412,180 research outputs found

    Terminal semantics for codata types in intensional Martin-L\"of type theory

    Full text link
    In this work, we study the notions of relative comonad and comodule over a relative comonad, and use these notions to give a terminal coalgebra semantics for the coinductive type families of streams and of infinite triangular matrices, respectively, in intensional Martin-L\"of type theory. Our results are mechanized in the proof assistant Coq.Comment: 14 pages, ancillary files contain formalized proof in the proof assistant Coq; v2: 20 pages, title and abstract changed, give a terminal semantics for streams as well as for matrices, Coq proof files updated accordingl

    Formalization, Mechanization and Automation of G\"odel's Proof of God's Existence

    Full text link
    G\"odel's ontological proof has been analysed for the first-time with an unprecedent degree of detail and formality with the help of higher-order theorem provers. The following has been done (and in this order): A detailed natural deduction proof. A formalization of the axioms, definitions and theorems in the TPTP THF syntax. Automatic verification of the consistency of the axioms and definitions with Nitpick. Automatic demonstration of the theorems with the provers LEO-II and Satallax. A step-by-step formalization using the Coq proof assistant. A formalization using the Isabelle proof assistant, where the theorems (and some additional lemmata) have been automated with Sledgehammer and Metis.Comment: 2 page

    Explaining Gabriel-Zisman localization to the computer

    Get PDF
    This explains a computer formulation of Gabriel-Zisman localization of categories in the proof assistant Coq. It includes both the general localization construction with the proof of GZ's Lemma 1.2, as well as the construction using calculus of fractions. The proof files are bundled with the other preprint "Files for GZ localization" posted simultaneously

    Hipster: Integrating Theory Exploration in a Proof Assistant

    Full text link
    This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster's proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes
    corecore