13 research outputs found

    From Euclidean Geometry to Knots and Nets

    Get PDF
    This document is the Accepted Manuscript of an article accepted for publication in Synthese. Under embargo until 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s11229-017-1558-x.This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or imaginative manipulation of mental models of mathematical phenomena. Proofs relying on diagrams can be rigorous if (a) it is easy to draw a diagram that shares or otherwise indicates the structure of the mathematical object, (b) the information thus displayed is not metrical and (c) it is possible to put the inferences into systematic mathematical relation with other mathematical inferential practices. Proofs that appeal to mental models can be rigorous if the mental models can be externalised as diagrammatic practice that satisfies these three conditions.Peer reviewe

    How to think about informal proofs

    Get PDF
    This document is the Accepted Manuscript version of the following article: Brendan Larvor, ‘How to think about informal proofs’, Synthese, Vol. 187(2): 715-730, first published online 9 September 2011. The final publication is available at Springer via doi:10.1007/s11229-011-0007-5It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it accommodates the many mathematical proofs that include actions on objects other than propositions; (v) this conception of logic permits the articulation of project-sized tasks for the philosophy of mathematical practice, thereby supplying a partial characterisation of normal research in the fieldPeer reviewedFinal Accepted Versio

    Assessing Proof Reading Comprehension Using Summaries

    Get PDF
    In this paper, we explore the role of mathematical proof summaries as a tool for capturing students’ reading comprehension of a given proof. We present an interview study based on mathematicians’ pairwise evaluations of student-produced summaries of a proof demonstrating the uncountability of the open unit interval. We present a thematic analysis, exploring features of mathematicians’ pairwise decision-making and their priorities in evaluating summaries. We argue that the students’ proof summaries shared several properties with traditional modes of proof-writing and were frequently evaluated against similar conventions. We consider the consequences for research and practice with proof comprehension and conclude that proof summaries have the potential to form the basis of a new approach to assessment in this area

    Reliability of mathematical inference

    Get PDF
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. This is also a demand that is especially hard to fulfill, given the fragility and complexity of mathematical proof. This essay considers some of ways that mathematics supports reliable assessment, which is necessary to maintain the coherence and stability of the practice

    Reliability of mathematical inference

    Get PDF
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of the latter. This essay describes some of the ways that mathematical practice makes it possible to reliably and robustly meet the formal standard, preserving the standard normative account while doing justice to epistemically important features of informal mathematical justification

    Deep Disagreement in Mathematics

    Get PDF

    Research Perspectives for Logic and Deduction

    Full text link
    The article is meant to be kind of the author's manifesto for the role of logic and deduction within Intellectics. Based on a brief analysis of this role the paper presents a number of proposals for future scientic research along the various di-mensions in the space of logical explorations. These dimensions include the range of possible applications including modelling intelligent behavior, the grounding of logic in some semantic context, the choice of an appropriate logic from the great variety of alternatives, then the choice of an appropriate formal system for repre-senting the chosen logic, and nally the issue of developing the most ecient search strategies. Among the proposals is a conjecture concerning the treatment of cuts in proof search. Often a key advance is a matter of applying a small change to a single formula. Ray Kurzweil [Kur05, p.5]

    Reliability of mathematical inference

    Get PDF
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. This is also a demand that is especially hard to fulfill, given the fragility and complexity of mathematical proof. This essay considers some of ways that mathematics supports reliable assessment, which is necessary to maintain the coherence and stability of the practice

    Reliability of mathematical inference

    Get PDF
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of the latter. This essay describes some of the ways that mathematical practice makes it possible to reliably and robustly meet the formal standard, preserving the standard normative account while doing justice to epistemically important features of informal mathematical justification

    Relations between generalization, reasoning and combinatorial thinking in solving mathematical open-ended problems within mathematical contest

    Get PDF
    Algebraic thinking, combinatorial thinking and reasoning skills are considered as playing central roles within teaching and learning in the field of mathematics, particularly in solving complex open-ended mathematical problems Specific relations between these three abilities, manifested in the solving of an open-ended ill-structured problem aimed at mathematical modeling, were investigated. We analyzed solutions received from 33 groups totaling 131 students, who solved a complex assignment within the mathematical contest Mathematics B-day 2018. Such relations were more obvious when solving a complex problem, compared to more structured closed subtasks. Algebraic generalization is an important prerequisite to prove mathematically and to solve combinatorial problem at higher levels, i.e., using expressions and formulas, therefore a special focus should be put on this ability in upper-secondary mathematics education. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Slovak Research and Development AgencySlovak Research and Development Agency [APVV-15-0368]; Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic; VEGAVedecka grantova agentura MSVVaS SR a SAV (VEGA) [1/0815/18]; Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [RO60201015025]Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RO60201015025; Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky; Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-15-0368; Vedecká Grantová Agentúra MŠVVaŠ SR a SAV, VEGA: 1/0815/1
    corecore