542 research outputs found

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D2n/41D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that Dn/2D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure

    Proof of the 1-factorization and Hamilton decomposition conjectures IV: exceptional systems for the two cliques case

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D2n/41D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that Dn/2D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we prove results on the decomposition of sparse graphs into path systems. These are used in the proof of (i) and (ii) in the case when GG is close to the union of two disjoint cliques.Comment: We originally split the proof into four papers, of which this was the fourth paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 37 page

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    Pseudo-modularity and Iwasawa theory

    Full text link
    We prove, assuming Greenberg's conjecture, that the ordinary eigencurve is Gorenstein at an intersection point between the Eisenstein family and the cuspidal locus. As a corollary, we obtain new results on Sharifi's conjecture. This result is achieved by constructing a universal ordinary pseudodeformation ring and proving an R=TR = \mathbb T result.Comment: Changes to section 5.9; typos corrected. To appear in Amer. J. Math. 54 page
    corecore