

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Physical Review A

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa19777

Paper:

Zahedinejad, E., Schirmer, S. & Sanders, B. (2014). Evolutionary algorithms for hard quantum control. Physical

Review A, 90(3)

http://dx.doi.org/10.1103/PhysRevA.90.032310

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78852979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa19777
http://dx.doi.org/10.1103/PhysRevA.90.032310
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Evolutionary Algorithms for Hard Quantum Control

Ehsan Zahedinejad,1 Sophie Schirmer,2, 3 and Barry C. Sanders1, 3, 4, 5, ∗

1Institute for Quantum Science and Technology, University of Calgary, Alberta, Canada T2N 1N4
2College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, United Kingdom

3Kavli Institute for Theoretical Physics, University of California at Santa Barbara, California 93106-4030, USA
4Program in Quantum Information Science, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

5Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics,
University of Science and Technology of China, Anhui 230026, China

(Dated: August 23, 2014)

Although quantum control typically relies on greedy (local) optimization, traps (irregular critical
points) in the control landscape can make optimization hard by foiling local search strategies. We
demonstrate the failure of greedy algorithms as well as the (non-greedy) genetic-algorithm method
to realize two fast quantum computing gates: a qutrit phase gate and a controlled-not gate. We
show that our evolutionary algorithm circumvents the trap to deliver effective quantum control in
both instances. Even when greedy algorithms succeed, our evolutionary algorithm can deliver a
superior control procedure, for example reducing the need for high time resolution.

PACS numbers: 03.67.Lx,03.67.Ac, 42.50.Ex

I. INTRODUCTION

Quantum control aims to steer quantum dynamics to-
wards closely realizing specific quantum states or opera-
tions [1, 2] with applications to femtosecond lasers [3, 4],
nuclear magnetic resonance [5, 6] and other resonators [7–
9], laser-driven molecular reactions [10, 11], and quantum
gate synthesis for quantum computing [12]. Control is
achieved by varying the strengths of different contribut-
ing processes (external fields) over time such that the
resultant evolution closely approximates the desired evo-
lution. The quality of a given quantum control procedure
is quantified by its fitness [13] such as fidelity or dis-
tance for the approximated quantum state [14] or quan-
tum gate [15] and the target state or gate.

A key goal in quantum control is to reach the fittest
procedure possible within the target time T subject to
certain resource limits such as limiting the number of in-
dependent control parameters K and therefore the time
resolution T/K for time-domain quantum control. Prac-
tical considerations usually tightly constrain the maxi-
mum allowable values for T , and lower bounds for T are
central to questions about fundamental “quantum speed
limits” to operations in quantum computing, quantum
metrology and quantum chemistry [16–19]

Choosing control parameters to maximize the proce-
dure fitness is an optimization problem. Early quan-
tum control employed non-greedy approaches, v.g., the
genetic algorithm (GA) [20, 21]. Today greedy algo-
rithms dominate the methodology as local optimization
strategies usually have lower computational cost than
global search algorithms and the fitness landscape (plot
of fitness vs. control parameters) typically appears to be
tractable [22]. Unfortunately, greedy algorithms can fail

∗Electronic address: sandersb@ucalgary.ca

even for low-dimensional quantum control with simple
Hamiltonians if T must be short. This seemingly innocu-
ous constraint eliminates any guarantee of global opti-
mality for local extrema.

Although it is tempting to attribute failure to find a
satisfactory control procedure to infeasibility of the con-
strained problem, we show that this failure can instead
be due to restricting strategies to greedy algorithms. To
make our case, we present examples of control problems
involving simple systems for which greedy algorithms
overwhelmingly fail. These two control problems are
especially contrived to be hard to solve using common
quantum-control techniques, but the problems are phys-
ically meaningful as discussed in Subsecs. V A and V B,
respectively. We use the term ‘hard’ to refer to prob-
lems that defy existing methods in the sense that the
probability that they produce a satisfactory solution is
small. A key element of these problems are that the time
required for the unitary operation is short, which could
make many quantum control problems hard. We show
that these hard quantum control problems can be solved
using global optimization techniques based on the differ-
ential evolution (DE) algorithm [23], which succeeds in
finding effective controls up to the computational-power
limits (machine error) even for very short T and very few
controls.

We compare greedy vs non-greedy algorithms for re-
alizing two different quantum computing gates: the
original qutrit phase gate [24, 25] and the two-qubit
controlled-not (CNot) gate [26], which are key elements
of standard quantum computing instructions sets for
qutrits and for qubits, respectively. We show that, for
each gate and given our selected drift and control Hamil-
tonians, the greedy algorithm fails to find a high-fitness
quantum control procedure for short target time T while
our non-greedy DE algorithm succeeds. Moreover, for
larger T where greedy algorithms work, DE is able to
find solutions requiring fewer independent control param-

2

eters K than the greedy algorithms tested. Interestingly,
the common non-greedy GA also strongly fails for our
test problems.

II. QUANTUM CONTROL

In any quantum control problem, the goal is to decom-
pose the system’s Hamiltonian into a controllable and an
uncontrollable part, and steering the dynamics towards
a desired evolution through varying the controllable part
of the system. Here we first explain the system Hamil-
tonian in the context of control theory and then discuss
our choice of the fitness function serving as the objective
function for the purpose of optimization.

A. Quantum control Hamiltonian

For a closed system, the Hamiltonian

Ĥ [ε(t)] = Ĥdr + ε(t) · Ĥc = Ĥdr +

L∑
`=1

ε`(t)Ĥ
c
` , (1)

acts on Hilbert space H [27] with drift Hamiltonian Ĥdr

describing free (uncontrolled) evolution, which we treat
as being time-independent here. The control Hamiltoni-
ans, represented by the vector operator Ĥc(t) = (Ĥc

`)
(for {`} the control field labels) should steer the system
towards the desired evolution with time-varying (here
piecewise constant) control amplitudes contained in the
vector ε(t) := {ε`(t)}.

The resultant unitary evolution operator is formally

U [ε(t);T] = T exp

{
−i

∫ T

0

Ĥ(ε(t))dt

}
(2)

with T the time-ordering operator [28]. We aim to ap-
proximate a target unitary evolution operator U within
duration T by a unitary operator Ũ [ε(t);T] with mini-
mum distance

‖U − Ũ [ε(t);T]‖. (3)

between the realized evolution and the target.

B. Fitness functional

The quality of a candidate quantum control procedure
is quantified by the fitness functional

F [ε(t)] = F (U [ε(t);T]) = 1− ‖U − Ũ [ε(t);T]‖ (4)

with ‖•‖ the operator norm and the final term in (4) the
trace distance [29] between the target and actual evolu-
tion operators. The optimization problem is to maximize

F [ε(t)], i.e., to reduce the distance (3). For numerical
simulation we use the explicit form

F (t) =
1

N
Re
(

Tr
(
U [ε(t), T]Ũ [ε(t);T]

))
(5)

of the fidelity function [12] between the target U [ε(t);T]

and the approximate unitary operator Ũ [ε(t);T] with N
the Hilbert-space dimension.

III. CRITERIA TO EVALUATE ALGORITHM
PERFORMANCE

Evaluating and comparing algorithms for optimization
should be conducted fairly and clearly. Using run-time
directly as a cost criterion obscures fundamental issues in
comparing the intrinsic differences. Therefore, we eval-
uate and compare algorithms based on whether the al-
gorithm yields a sufficiently optimal solution over many
attempts, here called “runs”. Each run is allowed to iter-
ate until it succeeds or fails in which case the run aborts.

The iteration number of run r is ı, and the total num-
ber of iterations for run r is denoted Ir with IR the max-
imum iteration number over all R runs. For R runs, we
determine and tabulate the best and worst fitness value
obtained over these runs, and we characterize the statis-
tics of error values according to the median error and the
probability ℘, or percentage, of runs whose error is less
than some threshold value.

We compare the performance of the optimization algo-
rithms based on the bounds and statistics of the statis-
tics of runs, and these statistics are analyzed in plots
that depict the fidelity vs ı for each of the many runs. A
plot of F vs ı is overly crowded to reveal key features
clearly. Therefore, we stretch the plots by presenting the
monotonically-related “logarithmic infidelity”

L := log10(1− Re (F)) (6)

vs. ı for each run. Logarithmic infidelity is zero for per-
fect infidelity

F = 0, (7)

hence approximately bounded by L = −16 for double
precision, and ideally −∞ for perfect fidelity (F = 1).

The algorithm for run r is deemed successful if the fi-
nal Fr exceeds a minimum threshold Lt, which we set to
Lt = −4 commensurate with the widely accepted gate
fidelity required for scalable quantum computing [30].
Our algorithm aborts a run after Ir iterations only if
the change in Fr is within machine error or an infidelity
within machine precision is reached. The percentage of
runs that beat Lt is denoted ℘t.

A fair comparison of greedy vs evolutionary algorithms
would consider an equal number of trials in each case. In
order to make a stronger case that our evolutionary al-
gorithm is superior, we are giving the greedy algorithms
an advantage by allowing them twice as many runs as for

3

the evolutionary case. This allowance is feasible because
greedy algorithms typically run much quicker so allot-
ting additional time to double the number of greedy runs
is not onerous in terms of computational time. Specifi-
cally we run the greedy algorithms over 80 trials and the
evolutionary algorithms over 40 trials. Our choice of 80
and 40 trials, respectively, comes from our experience
in testing these different algorithms, and these numbers
correspond to balancing achieving sufficient success prob-
ability against excessive computational cost.

IV. METHODS

We begin this section with explaining the choice of con-
trol function that we use for the purpose of optimizing
the external field. We then discuss the details of how
we use the external field to numerically approximate the
unitary operation in (2). The last part of this section
discusses the optimization routines that we have tested
on two quantum control cases. We discuss two class of
optimization routines namely: local (greedy) and global
(evolutionary) algorithms. Our focus is on the evolution-
ary algorithms for which we provide a detailed explana-
tion of each algorithm in the Appendix section.

A. Type of control function and control parameters

Now we discuss how the computation works. Numeri-
cally the fitness functional (5) is evaluated by discretizing
the control function vector ε by expressing it as a sum
of K orthonormal functions over the time domain [0, T]
as follow:

ε :=

ε1
ε2
...
εK

 (8)

such that each vector element εl is constant over sequen-
tial time steps of equal duration ∆t = T/K.

The K control parameters refer to choosing various
weightings of these control functions. For our analysis,
these K orthonormal functions are non-overlapping rect-
angular functions with identical durations T/K [31]; i.e.,
the control functions are expressed as a weighted series
of time bins. Each control element is randomly gener-
ated from the interval [−1, 1] and evolves through the
optimization process toward its best optimal value.

This time-bin discretization is commonly used and jus-
tified by the fact that control pulses on experimental
hardware are often limited to this form although there
are alternatives such as decomposition into K monochro-
matic functions to be solved in the frequency domain.
The rectangular time bins also have computational ad-
vantages in that the time-ordered integral (2) is straight-
forward to evaluate.

B. Optimizing the control function

For any optimization problem, greedy algorithms are
the primary choice if they can provide a satisfactory re-
sult. Greedy algorithms locally explore the landscape so
their convergence rate toward a local optimum is much
faster than for global optimization algorithms. If the
landscape includes many traps, most trials striving to
find global optima become ensconced within local traps
in which case greedy algorithms fail to find the best so-
lution. Evolutionary algorithms are specifically designed
for non-convex optimization problems, which typically
arise when the landscape includes many traps and a
global optimum is the goal. Here we find that greedy
algorithms are preferred when there is enough time to
approximate the unitary operation and enough control
parameters to search the landscape. Otherwise evolu-
tionary algorithms are the choice to solve the problems.
We discuss these two class of optimization algorithms
here.

Greedy algorithms include the Nelder-Mead tech-
nique [32], Krotov [33–35], the quasi-Newton method,
which employs the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) approximation of the Hessian [36–40]. The
Nelder-Mead technique uses the fitness functional only,
whereas the Krotov algorithm uses both the fitness func-
tional and its gradient (∇F) with respect to control el-
ements, and quasi-Newton uses the fitness functional as
well as its gradient (∇F) and Hessian (∇2F) to find
local optima over many iterations. Lie group techniques
can help to determine the gradient analytically [41, 42],
and numerical techniques work generally.

Greedy algorithms are especially successful if both T
and K are sufficiently large. For constrained T , second-
order traps such that the Hessian is negative semidefinite
arise [43–45] and numerical evidence arguably exists for
the presence of other traps [13, 46, 47].

As an alternative to greedy algorithms, we consider
evolutionary algorithms for quantum control. Evolution-
ary algorithms are stochastic optimization algorithms, in-
spired by the process whereby biological organisms adapt
and survive [48]. These algorithms only require the fit-
ness functional and not its gradient or Hessian.

The large class of evolutionary algorithms includes sim-
ulated annealing [49], ant-colony systems [50], memetic
algorithms [51], DE [23], and particle swarm optimiza-
tion (PSO) [52], GA [21] inter alia [48], but we choose
to test just the three most common or promising evolu-
tionary algorithms, namely traditional GA (a commonly
used algorithm) and the modern PSO and DE algorithms
(promising for this type of problem). The promising na-
ture of PSO and DE is based on many studies [53–55]
that have shown the superiority of DE and PSO over
other evolutionary algorithms. All PSO, DE and GA
employ the initial condition of multiple guesses, called
particles in PSO and chromosomes in DE and GA Each
test function evolves iteratively along trajectories in pa-
rameter space and experience different fitness values.

4

In GA, “parent” chromosomes go through three steps:
selection, crossover and mutation to generate a new
generation (“offspring”) of chromosomes. We test all
Matlabr (version R12118) GA options and found that
the Wheel-Roulette, Two-Point and Uniform methods
perform best. We test GA fairly by optimizing popu-
lation number N independently for each GA variant and
fix the run time to equal those for PSO and DE runs.

In PSO the particle evolves according to a Langevin
equation that includes a random kick, an attractive force
to its previous best fitness and a force pulling to the
particle to the fittest particle in its neighborhood (where
the size of the neighborhood is logarithmic in the number
of particles). Neighborhoods overlap such that they do
not partition into distinct sets. Specifically we employ
three PSO variants labeled here as PSO1, PSO2 [56] and
PSO3 [57].

In DE each chromosome breeds with three other ran-
domly chosen chromosomes from the same generation to
produce a “daughter”, and the fittest of the original vs
the bred “daughter” survives to the next generation. We
use a DE variant that incorporates mutation scaling fac-
tor µ ∈ [0, 2] and cross-over rate ξ [23]. In each genera-
tion the difference between two randomly chosen target
vectors is weighted by µ then added to a third randomly
selected target vector to generate the new set of vectors
called donors. This quantity µ determines the DE step
size for exploring the control landscape. Donor vector
elements are incorporated into target vectors with prob-
ability ξ to generate trial vectors, and the fittest of the
target and trial vectors survive to the next generation.

Details of DE, PSO and GA and a comparison between
these three algorithm can be found in the Appendices.

C. Evaluating the objective function

We use the following decomposition approach to con-
struct the gate:

U [ε(t);T] = UKUK−1UK−2 . . . U3U2U1 (9)

with UK = exp(iH(εl)∆t) and T the fixed target time for
the unitary operation. The next step is to optimize F
over ε(t) within target time T keeping the number K of
time bins small.

V. TWO QUANTUM-CONTROL CASES

Now we proceed to the two quantum-control cases of
a qutrit phase gate and a CNot gate. For each individ-
ual problem we first test conventional greedy algorithms.
For sufficiently large T for effecting the unitary operation,
we show that greedy algorithms can rapidly converge to
a local optimum, but not necessarily a global optimum,
which we characterize here as a local optimum that meets
the infidelity condition L := −4. We also show that re-
ducing the time and the number of control parameters

transforms the problem into a hard optimization prob-
lem for which we employ evolutionary algorithms as an
alternative approach.

A. Qutrit phase gate

For a qutrit phase gate the Hilbert space is H =
span{|0〉, |1〉, |2〉}, and the target gate is:

U = e−iTĤ
dr

(e-iφ|0〉〈0| − ie-iγ |1〉〈1| − ieiγ |2〉〈2|) (10)

with objective parameters corresponding to the phases φ
and γ and Ĥdr is the drift Hamiltonian defined in (11).
As our interest is in hard quantum control problems, we
choose a challenging T -dependent drift Hamiltonian and
a single control given by [13]

Ĥdr =

1 + π
T 0 0

0 1 0
0 0 2

 , Ĥc =

a 1 0
1 b 1
0 1 c

 , (11)

respectively.
This choice of control and drift Hamiltonian (11) pro-

vides a rich lode for studying hard quantum control be-
cause, for any target time T , many choices of a, b, c, φ,
and γ lead to ε(t) ≡ 0 being a critical point. The resul-
tant criticality results in Re[F [ε(t)] < 1 for which the
Hessian becomes strictly negative definite. We consider
the specific choice

a = 2, b = 2, c = 1. (12)

Then the phase choices

γ =
5π

3
, sinφ = −b+ c

a
cos γ (13)

ensure that

ε(t) ≡ 0 (14)

is a critical point i.e. a point in which

∇F (ε(t)) = 0, ∇2F (ε(t)) < 0. (15)

Therefore, a strong trap in the fitness landscape is delib-
erately set [13]. The resultant Hamiltonian is obtained
by inserting (11) into (1). The external field, or con-
trol parameters, are adjusted to realize (10) according
to expression (2). In this way, we can realize the qutrit
phase gate by quantum control using the control and drift
Hamitlonians (11).

While this problem is deliberately contrived to illus-
trate the existence of traps, the drift Hamiltonian (11),
for a fixed value of T , effectively describes the free evo-
lution of a three-level system such as encountered in a
spin-one system or in a single atom with three pertinent
electronic levels. The diagonal terms correspond to the
electronic energy levels of the atom.

5

The first and second energy levels are non-degenerate
in the absence of the driving field, but the states approach
degeneracy in the limit of long time T . A system whose
energy levels depend on the control time T does not ap-
pear in nature but is a legitimate system for mathemat-
ically exploring the limitations of greedy algorithms and
power of evolutionary algorithms. Therefore, we employ
this model in the qutrit case to compare these different
optimization strategies.

The control Hamiltonian (11) can represent the inter-
action of an atom with a driving field. The diagonal
terms of the control Hamiltonian represent level shifts
due to the effect of the field. The off-diagonal terms are
the Rabi frequencies between the corresponding pairs of
levels, in this case between the first and second levels and
between the second and third levels. Here we have scaled
the Rabi frequencies to unity.

B. CNot gate

The second example concerns the two-qubit CNot
gate [26]. Inspired by the one-dimensional linear Ising-ZZ
model [35], the drift and control Hamiltonians are

Ĥdr =
J

2
Z ⊗ Z, Ĥc =

X ⊗ 11
11⊗X
Y ⊗ 11
11⊗ Y

 , (16)

respectively, for

X =
1

2

(
0 1
1 0

)
, Y =

1

2

(
0 −i
i 0

)
, Z =

1

2

(
1 0
0 −1

)
(17)

the non-identity Pauli matrices and 11 the 2× 2 identity
matrix. We normalize time by setting J ≡ 1. The time-
dependent four-dimensional control vector ε(t) in Eq. (1)
is optimized so that the resultant evolution (2) approxi-
mates CNot with high F .

Physically the Ising-ZZ model corresponds to a one-
dimensional spin chain, which was originally studied in
the context of explaining ferromagnetism. The weak in-
teraction is described by a tensor product of Pauli Z op-
erators for nearest neighbours. The spin chain interacts
with an external field, for example a magnetic field, and
this interaction involves only single non-identity Pauli
operators as seen in the control Hamiltonian (16).

VI. RESULTS

In this section we first discuss the performance of the
quasi-Newton method on two specific problems where
there is enough time for unitary operation or a suffi-
cient number of control parameters. Then we numerically
show that reducing the time T and control parameters K
transform the problem into a hard optimization prob-
lem and results in runs of the greedy algorithms getting

50 100 150 200

−15

−10

−5

0

ı

L
r

(a)

50 100 150

−15

−10

−5

0

ı

L
r

(b)

FIG. 1: (color online) Logarithmic-infidelity L vs iteration
number ı for (a) the qutrit gate and (b) the CNot gate using
the quasi-Newton method with (a) T = 10π (red, solid lines),
T = 4π (blue lines with ’+’ markers), and T = 3π (green
lines with ’×’ markers) such that K = 50 in all cases and
with (b) T = 30 and K = 30 ((red, solid lines), T = 10 and
K = 10 (blue lines with ’+’ markers) and T = 4 and K = 4
(green lines with ’×’ markers).

L GA DE PSO PSO1 PSO2 PSO3 Newton simplex Krotov

median -0.6 -15.9 -1.7 -2.5 -2.4 -1.1 -0.7 -0.7 -0.6

best-case -1.2 -15.9 -2.4 -4.4 -4.1 -1.5 -1.4 -1.3 -1.16

worst-case -0.4 -2.2 -1.3 -1.6 -1.4 -0.9 -0.4 -0.4 -0.4

℘t 0 72.5 0 12.5 7.5 0 0 0 0

TABLE I: Median, best-case, worst-case, and ℘t for
logarithmic-infidelity L for the qutrit phase gate with T =
2.5π, K = 10, dfs and R = 80 (R = 40) for greedy (evolu-
tionary) algorithms.

trapped. In the next part of this section we evaluate the
performance of evolutionary algorithms when the time
is shortened and K is reduced and compare the perfor-
mance of different algorithms in terms of their median
and best plots and finally tabulate the resultant data.

We choose to begin with a plot of the fast-convergent
quasi-Newton method because this approach should be
the preferred choice for when it succeeds to deliver a sat-
isfactory results. Figure 1 depicts the logarithmic infi-
delity {Lr} as a function of ı for the qutrit phase gate
and for the CNot gate using the quasi-Newton method.

In Fig. 2, we compare the greedy simplex, Krotov and
quasi-Newton methods against GA, DE, Common PSO,
PSO1, PSO2, and PSO3 algorithms. Specifically we de-
pict best-run performance and median-run performance
in terms of final L. These plots are indicative only. Care-
ful comparisons are summarized in Table I for the qutrit
case and in Table II for median, best-case, and worst-
case performance as well as for the percentage of runs ℘t

that exceed Lt over R = 40 runs for evolutionary algo-
rithms and over R = 80 runs for greedy algorithms.

VII. DISCUSSION

This section begins with a discussion about the greedy
algorithm used for two quantum control examples namely
the qutrit phase gate and the CNot gate. As we are de-

6

250 500 750
−16

−12

−8

−4

0

ı

L
(a)

250 500 750
−16

−12

−8

−4

0

ı

L

(b)

0 1000 2000 3000
−3

−2

−1

0

ı

L

(c)

0 1000 2000 3000
−6

−4

−2

0

ı

L

(d)

FIG. 2: (color online) Logarithmic-infidelity L vs iteration
number ı for (2) GA, (×) DE, (◦) Common PSO, (I) PSO1,
(∗) PSO2, (3) PSO3, (�) quasi-Newton, (V) simplex and
(O) Krotov with R = 80 (R = 40) for greedy (evolution-
ary) algorithms. Median-run performance is depicted in (a)
and (c); best run performance is depicted in (b) and (d). The
qutrit phase gate is the target (T = 2.5π and K = 10) in (a)
and (b) CNot is the target (T = 3.2 and K = 4) in (c)
and (d).

L GA DE PSO PSO1 PSO2 PSO3 Newton simplex Krotov

median -1.2 -2.9 -1.8 -2.4 -2.3 -0.7 -2.4 -1.45 -2.6

best -1.8 -5.5 -2.9 -4.2 -4.7 -1.0 -3.9 -2.4 -3.2

worst -0.7 -2.0 -1.3 -1.9 -1.3 -0.6 -2.0 -0.8 -1.9

℘t 0 15.0 0 2.5 10.0 0 0 0 0

TABLE II: Median, best-case, worst-case, and ℘t for
logarithmic-infidelity L for the CNot gate with T = 3.2,
K = 4, and R = 80 (R = 40) for greedy (evolutionary) algo-
rithms.

liberately making the problem harder by reducing the
time and control resources, we resort to evolutionary al-
gorithms and discuss their performances on these specific
cases. We discuss the numerical evidence of local traps
later on in this section and compare the performance of
evolutionary algorithms with greedy algorithms when lo-
cal traps dominates the landscape. In the last part we
compare evolutionary algorithms performance and dis-
cuss why DE outperforms its ancestor GA.

As we explained in earlier sections, greedy algorithms
converge faster than evolutionary algorithms and they
should be the first choice for quantum control optimiza-
tion if they can provide a satisfactory results. We show
the greedy-algorithm performance in Fig. 1 where, in
both cases (qutrit phase gate and CNot gate), most
quasi-Newton runs converge rapidly within machine pre-
cision (L = −15.65) to the target gate for large T and for
small time resolution T/K. For small T and K, a ma-
jority of runs becoming trapped at low fitness (high L)
values. Evidently the quasi-Newton method fails (freen
plots in Fig. 1) for short-time and fine–time-resolution

constraints.

Our results show that greedy algorithms perform
poorly for the highly-constrained-T , low-K problems as
do PSO and GA. Figure 2 compares the performance
of different algorithms for two cases by providing the
median and best plots for each algorithm. For the
qutrit phase gate, optimization performance is shown in
Figs. 2(a) and 2(b). Evidently, all quasi-Newton, Krotov
and simplex runs become trapped at very low fidelity. On
the other hand, DE and PSO1 and PSO2 are the only al-
gorithms that successfully achieve the infidelity target of
L = −4 72.5%, 12.5% and 7.5% of the time, respectively
(c.f., Table I) and DE achieves the best performance in
terms of the best and median infidelity among all algo-
rithms.

In the qutrit-phase-gate example we are searching the
landscape around a critical point ε(t) = 0 by sampling
each trial ε(t) randomly from [−1, 1] and evolving them
toward their optimal values. As there are other stud-
ies that numerically provide the proof of local traps in
the quantum control landscape [13, 46, 47], here our re-
sults show many local traps in the landscape as many
runs from greedy algorithms get trapped at low fideli-
ties. Using an efficient global-optimization routine like
DE is necessary to avoid these local traps and to find a
global optimal.

For the CNot gate, whose performance is shown in
Figs. 2(a, b), all runs become trapped at poor fidelities
for the greedy algorithm case, and the GA and various
PSO algorithms are also poor. In contrast the DE per-
formance is vastly superior for the qutrit phase gate and
significantly better for the CNot gate under the extreme
conditions of T = 3.2 and K = 4. Naturally the greedy
and PSO algorithms can be improved by increasing K,
and this strategy is common in the quantum control liter-
ature, but our aim is to constrain T and limit the number
of control parameters K, and DE is the superior tool for
doing so in that it works when the greedy and GA algo-
rithms fail.

In the CNot case, DE succeeds in providing a satisfac-
tory result (See Table II) 15% of the time whereas this
success rate is 2.5% and 10% for the PSO1 and PSO2
cases and zero for other cases. Therefore, this result
shows that for short T and small K there are many local
traps in the landscape causing the greedy algortihms to
fail.

In all evolutionary algorithms discussed here, DE
always outperforms its algorithmic ancestor GA. One
might ask why DE performs better than GA [53] on these
two specific quantum control problems and the answer
lies in the mechanism of generating the new population
from the old population. In GA, parents are selected
based on probabilities that lead to individuals with better
fitness. The crossover operation combines partial parts
of two parents to generate a new offspring. As the new
offspring comes from a combination of two parents, in
this sense GA explores the optimal solution around some
good solution candidates. GA must perform the mu-

7

tation operation on the individual with a low mutation
probability constant; otherwise it turns into a searching
algorithm and becomes inefficient. This low mutation
probability limits the GA’s ability in searching the whole
domain of landscape and thus might cause GA to fail
with locating the global optimum.

Unlike GA, which converts candidate solutions into a
binary format, DE constructs candidate solutions that
are represented by real numbers. The crossover opera-
tion in DE generates offspring individuals from the entire
set of populations so that newly generated offspring are
always different from parent individuals. The higher mu-
tation probability in DE, compared to GA, enables DE
to explore the search space more efficiently while reduc-
ing the chance of getting trapped in local minima hence
outperforms GA in term of the quality of the results (See
Fig 2)

Optimization strategies can be compared in various
ways. The most important criterion is whether the opti-
mization approach delivers a satisfactory result. A sec-
ondary consideration is the rate of convergence, which is
relevant to the run-time. Of course use of computational
space is another consideration. In our case we are most
concerned with the primary consideration of whether
the optimization works, as determined by whether the
threshold infidelity reaches L = −4.

As shown in Fig. 2, the quasi-Newton method con-
verges faster than all other approaches but fails to achieve
L = −4. Our message is that the most efficient, fastest
optimization strategy should be used as long as it de-
livers a satisfactory result. If the fastest routine failed,
then our analysis of two tightly time-constrained con-
trol problems is that differential evolution is an excellent
alternative that appears to deliver a satisfactory result
even when the other approaches fail.

The fast convergence of quasi-Newton runs in Fig. 2
raises the tantalizing possibility of whether increasing
the number of quasi-Newton runs would result in a small
but non-zero success probability ℘t. A fast algorithm
like quasi-Newton with a low probability of success could
make it superior to the slow DE approach with a high
success probability. To test this hypothesis, we did 500
repetitions of 100 quasi-Newton iterations applied to the
(CNot) gate control problem. We chose 100 iterations
of quasi-Newton runs as the average “wall time” (the
true run time on the given computer) for 100 iterations
approximates the average wall time for 40 iterations of
the DE method. Our numerical study showed that the
quasi-Newton runs never reached L ≤ −4. In principle
the quasi-Newton method would work with a sufficient
number of trials simply because the global search would
be achieved by a huge number of local searches, but re-
placing a good global search by extremely many local
searches is not feasible in practice.

Finally we emphasize that, when greedy algorithms
work, the quantum control strategy should be to em-
ploy current practice and use the best available greedy
algorithm. When greedy algorithms fail, though, evolu-

tionary algorithms could work and differential evolution
is the best amongst these according to our investigation.
This is particularly relevant when exploring quantum
speed limits numerically. In view of our results, quan-
tum speed limits found using greedy algorithms reflect
the limitations of these algorithms rather than intrinsic
speeds limits for quantum control.

VIII. CONCLUSION

In conclusion we have shown that evolutionary algo-
rithms such as DE and PSO are essential alternatives
to greedy algorithms for hard quantum control problems
with strong constraints. Greedy algorithms are often
used because fitness landscapes are assumed to be well-
behaved [22], and traps presumed to be negligible if T can
be long and K can be increased without paying a signifi-
cant price. In such cases greedy algorithms work because
most local optima are globally optimal or close enough.
However, when resources are limited, even straightfor-
ward control problems for simple systems can become
hard due to a proliferation of traps in the landscape and
non-convexity, thereby causing greedy algorithms to fail.

We have considered two quantum gates relevant to
quantum information and used drift and control Hamil-
tonians that illustrate our point. These examples show
that differential evolution is effective for hard quantum
control problems. The superiority of differential evolu-
tion over greedy algorithms is unsurprising because the
fitness landscape is no longer well behaved for hard quan-
tum control. On the other hand, the superiority of dif-
ferential evolution over GA and PSO and its variants is
due to the greater efficacy of DE for optimization over
higher-dimensional search spaces, which is the case for
hard quantum control.

Acknowledgments

EZ acknowledges a Murray Fraser Memorial Gradu-
ate Scholarship and Eyes High International Doctoral
Scholarship and support from NSERC. SS acknowledges
support from EPSRC and EU network QUAINT. BCS
is supported by NSERC, CIFAR, USARO and AITF
and acknowledges hospitality and financial support from
Macquarie University in Sydney and from the Raman Re-
search Institute in Bangalore where some of this research
was performed. SS and BCS acknowledge valuable dis-
cussions with A. Pechen and Y. R. Sanders during the
early stages of this work. This project was initiated at
a Kavli Institute for Theoretical Physics Workshop and
thus supported in part by the National Science Founda-
tion under Grant no. NSF PHY11-25915.

8

Appendix A: Genetic Algorithm

Genetic algorithms (GA) [58] are well known for global
optimization. A candidate solution is first coded in a bi-
nary representation, called a parent vector. These par-
ents evolve through several algorithmic steps, namely se-
lection, crossover, and mutation. These steps lead to
the generation of new candidates, known as children or
offspring, for subsequent generations. These children be-
come parents for the next generation.

Several variants of algorithmic steps exist for GA [21].
These steps evolve the fitness function towards its opti-
mal state. We choose the following GA variant that leads
to the best performance for our problem.

1. Selection:– This step specifies how the GA
chooses the next-generation parent for subsequent
breeding. We use the Roulette Wheel method,
which assigns a selection probability to each indi-
vidual parent vector according to

pi =
fi∑N
i=1 fi

(A1)

for N the total population number and fi the fit-
ness level of each individual parent vector. This
probability distribution is used to select parent vec-
tors for the crossover step.

2. Crossover:– This step, which is considered to be
the heart of GA, specifies how the two parents unite
to generate the new offspring. We use the two-
point selection method to choose two random in-
tegers m and n between one and the number of
variables in each parent vector. Offspring elements
are constructed from the element of the first parent
vector P1, whose indices are less than n or greater
thanm, and those elements of the second parent P2,
whose elements share equal indices or are between n
and m.

3. Mutation:– The purpose of mutation is to intro-
duce small changes in an individual selected from
the population, which leads to the creation of mu-
tant offspring. We mutate uniformly on each indi-
vidual offspring. The mutation algorithm thus se-
lects vector elements that are be mutated according
to a small rate of 0.001. Then those selected ele-
ments are replaced by a random number selected
uniformly from the set of all elements of the corre-
sponding offspring vector.

For all problem instances, we set N = 70. This choice
of population number ensures the same computational
time for GA as for other evolutionary algorithms here,
namely differential evolution (DE) and particle swarm
optimization (PSO).

Appendix B: Particle Swarm Optimization

PSO optimizes by enabling exploration of the fit-
ness landscape using a swarm of particles with position-

velocity pairs {(xn, vn)}. These pairs are updated in each
iteration of the algorithm based on the rules

vn+1 = χ(wvn + c1r1(xn,∗ − xn) + c2r2(x∗ − xn)),
(B1a)

xn+1 = xn + vn (B1b)

where xn,∗ is the nth particle’s previous personal best
and x∗ the global best position so far. We employ χ as a
constriction factor, and w is an inertial weight. The coef-
ficients c1 and c2 are deterministic weights, and r1 and r2
are uniformly distributed random numbers in [−1, 1].

For the common PSO algorithm, the inertial weight
decreases linearly starting from wmax = 0.9 to wmin =
0.4 over N iterations according to wn = wmax − (n −
1)(wmax−wmin)/N and the standard parameters are c1 =
c2 = 2 and χ = 1. Clerc’s and Trelea’s variants use
constant inertial weights and different parameter values.
Clerc uses w = 1 (PSO1) whereas Trelea uses w = 0.6
(PSO2) and c1 = c2 = 1.7 (PSO3) and w = 0.729 and
c1 = c2 = 1.492 (variant 2).

Appendix C: Differential Evolution

Individuals in DE are represented by a D-dimensional
vector (Xi), i ∈ {1, . . . , NP}, where D is the number of
control parameters and NP is the population size. The
classical DE algorithm can be summarized as follow [23]:

1. Mutation:– The update step is

Vi = Xi1 + µ (Xi2 −Xi3) (C1)

with i, i1, i2, i3 ∈ [1, NP] being integers and mu-
tually different. Here µ is the mutation factor con-
trolling the differential variation di := Xi2 −Xi3 .

2. Crossover:–

Ci(j) =

{
Vi(j) if Cj(0, 1) < ξ

Xi(j) otherwise
(C2)

with Cj(0, 1) representing the uniform random be-
tween 0 and 1, and ξ ∈ (0, 1) is the crossover rate.

3. Selection:– The final step is the assignment

X ′i =

{
Ci if f(Ci) < f(Xi)

Xi otherwise
(C3)

with X ′i the offspring of Xi for the next genera-
tion and f(Xi) the objective function, which, in
our case, is the measured fidelity.

For all instances we choose µ = 0.5, ξ = 0.9 and NP =
15K, with K being the number of control parameters,
for all problems.

9

[1] M. Shapiro and P. W. Brumer, Principles of the Quantum
Control of Molecular Processes, vol. 1 (Wiley, Hoboken,
2003).

[2] D. Dong and I. R. Petersen, IET, Contr. Theor. Ap. 4,
2651 (2010).

[3] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer,
V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919
(1998).

[4] D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
[5] C. Ryan, M. Laforest, J. Boileau, and R. Laflamme,

Phys. Rev. A 72, 062317 (2005).
[6] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,

and S. J. Glaser, J. Magn. Reson 172, 296 (2005).
[7] R. Ruskov, K. Schwab, and A. N. Korotkov, Phys. Rev.

B 71, 235407 (2005).
[8] S. Mancini, D. Vitali, and P. Tombesi, arXiv preprint

quant-ph/9802034 (1998).
[9] A. Hopkins, K. Jacobs, S. Habib, and K. Schwab, Phys.

Rev. B 68, 235328 (2003).
[10] P. Brumer and M. Shapiro, Annu. Rev. Phys. Chem. 43,

257 (1992).
[11] D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013

(1985).
[12] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J.

Glaser, Phys. Rev. A 72, 042331 (2005), URL http://

link.aps.org/doi/10.1103/PhysRevA.72.042331.
[13] P. De Fouquieres and S. G. Schirmer, Infin. Dimens.

Anal. Quantum. Probab. Relat. Top. 16, 1350021 (2013).
[14] D. Egger and F. Wilhelm, Supercond. Sci. Technol. 27,

014001 (2014).
[15] M. Murphy, S. Montangero, V. Giovannetti, and

T. Calarco, Phys. Rev. A 82, 022318 (2010).
[16] L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103,

160502 (2009), URL http://link.aps.org/doi/10.

1103/PhysRevLett.103.160502.
[17] M. M. Taddei, B. M. Escher, L. Davidovich, and

R. L. de Matos Filho, Phys. Rev. Lett. 110,
050402 (2013), URL http://link.aps.org/doi/10.

1103/PhysRevLett.110.050402.
[18] A. del Campo, I. L. Egusquiza, M. B. Ple-

nio, and S. F. Huelga, Phys. Rev. Lett. 110,
050403 (2013), URL http://link.aps.org/doi/10.

1103/PhysRevLett.110.050403.
[19] G. C. Hegerfeldt, Phys. Rev. Lett. 111, 260501

(2013), URL http://link.aps.org/doi/10.1103/

PhysRevLett.111.260501.
[20] C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Car-

penter, P. M. Weber, and W. S. Warren, Chem. Phys.
Lett. 280, 151 (1997).

[21] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion and Machine Learning (Addison-Wesley Longman,
Boston, 1989), 1st ed.

[22] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, Science
303, 1998 (2004).

[23] R. Storn and K. Price, J. Global Optim. 11, 341 (1997).
[24] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A

64, 012310 (2001), URL http://link.aps.org/doi/10.

1103/PhysRevA.64.012310.
[25] S. D. Bartlett, H. de Guise, and B. C. Sanders, Phys.

Rev. A 65, 052316 (2002), URL http://link.aps.org/

doi/10.1103/PhysRevA.65.052316.

[26] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and
H. Weinfurter, Phys. Rev. A 52, 3457 (1995), URL http:

//link.aps.org/doi/10.1103/PhysRevA.52.3457.
[27] D. d’Alessandro, Introduction to Quantum Control and

Dynamics, Chapman & Hall/CRC Applied Mathematics
& Nonlinear Science (CRC, New York, 2007).

[28] G. Dattoli, J. Gallardo, and A. Torre, J. Math. Phys. 27,
772 (1986).

[29] G. H. Golub and C. F. Van Loan, Matrix Computations,
vol. 4 of Johns Hopkins Studies in the Mathematical Sci-
ences (Book 3) (JHU Press, Baltimore, 2012).

[30] A. M. Steane, Phys. Rev. A 68, 042322 (2003), URL
http://link.aps.org/doi/10.1103/PhysRevA.68.

042322.
[31] G. P. Rao, ed., Piecewise Constant Orthogonal Functions

and Their Application to Systems and Control, vol. 55
of Lecture Notes in Control and Information Sciences
(Springer, Berlin, 1983).

[32] D. M. Olsson and L. S. Nelson, Technometrics 17, 45
(1975).

[33] A. Konnov and V. Krotov, Automation and Remote Con-
trol 60, 1427 (1999).

[34] S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66,
053619 (2002), URL http://link.aps.org/doi/10.

1103/PhysRevA.66.053619.
[35] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières,

A. Gruslys, S. Schirmer, and T. Schulte-Herbrüggen,
Phys. Rev. A 84, 022305 (2011), URL http://link.aps.

org/doi/10.1103/PhysRevA.84.022305.
[36] C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970).
[37] R. Fletcher, Comput. J. 13, 317 (1970).
[38] R. Fletcher, Practical Methods of Optimization, vol. 2

(Wiley, Padstow, 2013).
[39] D. Goldfarb, Math. Comput. 24, 23 (1970).
[40] D. F. Shanno, Math. Comput. 24, 647 (1970).
[41] S. G. Schirmer and P. de Fouquieres, New J. Phys. 13,

073029 (2011).
[42] F. F. Floether, P. de Fouquieres, and S. G. Schirmer,

New J. Phys. 14, 073023 (2012).
[43] A. N. Pechen and D. J. Tannor, Phys. Rev. Lett.

106, 120402 (2011), URL http://link.aps.org/doi/

10.1103/PhysRevLett.106.120402.
[44] H. Rabitz, T.-S. Ho, R. Long, R. Wu, and C. Brif, Phys.

Rev. Lett. 108, 198901 (2012), URL http://link.aps.

org/doi/10.1103/PhysRevLett.108.198901.
[45] A. N. Pechen and D. J. Tannor, Phys. Rev. Lett.

108, 229901 (2012), URL http://link.aps.org/doi/

10.1103/PhysRevLett.108.229901.
[46] A. N. Pechen and D. J. Tannor, Isr. J. Chem.

52, 467 (2012), URL http://http://onlinelibrary.

wiley.com/doi/10.1002/ijch.201100165/abstract.
[47] A. N. Pechen and D. J. Tannor, Phys. Rev. Lett.

108, 198902 (2012), URL http://link.aps.org/doi/

10.1103/PhysRevLett.108.198902.
[48] K. A. De Jong, Evolutionary Computation: A Unified

Approach, vol. 262041944 of Bradford Book (MIT press
Cambridge, Cambridge, 2006), URL http://books.

google.co.in/books?id=OIRQAAAAMAAJ.
[49] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Sci-

ence 220, 671 (1983), ISSN 00368075, URL http://www.

10

jstor.org/stable/1690046.
[50] M. Dorigo, M. Birattari, and T. Stutzle, Computational

Intelligence Magazine, IEEE 1, 28 (2006), ISSN 1556-
603X.

[51] P. Moscato et al., Caltech concurrent computation pro-
gram, C3P Report 826, 1989 (1989).

[52] J. Kennedy, in Encyclopedia of Machine Learning
(Springer, 2010), pp. 760–766.

[53] M. A. Panduro, C. A. Brizuela, L. I. Balderas, and D. A.
Acosta, Prog. Electromagn. Res. B 13, 171 (2009).

[54] E. Elbeltagi, T. Hegazy, and D. Grierson, Advanced
Engineering Informatics 19, 43 (2005), ISSN 1474-
0346, URL http://www.sciencedirect.com/science/

article/pii/S1474034605000091.
[55] S. A. Ethni, B. Zahawi, D. Giaouris, and P. Acarnley,

in Conference on Industrial Informatics, 2009. INDIN
2009. 7th IEEE International (2009), pp. 470–474, ISSN
1935-4576.

[56] I. C. Trelea, Inf. Proc. Lett. 85, 317 (2003).
[57] M. Clerc and J. Kennedy, Evol. Comput., IEEE Trans.

on 6, 58 (2002).
[58] J. H. Holland, Adaptation in Natural and Artificial Sys-

tems: An Introductory Analysis with Applications to Bi-
ology, Control, and Artificial Intelligence (University of
Michigan Press, Ann Arbor, MI, 1975).

