
 

 

  
Abstract—The evolution of logic circuits, which falls under the 

heading of evolvable hardware, is carried out by evolutionary 
algorithms. These algorithms are able to automatically configure 
reconfigurable devices. One of main difficulties in developing 
evolvable hardware with the ability to design functional electrical 
circuits is to choose the most favourable EA features such as fitness 
function, chromosome representations, population size, genetic 
operators and individual selection. Until now several researchers 
from the evolvable hardware community have used and tuned these 
parameters and various rules on how to select the value of a 
particular parameter have been proposed. However, to date, no one 
has presented a study regarding the size of the chromosome 
representation (circuit layout) to be used as a platform for the 
evolution in order to increase the evolvability, reduce the number of 
generations and optimize the digital logic circuits through reducing 
the number of logic gates. In this paper this topic has been 
thoroughly investigated and the optimal parameters for these EA 
features have been proposed. The evolution of logic circuits has been 
carried out by an extrinsic evolvable hardware system which uses 
(1+λ) evolution strategy as the core of the evolution. 
 

Keywords—Evolvable hardware, genotype size, computational 
intelligence, design of logic circuits.  

I. INTRODUCTION 
volvable hardware (EHW) [1] techniques introduced by 

H. de Garis [2] almost a decade ago enable the automatic 
design of antennas [3], [4], electrical circuits (digital [5], [6] 
and analogue [7], [8], [9]), robot controllers [10] etc. 
Evolvable hardware is able to auto-design and self-
reconfigure the functionality of hardware systems thanks to 
the use of evolutionary algorithms [11], [12], [13] which are 
generally used to solve search and optimization problems. The 
major components of evolutionary algorithms are the genetics 
operators, the mechanism of selections and the chromosome 
representations. The simplest evolutionary algorithm is shown 
in Fig. 1, while in Fig. 2 the simplest evolvable hardware 
system is presented. Evolvable hardware, as proposed by 
Torresen [14], Andersen [15] and Gordon and Bentley [16], 
can be classified in several classes (see Table 1), depending 
on: evolutionary algorithm, target technology, building block 
levels, fitness evaluation and evolutionary process. Extrinsic 
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EHW refers to a system whereby the evolutionary algorithm is 
performed in software, or in a dedicated chip, distinct from the 
chip where the chromosome will be downloaded. Intrinsic 
EHW describes situations where the evolutionary algorithm is 
implemented in hardware but into a different chip than that 
from which the evolving design is running. In a complete 
hardware the evolutionary algorithm is implemented on the 
same chip as the evolving design and mixtrinsic evolvable 
hardware [17] is a hybrid combination of intrinsic and 
extrinsic methods. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Classic Evolutionary algorithm 
 

 
Fig. 2. Basic evolvable hardware system 

 
 

Table 1. Classification in evolvable hardware 

chromosome
representation

evolutionary
algorithm

evaluation

intrinsic extrinsic mixtrinsic complete

hardware

software

hardware

software

software

software

hardware
software

software

hardware

hardwarehardware
software

hardware

EHW
EA

 
 

While examining the progress made during the last decade 
by the evolvable hardware community in relation to the 
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procedure EA 
{ 
 t=0; 
 produce an initial population on individuals P(t) 
 evaluate the fitness of the population P(t) 
     while (termination conditions are met) 
 { 
  t=t+1; 
  select fitter individuals for reproduction from P(t-1); 
  reproduce individuals in P(t); 

     evaluate the fitness of the new individuals P(t); 

 } 
} 

Tatiana Kalganova
Text Box
Stomeo E., T. Kalganova, C. Lambert (2005) Analysis of Genotype Size for an Evolvable Hardware System. Proc. of the 2nd Int. Conf. on Computational Intelligence, ICCI 2005, August 2005, Enformatika pp.70 - 74.



 

 

evolution of digital logic circuits [18], [19], [20], it may be 
noticed that researchers often appear to tune their EA’s 
parameters in order to make their own EA more scalable when 
compared with that of others. Therefore in several 
publications there are sentences saying: “we used a Population 
size = …. Mutation rate =….Crossover rate =…. Genotype 
size = ……” without explaining why those values have been 
chosen or without presenting any statistical analysis of those 
parameters. Therefore, to avoid this downside, a deep analysis 
of how to choose the genotype size for evolving digital logic 
circuits of different complexity using an extrinsic evolvable 
hardware system is provided in this paper. Our extrinsic EHW 
is based on the used of (1+λ) rudimentary evolution strategy, 
already tested for its efficiency in [5], [21] for the evolution of 
digital logic circuits. 

 
The purpose of this paper is to provide a statistical analysis 

of the chromosome representation for evolving digital circuits 
using an extrinsic evolvable hardware. Different chromosome 
representations are analyzed and stressed for finding the best 
chromosome representations that improve evolvability, reduce 
the number of generations and find the optimal solution (the 
design which gives the fewest number of logic gates). 
Furthermore, because an extrinsic evolvable hardware system 
has been used, which is based on a FPGA structure, therefore 
the results here reported will be useful and easy transferable to 
an intrinsic evolvable hardware system. 

 
The remaining sections of this paper are organized as 

follows: the next section introduces the extrinsic evolvable 
hardware used for the evolution of logic circuits. In that 
section the evolutionary algorithm used, the chromosome 
representation and the fitness functions are also presented. 
Section 3 provides the initial set up for the experiment 
together with the experimental results. The conclusions are 
given in section 4. 

 
  

II. EXTRINSIC EVOLVABLE HARDWARE 
In this section the extrinsic evolvable hardware system 

(evolutionary algorithm, fitness function and chromosome 
representation) used for the evolution of digital logic circuits 
is presented. The evolutionary algorithm chosen is the (1+λ) 
evolution strategy. It was decided to consider this algorithm 
because it has been widely and successfully used as a core for 
several evolutionary designs of logic circuits [5], [21], [6]. A 
dynamic fitness function previously tested for its performance 
in [5], together with Cartesian Genetic Programming [22] has 
also been selected. 

 

A. Evolutionary Algorithm 
All the experiments have been carried out using the (1+λ) 

rudimentary evolution strategy [5], [21], where λ represents 
the population size. Firstly all the chromosomes are randomly 

initialized. Secondly, the fitness function of each individual is 
calculated and the fittest individual is selected. The new 
population is created by mutating the best chromosome (see 
Fig. 3). The operation of mutation consists of flipping some 
genes of the chromosome, where in this context the genes 
represent the behavior and the connections between the logic 
gates. 
 

 
Fig. 3. (1+λ) rudimentary evolution strategy. 

 
 
 

B. Chromosome Representation 
The “design-evolution” of logic circuits has been carried 

out on a system which is based on a FPGA structure. 
Therefore the best chromosome representation is a rectangular 
array of logic gates which will be connected during the 
evolution. The unconnected logic gates are removed following 
the design. The logic gates in this rectangular array are: AND, 
OR, XOR, NOT and MUX, where MUX is a multiplexer with 
2 inputs and one control signal. The chromosome is 
represented by a 3 level structure (see Fig. 4): 

 
• Geometry level contains information about the number of 

rows, the number of columns of the rectangular array and 
the degree of internal connectivity, also referred to as 
level-back parameter [22]. The level-back parameter, or 
so called connectivity parameter, defines how many 
columns of cells to the left of the current column might 
have their outputs connected to the inputs of the current 
cell. 

 
• Circuit level describes the array of cells and determines 

the circuit’s outputs 
 
• Gate level represents the structures of each cell in the 

circuit. 
 



 

 

 
Fig. 4. Chromosome structure. 

 
 
The connection between building blocks (combination of 

primitive logic gates) is in interactive and cascade mode. Each 
logic gate has up to 4 inputs. The structures of cascade and 
interactive building blocks are given in Fig. 5 and Fig. 6. Each 
of these blocks represents the combination of primitive logic 
gates. 

 

 
Fig. 5. Cascade building blocks. 

 
 

 
Fig. 6. Interactive building blocks. 

 
 

C. Fitness Function 
The fitness function is responsible for evaluating the quality 

of the logic circuits together with their functionality. In our 
experiments, a dynamic fitness function has been considered 
[5]. It has two main stages: first design, and secondly, once 
the circuit is fully functionally evolved, optimization, which 
leads to a reduced number of active logic gates used in the 
circuit configuration.  

The dynamic fitness function f is calculated as: 
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where f1 is a design criterion that defines the percentage of 

correct bits in the evolved circuit, f2 is the optimization 
criterion for the optimization stage. 

The fitness function for the functionality of the evolved 
circuit f1, or so called design criterion is calculated as follows: 
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where m and n are the number of outputs and the number of 
inputs of the given logic function respectively; p is the number 
of input-output combinations; yi is the ith digit of the output 
combination produced by the evaluation of the circuit, di is the 
desired output for the fitness case fc. |yi-di| is the absolute 
difference between the actual and the required outputs. The 
fitness function for the optimization stage is calculated as: 
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III. EXPERIMENTAL RESULTS 
Here, the experimental results obtained from the evolution 

of digital logic circuits are shown. The system used for the 
evolution is the extrinsic evolvable hardware model presented 
in the previous section. The aim of these experiments is to 
provide the evolvable hardware community with information 
regarding the circuit layout to be used in order to create better, 
faster and well optimized logic circuits evolved by the 
evolutionary algorithm. The experimental simulation was 
performed by taking into account the evolvability and the: 

 
• Number of generations 
 
• Fitness function 
 
• Number of logic gates 
 
required to completely evolve the functionality of the 

circuit by changing the circuit layout of the chromosome.  
 

A. Settings: Initial Data 
The initial data for the experiments are reported in Table 2; 

where the number of generations refers to the number of 
cycles of the EA run, the population size is the number of 
initial individuals which have been randomly generated, 
elitism and mutation rate are the genetic operators used. The 
number of runs refers to the number of times a single circuit 
has been evolved. 

 



 

 

Table 2. Initial data for the experiments carried out using (1+λ) 
rudimentary evolution strategy. 

Number of 
generations 5000 

Population size 5 
Elitism is applied 
Mutation rate 5% 
Number of runs 50 

 
The logic circuits evolved were randomly generated and 

fully defined by truth tables. The truth tables used to describe 
the logic circuits are compatible with the Berkeley format, see 
Fig. 7. Where .i specifies the number of inputs, .o the number 
of outputs, .p the number of product or input-output 
combinations and .e the end of file. 
 

 
Fig. 7. Example of truth table (in Berkley format) used for the 
evolution of logic circuit with (1+λ) evolution strategy. 

 

B. Results: Evolvability 
In Fig. 8 the evolvability (the capability of the EA to fully 

functional evolve a given task) of a logic circuit with 3 inputs 
and 5 outputs is reported. From those results one may notice 
that the percentage of fully evolved logic circuits is lower 
when the circuit layout used for the evolution is a wider 
rectangular array. By varying the chromosome representation 

from 1 x100 to 10 x 10 the evolvability increases from 70% to 
86%. Therefore a rectangular array of 10 rows by 10 columns 
performs better in terms of evolvability. 
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Fig. 8. Evolvability. In this figure the percentages of fully evolved 
digital logic circuit in relation with the change of the chromosome 
representations is given 
 

C. Results: Number of Generations 
In Fig. 9 the number of generations with different 

chromosome’s sizes (rectangular array) required in order 
evolve a circuit with 3 inputs and 5 outputs are reported. In 
that figure it is observable that by widening the shape of the 
rectangular array (note that the number of total logic gates 
does not change, it is always 100) the number of generations 
required to fully evolve the circuit (fitness function reaches 
100%) increases. For that particular circuit, the number of 
generations has been reduced from circa 4500 generations 
when the circuit layout is 1 x 100 (1 rows by 100 columns) to 
around 1700 generations when the circuit layout is 10 x 10. 
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Fig. 9. Relationship between the number of generations and the fitness function for the evolution of a digital circuit with 3 inputs and 5 outputs 
for different chromosome representations is shown. 

In Table 3 the average of 50 experiments (per each kind of 
logic circuit evolved and per each different circuit layout 
used) of the number of generations required to completely 
evolve the functionality of the circuit is shown. In Table 3 n, 
m and p refer to the number of inputs, outputs and input-
output combinations respectively. In that table the best results, 
the evolution with fewer generations, is highlighted. From 
these results we recognize that the best circuit layout for the 
evolution of simple logic circuits is a rectangular array of 4 
rows by 10 columns and 10 rows by 10 columns. Furthermore 
it appears to be clear that it is better to avoid evolution using a 
wider rectangular array or a string. 

 
Table 3. Number of generations required to evolve logic circuits of 
different complexity with different chromosome representation. 

Number of generations for fully functional evolving logic circuits 
 

Logic circuit Chromosome representations 
Name n m p 1 x 100 2 x 50 4 x 25 10 x 10 

2-2 2 2 4 40 43.82 35.68 44.12 
2-3 2 3 8 75.30 85.62 63.56 62.84 
2-4 2 4 16 105.62 116.96 83.56 86.98 
2-5 2 5 32 160.80 155.78 159.92 101.44 

 
3-2 3 2 4 178.58 233.76 183.20 175.20 
3-3 3 3 8 565.92 557.74 483.40 526.04 
3-4 3 4 16 1567.90 1545.57 1352.40 1384.71 
3-5 3 5 32 2439.29 2176.13 2111.51 2102.20 
 

A. Results: Fitness Function 
In this section the fitness function of the evolved logic 

circuits before and after the optimization stage, in relation to 
the different chromosome representations is presented. The 
evolved circuits have been optimized using equation 3. The 
highlighted results are the best obtained. The results again 
show that the rectangular array of 10 rows by 10 columns is 

superior to any other during evolution. After the optimization 
stage a big difference between different chromosome 
configurations cannot be found 
 
 
Table 4. Average out of 50 experiments of the fitness function value 
obtained during the evolution of logic circuits of different 
complexity. 

Fitness function for the fully functional solution 
Logic circuit Chromosome representations 

Name n m p 1 x 100 2 x 50 4 x 25 10 x 10 
2-2 2 2 4 2749 2754 2745 2762 
2-3 2 3 8 2735 2737 2739 2749 
2-4 2 4 16 2729 2729 2730 2739 
2-5 2 5 32 2717 2720 2726 2735 

 
3-2 3 2 4 2751 2749 2747 2754 
3-3 3 3 8 2732 2735 2735 2744 
3-4 3 4 16 2724 2729 2727 2736 
3-5 3 5 32 2712 2719 2723 2727 

Table 5. Average out of 50 experiments of the fitness function value 
obtained after the optimization stage. 

Fitness function for the fully functional solution  
after optimization 

Logic circuit Chromosome representations 
Name n m p 1 x 100 2 x 50 4 x 25 10 x 10 

2-2 2 2 4 2796 2796 2796 2797 
2-3 2 3 8 2795 2796 2796 2796 
2-4 2 4 16 2794 2794 2795 2795 
2-5 2 5 32 2794 2794 2794 2796 

 
3-2 3 2 4 2792 2793 2793 2793 
3-3 3 3 8 2789 2788 2789 2790 
3-4 3 4 16 2772 2773 2776 2779 
3-5 3 5 32 2752 2760 2764 2771 

 



 

 

B. Results: Number of Active Logic Gates during Evolution 
and After Optimization Stage 
This section shows the average (out of 50 experiments) 

number of logic gates required to fully functionally evolve the 
digital circuits. The experimental results found and reported in 
this section were obtained during the evolution stage, Table 6, 
and after the optimization stage, Table 7. The best results are 
highlighted. From those results again, we found that the best 
chromosome representation is a rectangular array with 10 
rows and 10 columns. 

 
Table 6. Average out of 50s experiment of the number of required 
logic gates during the evolution stage. 

Number of active logic gates for the fully functional solution 
Logic circuit Chromosome representations 

Name n M p 1 x 100 2 x 50 4 x 25 10 x 10 
2-2 2 2 4 23.66 21.44 25.38 17.78 
2-3 2 3 8 29.10 28.80 27.52 23.52 
2-4 2 4 16 32.94 31.90 31.78 27.50 
2-5 2 5 32 37.94 36.66 33.72 29.40 

 
3-2 3 2 4 21.64 22.94 23.52 20.52 
3-3 3 3 8 30.92 29.92 29.26 25.20 
3-4 3 4 16 34.81 31.69 32.28 28.65 
3-5 3 5 32 40.00 36.97 36.07 33.19 

 
Table 7. Average out of 50 experiments of the number of required 
logic gates after the optimization stage. 

Number of active logic gates for the fully functional solution  
after optimization 

Logic circuit Chromosome representations 
Name n M p 1 x 100 2 x 50 4 x 25 10 x 10 

2-2 2 2 4 3.32 3.22 3.24 3.06 
2-3 2 3 8 3.76 3.56 3.42 3.30 
2-4 2 4 16 4.74 4.96 4.62 4.40 
2-5 2 5 32 5.14 5.24 4.88 4.30 

 
3-2 3 2 4 4.92 4.92 4.78 4.46 
3-3 3 3 8 7.70 8.36 7.38 6.76 
3-4 3 4 16 15.10 14.69 13.63 12.23 
3-5 3 5 32 24.71 20.97 19.51 16.20 

IV. CONCLUSION 
In this paper a deep analysis on how to choose the genotype 

size for an evolvable hardware system based on a FPGA 
structure for evolving digital logic circuits of different 
complexity has been carried out. The goals of the simulations 
were to find the best chromosome representation in order: 

• to improve the evolvability of the system   
• to reduce the number of generations of the 

evolutionary algorithm 
• to optimize the size of evolved logic circuits. 

The experimental results show that our aims are reachable if 
wider rectangular arrays as circuit layouts are avoided. For 
instance a circuit layout with 10 rows and 10 columns 
performs much better than a circuit layout with 2 rows and 50 

columns, even though the number of logic gates and the 
search space is still the same.  
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