1}, v_{2}, \ldots, v_{r}$, such that for $i \in[r]$, $v_{i}$ has at most $\beta-1$ neighbors in $v_{1}, v_{2}, \ldots, v_{i-1}$. For $0 \leq i \leq r$ let $\tau_{i}$ be the coloring that agrees with $\tau$ on $\left\{v_{1}, \ldots, v_{i}\right\}$ and with $\sigma$ on $W \backslash\left\{v_{1}, \ldots, v_{i}\right\}$. On $V \backslash W$ it agrees with both. Thus $\tau_{0}=\sigma$ and $\tau_{r}=\tau$. We note that $\tau_{1}, \tau_{2}, \ldots, \tau_{r-1}$ may not be proper colorings.

We proceed by induction on $i$ to show that there is a sequence of colorings $\Sigma_{i}$ from $\sigma$ to $\tau_{i}$ such that (i) going from one coloring to the next in $\Sigma_{i}$ only re-colors one vertex and (ii) all colorings in the sequence $\Sigma_{i}$ are proper for the hypergraph induced by $V \backslash\left\{v_{i+1}, \ldots, v_{r}\right\}$. We do not claim that the colorings in $\Sigma_{i}, i<r$ are proper for $H$. On the other hand, taking $i=r$ we get a sequence of $H$-proper colorings that starts with $\sigma$, ends with $\tau$, such that the consecutive pairs of proper colorings differ on a single vertex. Clearly, such a sequence corresponds to a path from $\sigma$ to $\tau$ in $\Gamma_{q}(H)$.

The case $i=1$ is trivial as we have assumed that $\sigma, \tau$ agree on $V \backslash W$ and so we can give $v_{1}$ the color $\tau\left(v_{1}\right)$. Assume that the assertion is true for $i=\ell \geq 1$ and let $\sigma=\psi_{0}, \psi_{1}, \ldots, \psi_{s}=\tau_{\ell}$ be a sequence of colorings promised by the inductive assertion. Let $\left(w_{j}, c_{j}\right)$ denote the (vertex, color) change defining the move from $\psi_{j-1}$ to $\psi_{j}$. We construct a sequence of colorings of length at most $2 s+1$ that yields the assertion for $i=\ell+1$. For $j=1,2, \ldots, s$, we will re-color $w_{j}$ to color $c_{j}$, unless there exists a set $X$ such that $X \cup\left\{w_{j}\right\} \in E$ and $\psi_{j-1}(x)=c_{j}, x \in X \subseteq\left\{v_{1}, v_{2}, \ldots, v_{\ell+1}\right\}$. The fact that $\psi_{j}$ is a proper coloring of $V \backslash\left\{v_{\ell+1}, \ldots, v_{r}\right\}$ implies that $v_{\ell+1} \in X$. Because $v_{\ell+1}$ has at most $\beta-1$ neighbors in $\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $\tau$ only uses colors in $[\alpha]$ to color $V \backslash W$, there exists a color $c^{\prime} \neq c_{j}$ for $v_{\ell+1}$ in $[\alpha+\beta+1] \backslash[\alpha]$ which is not blocked by a subset of $\left\{v_{1}, v_{2}, \ldots, v_{\ell}\right\}$ and is different from its current color. We first re-color $v_{\ell+1}$ to $c^{\prime}$ and then we re-color $w_{j}$ to $c_{j}$, completing the inductive step. At the very end, i.e. after at most $2 s+1$ steps, we give $v_{\ell+1}$ its color in $\tau$.
$\rightarrow$ Definition 6. A coloring with color sets $V_{1}, V_{2}, \ldots, V_{\alpha+\beta}$ is said to be a good greedy coloring if (i) $V_{1}, V_{2}, \ldots, V_{\alpha}$ is a maximally independent sequence of length $\alpha$ and (ii) $V \backslash \bigcup_{\ell \leq \alpha} V_{\ell}$ has no $\beta$-core.

We prove Theorem 3 in two steps. In Lemma 7, we show that if $q \geq \alpha+\beta+1$ and $H$ is $(\alpha, \beta)$-greedy-colorable then we can reach a good greedy coloring in $\Gamma_{q}(H)$ starting from any coloring. Then in Lemma 9 , we show that if $q \geq \alpha+\beta+1$ then any good greedy coloring $\tau$ can be reached in $\Gamma_{q}(H)$ from any other good greedy coloring $\sigma$.

- Lemma 7. Let $H$ be an ( $\alpha, \beta$ )-greedy-colorable hypergraph, $q \geq \alpha+\beta+1$ and $\sigma$ be $a$ [q]-coloring of $H$. Then there exists a good greedy coloring $\tau$ of $H$ such that there exists a path in $\Gamma_{q}(H)$ from $\sigma$ to $\tau$.

Proof. We generate the coloring $\tau$ as follows. Let $C_{1}, C_{2}, \ldots, C_{q}$ be the color classes of $\sigma$. Then let $V_{1} \supseteq C_{1}$ be a maximal independent set containing $C_{1}$. In general, having defined $V_{1}, V_{2}, \ldots, V_{\ell-1}$ we let $V_{<\ell}=\bigcup_{1 \leq i<\ell} V_{i}$ and then we let $V_{\ell}$ be a maximal independent set in $V \backslash V_{<\ell}$ that contains $C_{\ell} \backslash V_{<\ell}$. Thus $V_{1}, V_{2}, \ldots, V_{\alpha}$ is a maximal independent sequence of length $\alpha$. We now describe how we transform the coloring $\sigma$ vertex by vertex into a coloring $\sigma^{\prime}$ in which vertices in $V_{i}$ get color $i$ for $1 \leq i \leq \alpha$. We first re-color the vertices in $V_{1} \backslash C_{1}$ by giving them color 1 , one vertex at a time. The coloring stays proper, as $V_{1}$ is an independent set. In general, having re-colored $V_{1}, V_{2}, \ldots, V_{\ell-1}$ we re-color the vertices in $V_{\ell} \backslash C_{\ell}$ with color $\ell$. Again, the coloring stays proper, as $V_{\ell}$ is an independent set, containing all vertices in $C_{\ell}$ that have not been re-colored. We observe that each re-coloring of a vertex $v$ done while turning $\sigma$ into $\sigma^{\prime}$ can be interpreted as moving from a coloring in $\Gamma_{q}(H)$ to a neighboring coloring.

Let $W=V \backslash \bigcup_{1 \leq i \leq \alpha} V_{i}$. Because $H$ is $(\alpha, \beta)$-greedy-colorable, we find that $W$ has no $\beta$-core. Because $W$ has no $\beta$-core there exists a proper coloring $\tau^{\prime}$ of the subgraph of $H$ induced by $W$ that uses only colors in $[\alpha+\beta] \backslash[\alpha]$. Set $\tau$ to be the coloring that agrees with $\sigma^{\prime}$ on $V \backslash W$ and with $\tau^{\prime}$ on $W$.

Lemma 5 implies that there is a path from $\sigma^{\prime}$ to $\tau$. Hence there is a path from $\sigma$ to $\tau$.

- Remark 8. In the proof of Lemma 7 we see that each vertex is re-colored at most twice before we apply Lemma 5 . Thus this part of the proof yields at most $O(\alpha n)$ vertex recolorings.
- Lemma 9. Let $H$ be an ( $\alpha, \beta$ )-greedy-colorable hypergraph, $q \geq \alpha+\beta+1$ and let $\sigma, \tau$ be two good greedy colorings. Then there exists a path from $\sigma$ to $\tau$ in $\Gamma_{q}(H)$.

Proof. We proceed by induction on $\alpha$. For $\alpha=0, H$ is $(0, \beta)$-greedy-colorable and so it does not have a $\beta$-core. Thus the base case follows directly from Lemma 5 by taking $W=V$.

Assume that the statement of the Lemma is true for $\alpha=\ell-1$ and let $\alpha=\ell$. There exists a maximal independent sequence $V_{1}, V_{2}, \ldots, V_{\ell}$ of length $\ell$ such that if $V^{\prime}=V \backslash \bigcup V_{i}$ then $1 \leq i \leq \ell$ (i) for $i \in[\ell], \tau$ assigns the color $i$ to $v \in V_{i}$ and (ii) $\tau$ assigns only colors in $[\ell+\bar{\beta}] \backslash[\ell]$ to vertices in $V^{\prime}$.

Let $c$ be a color not assigned by $\sigma$. There is one as $q \geq \ell+\beta+1$. Starting from $\sigma$ we recolor all vertices that are colored 1 by color $c$ to create a coloring $\bar{\sigma}$. Then we continue from $\bar{\sigma}$ by recoloring all the vertices in $V_{1}$ by color 1 and we let $\sigma^{\prime}$ be the resulting coloring. Clearly there is a path $P_{1}$ from $\sigma$ to $\sigma^{\prime}$ in $\Gamma_{q}(H)$.

We now set $H_{1}=H \backslash V_{1}$, and set $\sigma_{1}^{\prime}, \tau_{1}$ to be the restrictions of $\sigma^{\prime}, \tau$ on $H_{1}$. Observe that since $V_{1}$ is a maximal independent set, Lemma 4 implies that $H_{1}$ is $(\ell-1, \beta)$-greedy-colorable and in addition that $\tau_{1}$ is a good greedy coloring of $H_{1}$. Lemma 7 implies that in $\Gamma_{q-1}\left(H_{1}\right)$ there is a path $P_{2}$ from $\sigma_{1}^{\prime}$ to some good greedy coloring $\sigma_{1}$ that uses only $\ell-1+\beta$ colors from $[q] \backslash\{1\}$. The induction hypothesis implies that in $\Gamma_{q-1}\left(H_{1}\right)$ that there is a path $P_{3}$ from $\sigma_{1}$ to $\tau_{1}$.

Color 1 is not used in $\sigma_{1}^{\prime}, \tau_{1}$ or in any of colorings found in the path $P_{2}, P_{3}$. Thus the path $P_{2}, P_{3}$ corresponds to a path $P_{4}$ in $\Gamma_{q}(H)$ from $\sigma^{\prime}$ to $\tau$. Consequently the colorings $\sigma, \tau$ are connected in $\Gamma_{q}(H)$ by the path $P_{1}+P_{4}$.

Proof of Theorem 3. Let $H$ be $(\alpha, \beta)$-greedy-colorable, $q \geq \alpha+\beta+1$, and let $\sigma_{1}, \sigma_{2}$ be two colorings of $H$. Lemma 7 implies that in $\Gamma_{q}(H)$, there is path $P_{i}$ from $\sigma_{i}$ to a good greedy coloring $\tau_{i}$ for $i=1,2$. Lemma 9 implies that there is a path in $\Gamma_{q}(H)$ from $\tau_{1}$ to $\tau_{2}$.

When $q \geq \alpha+2 \beta+1$ Remark 8 shows that while traversing between any pair of proper colorings we perform $O(\alpha n)$ vertex recolorings in the context of Lemma 7. In addition we recolor $\alpha+2$ times with $2 \beta+1$ colors a hypergraph with no $\beta$-core. Theorem 1 of [5] implies that we need $(\alpha+2) \cdot O(\beta n)$ vertex re-colorings to do this. Thus, there will be $O(\alpha \beta n)$ re-colorings overall and this proves the second part of the theorem.

## 4 Random Hypergraphs

Theorem 1 follows from

- Lemma 10. Let $k \geq 2$ and suppose that $q \geq \alpha+\beta+1$ and that $d$ is sufficiently large. If $p=\frac{d}{\binom{n-1}{k-1}}$ and $m=\binom{n}{k} p$ then w.h.p. $\Gamma_{q}\left(H_{n, m ; k}\right)$ is connected.

In the following we will assume for simplicity of notation that $d=O(1)$, so that $O(f(d) / n)=$ $O(1 / n)$. We do not know if there is an upper bound needed for the growth rate of $d$, but we doubt it.

To prove Lemma 10 we use Lemmas 11, 13, 14 (below) in order to deduce that w.h.p. $H_{n, m: k}$ is $(\alpha, \beta)$-greedy-colorable. Then we apply Theorem 3 . (Lemmas 11 and 14 are hardly new or best possible, but we prove them here for completeness.)

We will do our calculations on the random graph $H_{n, p ; k}, p=d /\binom{n-1}{k-1}$ and use the fact for any hypergraph property $\mathcal{P}$, we have (see [8])

$$
\begin{equation*}
\operatorname{Pr}\left(H_{n, m ; k} \in \mathcal{P}\right) \leq O\left(m^{1 / 2}\right) \operatorname{Pr}\left(H_{n, p ; k} \in \mathcal{P}\right) \tag{2}
\end{equation*}
$$

- Lemma 11. Let $p=\frac{d}{\binom{n-1}{k-1}}$ and $k \geq 2$ and d sufficiently large. Then, w.h.p. $H=H_{n, p ; k}$ does not contain an independent set of size $\left(\frac{2 k \log d}{(k-1) d}\right)^{\frac{1}{k-1}} n$.
Proof. Let $u=\left(\frac{2 k \log d}{(k-1) d}\right)^{\frac{1}{k-1}} n$. The probability that there exists an independent set of size $u$ in $H$ is bounded by

$$
\begin{align*}
\binom{n}{u}(1-p)^{\binom{u}{k}} & \leq\left(\frac{e n}{u}\right)^{u} \exp \left\{-\frac{d}{\binom{n-1}{k-1}} \cdot\binom{u}{k}\right\} \\
& \leq\left(\frac{e n}{u}\right)^{u} \exp \left\{-\frac{d u}{k}\left(\frac{u}{n}\right)^{k-1}\left(1+O\left(\frac{1}{n}\right)\right)\right\} \\
& =\left(e^{k-1} \frac{(k-1) d}{2 k \log d} \cdot \exp \left\{-2 \log d\left(1+O\left(\frac{1}{n}\right)\right)\right\}\right)^{u /(k-1)} \\
& =\left(\frac{e^{k-1}(k-1)}{2 k d \log d}\left(1+O\left(\frac{1}{n}\right)\right)\right)^{u /(k-1)}  \tag{3}\\
& =o(1)
\end{align*}
$$

- Notation 12. We let

$$
m_{0}=\frac{n}{\alpha} \text { and } n_{0}=16 m_{0} \log ^{2} d
$$

Furthermore, for $t \leq d$ we let

$$
S_{t}=\left\{\left(s_{1}, s_{2}, \ldots, s_{t}\right) \in\left[\left(\frac{2 k \log d}{(k-1) d}\right)^{\frac{1}{k-1}} n\right]^{t}: \sum_{j=1}^{t} s_{i} \leq \min \left\{t m_{0}, n-n_{0}\right\}\right\}
$$

Lemma 13. If $k \geq 2$ and $d$ is sufficiently large then, w.h.p. there does not exist $1 \leq t \leq d$ and disjoint sets $V_{1}, \ldots, V_{t} \subset V$ such that:
(i) $V_{1}, V_{2}, \ldots, V_{t}$ is a maximal independent sequence of length $t$ in $H=H_{n, p ; k}$.
(ii) $\left(\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{t}\right|\right) \in S_{t}$.

Proof. Fix $t \in[d],\left(s_{1}, \ldots, s_{t}\right) \in S_{t}$ and let $\bar{s}=\frac{1}{t} \sum_{i \in[t]} s_{i}$. Since $\left(s_{1}, \ldots, s_{t}\right) \in S_{t}$ we have that $\bar{s} \leq \frac{1}{t} \cdot t m_{0}=m_{0}$. There are $\binom{n}{s_{1}, s_{2}, \ldots, s_{t}, n-t \bar{s}}$ ways to pick disjoint sets $V_{1}, V_{2}, \ldots, V_{t} \subseteq V$ of sizes $s_{1}, \ldots, s_{t}$ respectively. So $V_{1}, \ldots, V_{t}$ satisfy condition (i) of Lemma 13 only if for every $i \in[t]$ and every $v \in V \backslash \bigcup_{j \in[i]} V_{j}$, there exist $u_{1}, \ldots, u_{k-1} \in V_{i}$ such that $\left\{u_{1}, \ldots, u_{k-1}, v\right\} \in E(H)$. So, given $V_{1}, \ldots, V_{t}$ the probability that we have (i) is at most

$$
\begin{equation*}
p_{1}=\prod_{i=1}^{t}\left(1-(1-p)^{\binom{s_{i}}{k_{-1}}}\right)^{n-\sum_{j=1}^{i} s_{j}} \leq \exp \left\{-\sum_{i=1}^{t}\left((1-p)^{\binom{s_{i}}{k_{1}}}\left(n-\sum_{j=1}^{i} s_{j}\right)\right)\right\} \tag{4}
\end{equation*}
$$

Now let $t^{\prime}=\max \left\{i: \sum_{j \leq i} s_{j} \leq n-\frac{n}{\log ^{2} d}\right\}$ and $s^{\prime}=\sum_{i=1}^{t^{\prime}} s_{i}$ and $\bar{s}^{\prime}=\frac{s^{\prime}}{t^{\prime}}$. We consider 2 cases.

Case 1: $t^{\prime} \geq\left(1-\frac{1}{\log d}\right) t$. Now $t \bar{s} \geq t^{\prime} \bar{s}^{\prime}$ and so $\bar{s}^{\prime}-\bar{s} \leq \frac{t-t^{\prime}}{t} \bar{s}^{\prime} \leq \frac{\bar{s}^{\prime}}{\log d}$, which implies that $\bar{s}^{\prime} \leq \bar{s}\left(1-\frac{1}{\log d}\right)^{-1} \leq m_{0}\left(1+\frac{2}{\log d}\right)$. Then,

$$
\begin{aligned}
& \sum_{i=1}^{t}\left((1-p)^{\binom{s_{i}}{k-1}}\left(n-\sum_{j=1}^{i} s_{j}\right)\right) \\
\geq & \sum_{i=1}^{t^{\prime}}\left((1-p)^{\binom{s_{i}}{k-1}}\left(n-\sum_{j=1}^{i} s_{j}\right)\right) \\
\geq & \left.\frac{n}{\log ^{2} d} \sum_{i=1}^{t^{\prime}}(1-p)^{\binom{s_{i}}{k-1}} \geq \frac{n t^{\prime}}{\log ^{2} d}(1-p)^{\left(\bar{s}^{\bar{s}^{\prime}}\right)} \geq \frac{n t}{2 \log ^{2} d}(1-p)^{\left(m_{0}\left(1+\frac{2}{\log d}\right)\right.}\right) \\
\geq & \frac{n t}{2 \log ^{2} d} \exp \left\{-\left(p+p^{2}\right)\left(\frac{\left(\frac{(\log d-5(k-1) \log \log d)}{(k-1) d}\right)^{1 /(k-1)}}{k}\left(1+\frac{2}{\log d}\right) n\right)\right\} \\
\geq & \frac{n t}{2 \log ^{2} d} \exp \left\{-\frac{\log d-5(k-1) \log \log d}{k-1} \cdot\left(1+\frac{3(k-1)}{\log d}\right)\right\} \\
\geq & \frac{n t \log ^{2} d}{d^{1 /(k-1)}} .
\end{aligned}
$$

Now

$$
\binom{n}{s_{1}, \ldots, s_{t}, n-t \bar{s}} \leq\binom{ n}{\bar{s}, \ldots, \bar{s}, n-t \bar{s}} \leq \prod_{i=1}^{t}\binom{n}{\bar{s}} \leq\left(\frac{e n}{\bar{s}}\right)^{t \bar{s}} \leq\left(\frac{e n}{m_{0}}\right)^{t m_{0}}
$$

Thus the probability that for some $t \leq d$ there exist $V_{1}, \ldots, V_{t}$ satisfying conditions (i), (ii) of Lemma 13 and the condition of Case 1 is bounded by

$$
\begin{aligned}
& \sum_{t=1}^{d} \sum_{\left(s_{1}, \ldots, s_{t}\right) \in S_{t}}\binom{n}{s_{1}, s_{2}, . ., s_{t}, n-\sum_{i \in[t]} s_{i}} p_{1} \\
& \leq \sum_{t=1}^{d} \sum_{\left(s_{1}, \ldots, s_{t}\right) \in S_{t}}\left(\frac{e n}{m_{0}}\right)^{t m_{0}} \exp \left\{-\frac{n t \log ^{2} d}{\left.d^{1 /(k-1)}\right\}}\right. \\
& =\sum_{t=1}^{d} \sum_{\left(s_{1}, \ldots, s_{t}\right) \in S_{t}}(e a)^{t m_{0}}\left(\frac{1}{d^{\log d}}\right)^{n t / d^{1 /(k-1)}} \\
& \leq \sum_{t=1}^{d} n^{t} \cdot(e a)^{t m_{0}} \cdot\left(\frac{1}{d^{\log d}}\right)^{n t / d^{1 /(k-1)}} \leq \sum_{t=1}^{d} n^{t}\left(\frac{(e \alpha)^{(\log d)^{1 /(k-1)}}}{d^{\log d}}\right)^{n t / d^{1 /(k-1)}}=o(1)
\end{aligned}
$$

At the last equality we used that when $d$ is sufficiently large then the term in the parenthesis is smaller than 1 .

Case 2: $t^{\prime}<\left(1-\frac{1}{\log d}\right) t$. Thus $t-t^{\prime} \geq \frac{t}{\log d}$. Observe that from Lemma 11 we can assume that

$$
\begin{equation*}
t \geq t^{\prime} \geq\left(\left(1-\frac{1}{\log ^{2} d}\right) /\left(\frac{2 k \log d}{(k-1) d}\right)^{\frac{1}{k-1}}\right)-1 \geq \frac{1}{4}\left(1-\frac{1}{\log ^{2} d}\right)\left(\frac{d}{\log d}\right)^{\frac{1}{k-1}} \tag{5}
\end{equation*}
$$

For (5) we are using Lemma 11 to argue that we need at least this many independent sets to partition a set of size $n\left(1-\frac{1}{\log ^{2} d}\right)$. The -1 comes from the fact that the upper bound in the definition of $t^{\prime}$ may not be tight.
Thus,

$$
\begin{align*}
u=\frac{1}{t-t^{\prime}} \sum_{i=t^{\prime}+1}^{t} s_{i} \leq \frac{\log d}{t} \cdot n\left(\frac{1}{\log ^{2} d}+\right. & \left.\left(\frac{2 k \log d}{(k-1) d}\right)^{\frac{1}{k-1}}\right) \\
& \leq 4\left(1+\frac{2}{\log ^{2} d}\right)\left(\frac{\log d}{d}\right)^{\frac{1}{k-1}} \cdot \frac{n}{\log d} \tag{6}
\end{align*}
$$

and now with $p_{1}$ as defined in (4) we have

$$
\begin{aligned}
p_{1} & \leq \prod_{i=t^{\prime}+1}^{t}\left(1-(1-p)^{\binom{s_{i}}{k-1}}\right)^{n-\sum_{j=1}^{i} s_{j}} \leq \prod_{i=t^{\prime}+1}^{t}\left(1-(1-p)^{\binom{s_{i}}{k-1}}\right)^{n_{0}} \\
& \leq \exp \left\{-n_{0} \sum_{i=t^{\prime}+1}^{t}(1-p)^{\binom{s_{i}}{k-1}}\right\} \leq \exp \left\{-n_{0}\left(t-t^{\prime}\right)\left(\prod_{i=t^{\prime}+1}^{t}(1-p)^{\binom{s_{i}}{k-1}}\right)^{\frac{1}{t-t^{\prime}}}\right\} \\
& \leq \exp \left\{-n_{0}\left(t-t^{\prime}\right) \exp \left\{-\left(p+p^{2}\right)\left[\sum_{i=t^{\prime}+1}^{t}\binom{s_{i}}{k-1}\right] \cdot \frac{1}{t-t^{\prime}}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\ldots & \leq \exp \left\{-n_{0}\left(t-t^{\prime}\right) \exp \left\{-\left(p+p^{2}\right)\binom{u}{k-1}\right\}\right\} \\
& \leq \exp \left\{-n_{0}\left(t-t^{\prime}\right) \exp \left\{-d\left(\frac{u}{n}\right)^{k-1}\right\}\left(1+O\left(\frac{1}{n}\right)\right)\right\} \\
& \leq \exp \left\{-n_{0}\left(t-t^{\prime}\right) \exp \left\{-\frac{4^{k}\left(1+\frac{2}{\log ^{2} d}\right)^{k}}{\log ^{k-2} d}\right\}\right\} \\
& \leq e^{-\left(t-t^{\prime}\right) n_{0} / 2} .
\end{aligned}
$$

Thus the probability that for some $t \leq d$ there exist $V_{1}, \ldots, V_{t}$ satisfying conditions (i), (ii) of Lemma 13 and the condition of Case 2 is bounded by

$$
\left.\begin{array}{rl}
P=\sum_{t=1}^{d} \sum_{\left(s_{1}, \ldots, s_{t}\right) \in S_{t}} & {\left[\prod_{i=1}^{t^{\prime}}\binom{n-\sum_{j=1}^{i-1} s_{j}}{s_{i}}\right.}
\end{array} \prod_{i=t^{\prime}+1}^{t}\binom{n-\sum_{j=1}^{i-1} s_{j}}{s_{i}}\right] p_{1} .
$$

For sufficiently large $d$,(6) implies $u \leq m_{0}$ and we also have that $n_{0}=16 m_{0} \log ^{2} d$. Therefore

$$
\left(\frac{e n}{u}\right)^{\left(t-t^{\prime}\right) u} e^{-\left(t-t^{\prime}\right) n_{0} / 4} \leq\left(\frac{e n}{m_{0}}\right)^{\left(t-t^{\prime}\right) m_{0}} e^{-4\left(t-t^{\prime}\right) m_{0} \log ^{2} d} \leq e^{-3\left(t-t^{\prime}\right) m_{0} \log ^{2} d} \leq e^{-3 t m_{0} \log d}
$$

Furthermore, Lemma 11 implies that $\bar{s}^{\prime} \leq\left(\frac{2 k \log d}{(k-1) d}\right)^{\frac{1}{k-1}} n \leq 3 m_{0}$. Thus

$$
\begin{aligned}
&\left(\frac{e n}{\bar{s}^{\prime}}\right)^{t^{\prime} \bar{s}^{\prime}} e^{-\left(t-t^{\prime}\right) n_{0} / 4} \leq\left(\frac{e n}{3 m_{0}}\right)^{3 t m_{0}} e^{-4\left(t-t^{\prime}\right) m_{0} \log ^{2} d} \leq \\
&\left(\frac{e n}{3 m_{0}}\right)^{3 t m_{0}} e^{-4 t m_{0} \log d} \leq e^{-t m_{0} \log d}
\end{aligned}
$$

So,

$$
P \leq d n^{d} e^{-4 t m_{0} \log d}=d n^{d} e^{-4 t \alpha n \log d}=o(1)
$$

Lemma 14. If $k \geq 2$ and $d$ is sufficiently large then w.h.p. every set $S \subset V$ of size at most $n_{0}$ spans fewer than $3|S| \log ^{3 k} d$ edges in $H$. Hence no subset of size at most $n_{0}$ contains a $3 \log ^{3 k} d$ core.

Proof. Let $L=3 \log ^{3 k} d$. The probability that there exists $S \subset V$ of size at most $n_{0}$ that spans at least $t=L|S|$ edges is bounded by

$$
\left.\begin{array}{rl}
\sum_{s=1}^{n_{0}}\binom{n}{s}\binom{s}{k} \\
t
\end{array}\right) p^{t} \leq \sum_{s=1}^{n_{0}}\left(\left(\frac{e n}{s}\right)^{s / t} \cdot \frac{e\binom{s}{k}}{t} \cdot \frac{d}{\binom{n-1}{k-1}}\right)^{t} \leq \sum_{s=1}^{n_{0}}\left(\left(\frac{e n}{s}\right)^{1 / L} \frac{e d s}{t}\left(\frac{s}{n}\right)^{k-1}\right)^{t}, ~=\sum_{s=1}^{n_{0}}\left(\left(\frac{s}{n}\right)^{k-1-1 / L} \frac{e^{1+1 / L} d}{L}\right)^{t}=o(1) .
$$

Proof of Theorem 1. Let $\alpha, \beta$ be as in (1). We argue next that the properties given by Lemmas 11,13 and 14 imply that $H_{n, p ; k}$ is $(\alpha, \beta)$-greedy-colorable for $d$ sufficiently large. That is for any sequence of sets $V_{1}, V_{2}, \ldots, V_{\alpha}$ such that $V_{i}$ is maximally independent in $[n] \backslash \bigcup_{j<i} V_{j}$ for $j \leq \alpha$ we have that $[n] \backslash \bigcup_{i \leq \alpha} V_{i}$ does not have a $\beta$-core. Lemma 10 then follows directly from (2) and Theorem 3.

Consider such a sequence of sets $V_{1}, V_{2}, \ldots, V_{\alpha}$. It follows from Lemma 13 that because $\alpha m_{0}=n$, we must have $\sum_{i=1}^{\alpha}\left|V_{i}\right| \geq n-n_{0}$ and then Lemma 14 implies that $[n] \backslash \bigcup_{i \leq \alpha} V_{i}$ does not have a $\beta$-core.

## References

1 D. Achlioptas, A. Coja-Oghlan, and F. Ricci-Tersenghi. On the solution-space geometry of random constraint satisfaction problems. Random Structures and Algorithms, 38:251-268, 2010.

2 P. Ayre, A. Coja-Oghlan, and C. Greenhill. Hypergraph coloring up to condensation. arxiv:1508.01841, 2019. arXiv:1508.01841.
3 P. Ayre and C. Greenhill. Rigid colourings of hypergraphs and contiguity. arxiv:1812.03195, 2019. arXiv:1812.03195.

4 V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, and D. Vilenchik. The condensation phase transition in random graph coloring. Communications in Mathematical Physics, 341:543606, 2016.
5 N. Bousquet and G. Perarnau. Fast recoloring of sparse graphs. European Journal of Combinatorics, 52:1-11, 2016.
6 C. Efthymiou, T. Hayes, D. Štefankovič, and E. Vigoda. Sampling Colorings of Sparse random Graphs. In SODA, 2018.
7 C. Feghali. Paths between colourings of sparse graphs. European Journal of Combinatorics, 75:169-171, 2019.
8 A.M. Frieze and M. Karoński. Introduction to Random Graphs. Cambridge University Press, 2015.

9 M. Gabrié, V. Dani, G. Semerjian, and L. Zdeborová. Phase transitions in the $q$-coloring of random hypergraphs. Journal of Physics A: Mathematical Theory, 50, 2017.
10 A. Sly J. Ding and N. Sun. Proof of the satisfiability conjecture for large k. arxiv:1411.0650, 2019. arXiv:1411.0650.

11 F. Krzakąla, A. Montanari, F. Ricci-Tersenghi, G. Semerijian, and L. Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction problems. Proceedings of the National Academy of Sciences, 104:10318-10323, 2007.
12 Anastos M., A.M. Frieze, and W. Pegden. Constraining the clustering transition for colorings of sparse random graphs. Electronic Journal of Combinatorics, 2018.
13 and A. Flaxman M. Dyer, A.M. Frieze, and E. Vigoda. Randomly coloring sparse random graphs with fewer colors than the maximum degree. Random Structures and Algorithms, 29:450-465, 2006.
14 M. Molloy. The freezing threshold for $k$-colourings of a random graph. In STOC, 2012.
15 E. Shamir and E. Upfal. Sequential and Distributed Graph Coloring Algorithms with Performance Analysis in Random Graph Spaces. Journal of Algorithms, 5:488-501, 1984.
16 L. Zdeborová and F. Krzaka̧la. Phase Transitions in the Coloring of Random Graphs. Physics Review E, 76, 2007.

