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Abstract: While machine-assisted verification of classical security goals such as confidentiality and authentication is
well-established, it is less mature for recent ones. Electronic voting protocols claim properties such as voter
privacy. The most common modelling involves indistinguishability, and is specified via trace equivalence in
cryptographic extensions of process calculi. However, it has shown restrictions. We describe a novel model,
based on unlinkability between two pieces of information. Specifying it as an extension to the Inductive
Method allows us to establish voter privacy without the need for approximation or session bounding. The two
models and their latest specifications are contrasted.

1 INTRODUCTION

Formal analysis of security protocols is even more
relevant as electronic voting (e-voting) starts being
used for official elections across the world. The
novel properties claimed by such protocols require
new models and tools, especially when computer-
aided analysis is desired. A key objective of e-voting
protocols, called voter privacy or ballot secrecy, states
that the way a particular voter voted is not known
to the adversary. While the vote itself obviously be-
comes public in the final stage, it is the link between
voter and ballot that must remain confidential. Other
goals than voter privacy are also commonly studied
for e-voting protocols, but we focus on voter privacy
in this work.

The most notable efforts in the area, which are
rather recent, are based upon a widely-accepted
model, process equivalence. These have advanced
computer-aided analysis of e-voting protocols signif-
icantly, albeit all existing tools face some limitations.
The general idea of using equivalences in process cal-
culi was presented as early as in 1996 (Schneider and
Sidiropoulos, 1996), concurrently with the Inductive
Method’s inception (Paulson, 1998). This position
paper makes the point that also the latter can be used
profitably to verify e-voting protocols without inher-
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ent limitations about size and features, hence offering
a valuable parallel means of analysis. The analyst gets
strong assistance in his task — for example in keeping
a clear picture of the various scenarios that the execu-
tion of the protocol may entail, over which the goals
must be assessed.

However, interaction is only significant during
proof development, that is, when a line of reasoning
is being investigated for the first time. With automatic
tools, this effort usually results in the implementation
of extended analysis routines that can later be invoked
and run fully automatically. Similarly, although theo-
rem proving remains interactive, vast portions of the
proof scripts can be re-used with minor adaptations
over new case studies, when these require the same
line of reasoning. For example, once confidential-
ity proofs were developed (Paulson, 1998), the cor-
responding scripts received negligible modifications
throughout subsequent applications. We argue that
this feature of interactive tools has not been empha-
sised properly so far. Therefore, the effort of develop-
ing a proof for an innovative property could be com-
parable to that of expanding an automatic tool for the
same reason. Proof reuse could be the right balance
between automation and interaction.

After recalling the main existing efforts, our de-
bate starts by comparing them with the mechanization
of our model in the Inductive Method.



2 EXISTING MODEL AND
TOOLS FOR PRIVACY
ANALYSIS

Most existing papers on formal privacy modelling in
the context of e-voting are based on the following in-
distinguishability criterion: it must not be possible to
distinguish between a situation in which the honest
voter Va voted x and the honest voter Vb voted y, and
one in which the converse is true. A cryptographic
extension of a process calculus is then used, often the
applied pi calculus. Two main tools build upon this
model.

ProVerif The automatic ProVerif tool (Blanchet,
1998) uses an algorithm based on Horn clauses. It
is able to efficiently check an under-approximation
of (i.e., a stronger equivalence than) observational
equivalence between processes in the applied pi cal-
culus for an unbounded number of sessions (Blanchet
et al., 2008). Because of the approximation, it lacks
in precision and may produce false negatives — spuri-
ous attacks may be found. Supplementary equational
theories for broader cryptographic primitives support
are easy to add, but this may lead to non-termination
in some cases. ProVerif was used to analyse — for
a fixed number of voters — voter privacy in the Fu-
jioka, Okamoto and Ohta (FOO) (Fujioka et al., 1993)
protocol in (Delaune et al., 2009). FOO involves two
election officials and uses blind signatures as well as
bit commitments. The bisimulation reasoning was
done by hand.

AKiSs More recently, the focus in the process
equivalence approach has shifted from trying to prove
observational equivalence to checking a weaker kind
of equivalence: trace equivalence (≈t ). In (Chadha
et al., 2012), a new cryptographic process calcu-
lus is introduced alongside a novel procedure for
checking equivalence. Specifically, under- and over-
approximations of ≈t are introduced, the fine-grained
trace equivalence ≈ f t and the coarse trace equiva-
lence ≈ct . Over-approximation can prove protocols
correct, and under-approximation can rule out flawed
protocols. The calculus supports a broad variety of
cryptographic primitives: all those that can be mod-
elled in an optimally reducing convergent rewrite sys-
tem. The procedure is limited to a bounded number of
protocol sessions. For a class of processes called de-
terminate, there is a coincidence between ≈ct , ≈t and
observational equivalence. Automation is provided
by the AKiSs tool. The work also includes an analysis
of voter privacy in FOO. However, since the model of

FOO does not yield a determinate process, observa-
tional equivalence cannot be proved by this approach
and the approximation ≈ f t must be checked instead.

3 DISCUSSION

Precision Since ProVerif systematically uses under-
approximations, it is not precise in general. While it
will not deem a flawed protocol correct, it may fail
to validate a correct protocol due to the detection of
a false attack. For AKiSs, precision depends on the
class of the process modelling the protocol. Those
which can be modelled using determinate processes
can be checked directly for observational equivalence
and ≈t because of their coincidence with ≈ct in that
class. On the other hand, some e-voting protocols,
particularly those using phases like FOO, must be
under-approximated by ≈ f t because they do not lead
to determinate processes. In that case, as for ProVerif,
the risk of spurious attack detection subsists. Unlink-
ability in the Inductive Method is treated by inductive
theorem proving, so there can be no false positives.
When unlinkability cannot be established, attacks are
not given explicitly but examination of the remain-
ing subgoal allows the user to trace back the flaw to
the problematic protocol step. This interactivity gives
greater insight into the protocol’s intricacies but re-
quires more effort than the aforementioned tools. An-
other aspect of precision is session bounding. While
the Inductive Method and ProVerif both support un-
limited protocol sessions, the computational cost of
AKiSs blows up exponentially when more sessions
are interleaved.

Automation vs. interaction AKiSs is fully auto-
mated. Voter privacy in ProVerif was checked by hand
in (Kremer and Ryan, 2005). An automatic verifi-
cation in ProVerif was presented in (Delaune et al.,
2008), but a translation algorithm is involved and its
correctness is not formally proven. In (Delaune et al.,
2009), a ProVerif privacy proof for a fixed number of
voters is partially automated. The Inductive Method is
mechanized in Isabelle/HOL, an interactive theorem-
prover. As noted above, this requires user interac-
tion at proof development time, whereas ProVerif and
AKiSs require it at tool development time.

Termination Termination is guaranteed neither in
ProVerif nor AKiSs. While ProVerif features a res-
olution method that ensures termination for a spe-
cific syntactic transformation of protocol models, this
method is limited to secrecy and authentication prop-
erties(Blanchet and Podelski, 2005). Since the Induc-



tive Method is based on induction, there is no termi-
nation issue.

Supported cryptographic primitives Associa-
tive/commutative (A/C) operators are currently sup-
ported by none of the tools, despite their usefulness
for the modelling of protocols using exponentiation
or XOR. Blind signatures, which are commonly used
in e-voting protocols, are supported by all three tools
compared in this paper. AKiSs supports a larger
variety of cryptographic primitives than ProVerif
and the current version of the Inductive Method. In
(Chadha et al., 2012), Chadha et al. conjecture that
all those which can be modelled in a rewrite system
with a specific convergence property are supported.
Notably, trapdoor commitments can be modelled. By
contrast, supporting new cryptographic primitives
in the Inductive Method requires modelling them
through additional rules using existing primitives
or changing the underlying framework. The latter
option requires more work since specific assumptions
about the interaction of operators are made in the
theory Message, which is always imported. On the
other hand, major modifications have been performed
successfully, for instance in (Martina and Paulson,
2011), demonstrating the flexibility of the approach.
New cryptographic primitives can be added easily to
the applied pi calculus by devising new equational
theories, but the resulting model may be beyond the
scope of the tool’s automatic analysis (Delaune et al.,
2010).

Efficiency The Authors of (Chadha et al., 2012)
state that the automated analysis of privacy for FOO
requires a few minutes on a modern laptop. Load-
ing and verifying all FOO theories in Isabelle/HOL
takes a similar time. However, our FOO theory also
establishes other useful security guarantees about the
protocol. Another metric is the respective human ef-
fort necessary to formalise protocols and their goals
before the actual analysis. This aspect remains to be
quantified.

Synthesis Table 1 summarises the comparison but
does not aim for exhaustiveness. The “large set” of
cryptographic primitives supported by AKiSs is the
set of those that can be modelled in an optimally re-
ducing convergent rewrite system.

4 OUTLINE OF VOTER PRIVACY
IN THE INDUCTIVE METHOD

The Inductive Method The Inductive Method
(Bella, 2007; Paulson, 1998), specified in the inter-
active theorem-prover Isabelle/HOL, has never been
applied to e-voting protocols until now. It models pro-
tocol steps and a Dolev-Yao adversary’s actions as in-
ductive rules. At its core are inductively defined mes-
sage operators. Initially supported message compo-
nents are agent names, guessable integers (numbers),
nonces, hashes and ciphertexts. The parts operator
takes as input a message and returns the set of all its
components, including encrypted ones for which the
key is not available. It is normally used to denote all
elements appearing in network traffic. analz bears
close resemblance to parts, but takes into account
cryptography. Only ciphertext for which the corre-
sponding decryption key is available yields the em-
bedded plaintext. As opposed to parts and analz, the
synth operator specifies message building rather than
message deconstruction. Taking into account avail-
able cryptographic keys, it inductively defines the set
of messages that can be built from an initial message
set. Ciphertexts and message hashes can be generated
from available messages. Agent names and guessable
numbers can be synthesised ex nihilo.

Cryptographic keys in Isabelle have the type key.
In the case of asymmetric keys, for encryption, key
pairs are modelled by priEK and pubEK. For signa-
tures, priSK and pubSK. The invKey function turns an
asymmetric key into its associated reciprocal key, e.g.
invKey(priEK A) = pubEK A.

Not only is the number of agents unbounded: ev-
ery agent is also able to interleave any number of
protocol sessions. Since proofs are carried out in-
ductively, susceptibility to replay attacks is taken into
account. Agents can be either the Server (a trusted
agent which knows all shared keys and is never com-
promised), a friendly agent or the Spy, who embodies
the threat model.

Three message events are available. The Says
event models the sending of a message between
agents. For instance, Says A B {Nonce Na} means
that agent A sends agent B a message consisting solely
of the nonce Na. It is realistic to assume that not
all messages reach their destination, hence message
sending does not imply message reception in gen-
eral. However, a sent message can be delivered as
intended; this is modelled by the Gets events, which
precisely represents the reception of a message by an
agent. The Notes event models the addition of a mes-
sage to an agent’s knowledge, for later use. It can be
seen as a private recording of information.



ProVerif AKiSs Inductive Method
Precision Precise for determinate

processes, else under-
approximation

Under-approximation Precise for generalised as-
sociation synthesis

Operation Partial automation Full automation Interactive proving
Unbounded sessions Yes No Yes
Systematic termination No No Yes
Supported cryptographic
primitives

Usual + blind signa-
tures, bit commitments,
proxy re-encryption

Large set conjectured Usual + blind signatures,
bit commitments

Table 1: Synthesis of characteristics of mechanized FOO privacy analyses

Every protocol step is modelled as an inductive
rule, with preconditions and a postcondition. The pro-
tocol model is the set of all admissible traces built
from those steps. The empty trace is also allowed,
and modelled by the Nil event. Furthermore, a Fake
event accounts for message forgery by the Spy, who
builds and sends everything she can from components
extracted from network traffic:
| Fake:
[[evsf ∈ bankerb gets;

X ∈ synth (analz (knows Spy evsf ))]]
=⇒ Says Spy B X # evsf ∈ bankerb gets

Extensions for e-voting protocols The following
extensions are protocol independent. Blind signatures
can be modelled as an inductive rule using symmetric
cryptography and agent knowledge:
| Unblinding:
[[evsb ∈ foo;
Crypt (priSK V) BSBody ∈ analz (spies evsb);
BSBody = Crypt b (Crypt c (Nonce N)); b ∈ symKeys;
Key b ∈ analz (spies evsb)]]
=⇒ Notes Spy (Crypt (priSK V) (Crypt c (Nonce N)))

# evsb ∈ foo

New operators are added to the Inductive Method
to make the treatment of voter privacy possible. One
is analzplus: by building upon the traditional mes-
sage set analyzer analz, it is empowered with an ex-
ternal message set from which extra decryption keys
can be derived. This helps to define aanalz, whereby
the attacker extracts all meaningful associations from
protocol events and traces:
primrec aanalz :: agent => event list => msg set set
where

aanalz Nil: aanalz A [] = {}
| aanalz Cons:
aanalz A (ev # evs) =
(if A = Spy then
(case ev of

Says A ′ B X⇒
(if A ′∈ bad then aanalz Spy evs
else if isAnms X

then insert ({Agent B} ∪ (analzplus {X}

(analz(knows Spy evs)))) (aanalz Spy evs)
else insert ({Agent B} ∪ {Agent A ′} ∪

(analzplus {X} (analz(knows Spy evs))))
(aanalz Spy evs))

| Gets A ′ X⇒ aanalz Spy evs
| Notes A ′ X⇒ aanalz Spy evs)
else aanalz A evs)

For instance, considering the event Says A B X
where A is uncompromised and evs is a generic pro-
tocol trace,
aanalz (Spy Says A B X # evs) = insert
(Agent A ∪ Agent B ∪ analzplus X (analz (knows Spy evs)))
(aanalz Spy evs)

The association synthesiser asynth builds new as-
sociations out of existing ones that share a common
element. The common element should not be one
of the election officials’ names since those appear in
all protocol runs and are therefore linked to all voter
identities. It is defined as follows:
inductive set
asynth :: msg set set⇒ msg set set
for as :: msg set set
where
asynth Build [intro]:
[[a1 ∈ as; a2 ∈ as; m ∈ a1; m ∈ a2;

m 6= Agent Adm; m 6= Agent Col]]
=⇒ a1 ∪ a2 ∈ asynth as

Associations arising from a generic trace of the
protocol model are examined using these operators.
In particular, the set asynth(aanalz Spy evs) for-
malises all possible associations that the attacker can
build out of active observation of the trace evs. Un-
linkability of two pieces of information can then be
specified by stating that they cannot belong to any as-
sociation in this set at the same time.

Verifying privacy for FOO We now focus on the
case study of the FOO protocol. The main privacy
theorem is stated as follows: whenever the first step of
the protocol was performed by a regular honest voter,
any association containing her vote cannot also con-
tain her name.



theorem foo V privacy asynth:
[[Says V Adm {|Agent V,
Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ (asynth (aanalz Spy evs));
Nonce Nv ∈ a; V /∈ bad; V 6= Adm; V 6= Col; evs ∈ foo]]
=⇒ Agent V /∈ a

Although this statement is protocol-dependent, it
is simple enough be adapted to any e-voting proto-
col — precisely as the current literature shows with
the confidentiality goal. No honesty assumptions are
made about the election officials Administrator and
Collector.

The proof involves case-splits about possible asso-
ciations arising from each protocol step, and a num-
ber of lemmas specifying possible associations, such
as the following one:

lemma aanalz PR:
[[a ∈ aanalz Spy evs; Crypt P R ∈ a; evs ∈ foo]] =⇒
(Agent Col /∈ a ∨
(Agent V ∈ a −→ V ∈ bad ∨ V = Col) ∨
(Nonce Nv /∈ parts {R})) ∧
((Nonce Nv /∈ a) ∨
(Key (invKey P) ∈ analz (spies evs) ∧
Agent V /∈ parts {R}))

This lemma establishes properties of association
sets from the protocol model that contain at least one
ciphertext. It states that if a nonce appears as an
atomic component of the body of the ciphertext, then
either the name of the election official Collector does
not appear in the association, or all agent names ap-
pearing in it are either dishonest agents or the Collec-
tor.

Specifying and verifying the unlinkability model
involved substantial effort. About 20 subsidiary lem-
mas had to be proved beforehand. Many of them, like
the one just mentioned, analz PR, establish properties
of association sets. Remarkably, the generic nature of
the proof has great potential for reuse over other pro-
tocols. Also, its redundant parts may be programmed
as ML tactics for greater automation. In cases where
unlinkability does not hold, the subgoal that cannot
be proven indicates which protocol step can lead to
an attack.

5 CONCLUSION

We shed a different light on voter privacy by see-
ing it as unlinkability property between two pieces of
information. The feasibility of this model is shown
by a specification in the Inductive Method and a suc-
cessful privacy proof for a classic e-voting proto-
col. While the process equivalence model is show-
ing steady progress through new trace equivalence

approximations, our machine-assisted analysis is pre-
cise for an unbounded number of sessions, and sup-
ports proof reuse. Its interactive nature also provides
broader protocol understanding to the analyst. Since
process equivalence-based methods are not currently
able to deal with all protocols, it seems worthwhile to
investigate alternative approaches like this one.

A submission of our Isabelle theories to the online
Archive of Formal Proofs (Klein et al., 2012) is being
prepared.

Future Work Demonstrating the flexibility and
reusability of our specification through additional ex-
amples is our main next task. The proofs must be
adapted to a generalised association synthesiser. We
then intend to analyse protocols that cannot be han-
dled in current implementations of the indistinguisha-
bility model, such as e-passport protocols, and in-
vestigate the specification of associative/commutative
operators. Finally, we plan to model other privacy-
type properties, such as coercion resistance.
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