444 research outputs found

    Generalized disjunction decomposition for the evolution of programmable logic array structures

    Get PDF
    Evolvable hardware refers to a self reconfigurable electronic circuit, where the circuit configuration is under the control of an evolutionary algorithm. Evolvable hardware has shown one of its main deficiencies, when applied to solving real world applications, to be scalability. In the past few years several techniques have been proposed to avoid and/or solve this problem. Generalized disjunction decomposition (GDD) is one of these proposed methods. GDD was successful for the evolution of large combinational logic circuits based on a FPGA structure when used together with bi-directional incremental evolution and with (1+Ă«) evolution strategy. In this paper a modified generalized disjunction decomposition, together with a recently introduced multi-population genetic algorithm, are implemented and tested for its scalability for solving large combinational logic circuits based on Programmable Logic Array (PLA) structures

    Generalized disjunction decomposition for evolvable hardware

    Get PDF
    Evolvable hardware (EHW) refers to self-reconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). One of the main difficulties in using EHW to solve real-world problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines a new type of decomposition strategy for EHW, the “generalized disjunction decomposition” (GDD), which allows the evolution of large circuits. The proposed method has been extensively tested, not only with multipliers and parity bit problems traditionally used in the EHW community, but also with logic circuits taken from the Microelectronics Center of North Carolina (MCNC) benchmark library and randomly generated circuits. In order to achieve statistically relevant results, each analyzed logic circuit has been evolved 100 times, and the average of these results is presented and compared with other EHW techniques. This approach is necessary because of the probabilistic nature of EA; the same logic circuit may not be solved in the same way if tested several times. The proposed method has been examined in an extrinsic EHW system using the(1+lambda)(1 + lambda)evolution strategy. The results obtained demonstrate that GDD significantly improves the evolution of logic circuits in terms of the number of generations, reduces computational time as it is able to reduce the required time for a single iteration of the EA, and enables the evolution of larger circuits never before evolved. In addition to the proposed method, a short overview of EHW systems together with the most recent applications in electrical circuit design is provided

    Improving EHW performance introducing a new decomposition strategy

    Get PDF
    This paper describes a new type of decomposition strategy for Evolvable Hardware, which tackles the problem of scalability. Several logic circuits from the MCNC benchmark have been evolved and compared with other Evolvable Hardware techniques. The results demonstrate that the proposed method improves the evolution of logic circuits in terms of time and fitness function in comparison with BIE and standard EHW

    A novel genetic algorithm for evolvable hardware

    Get PDF
    Evolutionary algorithms are used for solving search and optimization problems. A new field in which they are also applied is evolvable hardware, which refers to a self-configurable electronic system. However, evolvable hardware is not widely recognized as a tool for solving real-world applications, because of the scalability problem, which limits the size of the system that may be evolved. In this paper a new genetic algorithm, particularly designed for evolving logic circuits, is presented and tested for its scalability. The proposed algorithm designs and optimizes logic circuits based on a Programmable Logic Array (PLA) structure. Furthermore it allows the evolution of large logic circuits, without the use of any decomposition techniques. The experimental results, based on the evolution of several logic circuits taken from three different benchmarks, prove that the proposed algorithm is very fast, as only a few generations are required to fully evolve the logic circuits. In addition it optimizes the evolved circuits better than the optimization offered by other evolutionary algorithms based on a PLA and FPGA structures

    Evolvable Embryonics: 2-in-1 Approach to Self-healing Systems

    Get PDF
    This paper covers the authors’ recent research in the area of evolutionary design optimisation in electronic application domain (Evolvable Hardware). This will be also presented in the context of biologically inspired systems where Evolvable Hardware is concerned with evolutionary synthesis of self-healing systems and potentially hardware capable of online adaptation to dynamically changing environment. We will also illustrate how EAs can produce novel and unintuitive design solutions, and possibly new design principles. The novelty of this research project addresses this compelling change in the traditional landscape of the associated research disciplines by seeking to provide a novel biologically inspired mechanism to support the design optimisation of self-healing architectures, that is Evolvable-Embryonics

    An Evolvable Combinational Unit for FPGAs

    Get PDF
    A complete hardware implementation of an evolvable combinational unit for FPGAs is presented. The proposed combinational unit consisting of a virtual reconfigurable circuit and evolutionary algorithm was described in VHDL independently of a target platform, i.e. as a soft IP core, and realized in the COMBO6 card. In many cases the unit is able to evolve (i.e. to design) the required function automatically and autonomously, in a few seconds, only on the basis of interactions with an environment. A number of circuits were successfully evolved directly in the FPGA, in particular, 3-bit multipliers, adders, multiplexers and parity encoders. The evolvable unit was also tested in a simulated dynamic environment and used to design various circuits specified by randomly generated truth tables
    • 

    corecore