153 research outputs found

    Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review

    Get PDF
    Global optimization is an essential part of any kind of system. Various algorithms have been proposed that try to imitate the learning and problem solving abilities of the nature up to certain level. The main idea of all nature-inspired algorithms is to generate an interconnected network of individuals, a population. Although most of unconstrained optimization problems can be easily handled with Evolutionary Algorithms (EA), constrained optimization problems (COPs) are very complex. In this paper, a comprehensive literature review will be presented which summarizes the constraint handling techniques for COP

    Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review

    Full text link

    Optimized design and energy management of heating, ventilating and air conditioning systems by evolutionary algorithm

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Evolutionary algorithms for hard quantum control

    Get PDF

    Solving multiobjective constrained trajectory optimization problem by an extended evolutionary algorithm

    Get PDF
    Highly constrained trajectory optimization problems are usually difficult to solve. Due to some real-world requirements, a typical trajectory optimization model may need to be formulated containing several objectives. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To address the multiobjective trajectory planning problem, this paper applies a specific multiple-shooting discretization technique with the newest NSGA-III optimization algorithm and constructs a new evolutionary optimal control solver. In addition, three constraint handling algorithms are incorporated in this evolutionary optimal control framework. The performance of using different constraint handling strategies is detailed and analyzed. The proposed approach is compared with other well-developed multiobjective techniques. Experimental studies demonstrate that the present method can outperform other evolutionary-based solvers investigated in this paper with respect to convergence ability and distribution of the Pareto-optimal solutions. Therefore, the present evolutionary optimal control solver is more attractive and can offer an alternative for optimizing multiobjective continuous-time trajectory optimization problems

    Multiobjective differential evolution based on fuzzy performance feedback: Soft constraint handling and its application in antenna designs

    Get PDF
    The recently emerging Differential Evolution is considered one of the most powerful tools for solving optimization problems. It is a stochastic population-based search approach for optimization over the continuous space. The main advantages of differential evolution are simplicity, robustness and high speed of convergence. Differential evolution is attractive to researchers all over the world as evidenced by recent publications. There are many variants of differential evolution proposed by researchers and differential evolution algorithms are continuously improved in its performance. Performance of differential evolution algorithms depend on the control parameters setting which are problem dependent and time-consuming task. This study proposed a Fuzzy-based Multiobjective Differential Evolution (FMDE) that exploits three performance metrics, specifically hypervolume, spacing, and maximum spread, to measure the state of the evolution process. We apply the fuzzy inference rules to these metrics in order to adaptively adjust the associated control parameters of the chosen mutation strategy used in this algorithm. The proposed FMDE is evaluated on the well known ZDT, DTLZ, and WFG benchmark test suites. The experimental results show that FMDE is competitive with respect to the chosen state-of-the-art multiobjective evolutionary algorithms. The advanced version of FMDE with adaptive crossover rate (AFMDE) is proposed. The proof of concept AFMDE is then applied specifically to the designs of microstrip antenna array. Furthermore, the soft constraint handling technique incorporates with AFMDE is proposed. Soft constraint AFMDE is evaluated on the benchmark constrained problems. AFMDE with soft constraint handling technique is applied to the constrained non-uniform circular antenna array design problem as a case study

    Extending evolutionary multi-objective optimization of business process designs

    Get PDF
    Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2019.Optimizing a problem to produce a set of improved solutions is not a new concept. Many scientific areas have been benefited by the application of optimizations techniques and so have business processes. The competitive business environments have led organizations into examining and re-designing their core business processes, aiming for improving their performance and market responsiveness. The optimization and the continuous improvement of business processes within a company, can give the advantage to the company to be more competitive by reducing its costs, improving the delivery quality and efficiency, and enabling adaptation to changing environments. This thesis focuses on business process multi-objective optimization with evolutionary algorithms. There have already been optimization approaches with evolutionary algorithms for business process optimization problems that demonstrated rather satisfactory results. This thesis aims to improve and extent those approaches by providing a revised and refined version of an existing business process optimization framework by Vergidis (2008), that incorporates a pre-processing technique for enhancing the efficiency of the employed Evolutionary Multi-objective Optimization Algorithms (EMOAs), a new process composition algorithm that make the new framework capable of fulfilling more real-life constraints and handling more complex problems and many other features such as ease of use, more efficient I/O, better interactivity and easy maintenance. The proposed pre-processing technique was tested as a standalone procedure and demonstrated satisfactory results, managing to reduce drastically the problem dataset of all scenarios examined. The results of the whole optimization framework for the real-life scenarios examined, were very promising and indicated that the framework work as expected. It can automate the process composition and identify alternative business process designs with optimized attribute values

    A Memetic Differential Evolution Algorithm Based on Dynamic Preference for Constrained Optimization Problems

    Get PDF
    The constrained optimization problem (COP) is converted into a biobjective optimization problem first, and then a new memetic differential evolution algorithm with dynamic preference is proposed for solving the converted problem. In the memetic algorithm, the global search, which uses differential evolution (DE) as the search scheme, is guided by a novel fitness function based on achievement scalarizing function (ASF). The novel fitness function constructed by a reference point and a weighting vector adjusts preference dynamically towards different objectives during evolution, in which the reference point and weighting vector are determined adapting to the current population. In the local search procedure, simplex crossover (SPX) is used as the search engine, which concentrates on the neighborhood embraced by both the best feasible and infeasible individuals and guides the search approaching the optimal solution from both sides of the boundary of the feasible region. As a result, the search can efficiently explore and exploit the search space. Numerical experiments on 22 well-known benchmark functions are executed, and comparisons with five state-of-the-art algorithms are made. The results illustrate that the proposed algorithm is competitive with and in some cases superior to the compared ones in terms of the quality, efficiency, and the robustness of the obtained results

    Fast and Robust Design of CMOS VCO for Optimal Performance

    Get PDF
    The exponentially growing design complexity with technological advancement calls for a large scope in the analog and mixed signal integrated circuit design automation. In the automation process, performance optimization under different environmental constraints is of prime importance. The analog integrated circuits design strongly requires addressing multiple competing performance objectives for optimization with ability to find global solutions in a constrained environment. The integrated circuit (IC) performances are significantly affected by the device, interconnect and package parasitics. Inclusion of circuit parasitics in the design phase along with performance optimization has become a bare necessity for faster prototyping. Besides this, the fabrication process variations have a predominant effect on the circuit performance, which is directly linked to the acceptability of manufactured integrated circuit chips. This necessitates a manufacturing process tolerant design. The development of analog IC design methods exploiting the computational intelligence of evolutionary techniques for optimization, integrating the circuit parasitic in the design optimization process in a more meaningful way and developing process fluctuation tolerant optimal design is the central theme of this thesis. Evolutionary computing multi-objective optimization techniques such as Non-dominated Sorting Genetic Algorithm-II and Infeasibility Driven Evolutionary Algorithm are used in this thesis for the development of parasitic aware design techniques for analog ICs. The realistic physical and process constraints are integrated in the proposed design technique. A fast design methodology based on one of the efficient optimization technique is developed and an extensive worst case process variation analysis is performed. This work also presents a novel process corner variation aware analog IC design methodology, which would effectively increase the yield of chips in the acceptable performance window. The performance of all the presented techniques is demonstrated through the application to CMOS ring oscillators, current starved and xi differential voltage controlled oscillators, designed in Cadence Virtuoso Analog Design Environment
    corecore