14,574 research outputs found

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    A New PVSS Scheme with a Simple Encryption Function

    Full text link
    A Publicly Verifiable Secret Sharing (PVSS) scheme allows anyone to verify the validity of the shares computed and distributed by a dealer. The idea of PVSS was introduced by Stadler in [18] where he presented a PVSS scheme based on Discrete Logarithm. Later, several PVSS schemes were proposed. In [2], Behnad and Eghlidos present an interesting PVSS scheme with explicit membership and disputation processes. In this paper, we present a new PVSS having the advantage of being simpler while offering the same features.Comment: In Proceedings SCSS 2012, arXiv:1307.8029. This PVSS scheme was proposed to be used to provide a distributed Timestamping schem

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Relating two standard notions of secrecy

    Get PDF
    Two styles of definitions are usually considered to express that a security protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s should never be disclosed while equivalence-based secrecy states that two executions of a protocol with distinct instances for s should be indistinguishable to an attacker. Although the second formulation ensures a higher level of security and is closer to cryptographic notions of secrecy, decidability results and automatic tools have mainly focused on the first definition so far. This paper initiates a systematic investigation of the situations where syntactic secrecy entails strong secrecy. We show that in the passive case, reachability-based secrecy actually implies equivalence-based secrecy for digital signatures, symmetric and asymmetric encryption provided that the primitives are probabilistic. For active adversaries, we provide sufficient (and rather tight) conditions on the protocol for this implication to hold.Comment: 29 pages, published in LMC

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Verifying privacy by little interaction and no process equivalence

    Get PDF
    While machine-assisted verification of classical security goals such as confidentiality and authentication is well-established, it is less mature for recent ones. Electronic voting protocols claim properties such as voter privacy. The most common modelling involves indistinguishability, and is specified via trace equivalence in cryptographic extensions of process calculi. However, it has shown restrictions. We describe a novel model, based on unlinkability between two pieces of information. Specifying it as an extension to the Inductive Method allows us to establish voter privacy without the need for approximation or session bounding. The two models and their latest specifications are contrasted
    corecore