

Abstract—The evolution of logic circuits, which falls under the

heading of evolvable hardware, is carried out by evolutionary
algorithms. These algorithms are able to automatically configure
reconfigurable devices. One of main difficulties in developing
evolvable hardware with the ability to design functional electrical
circuits is to choose the most favourable EA features such as fitness
function, chromosome representations, population size, genetic
operators and individual selection. Until now several researchers
from the evolvable hardware community have used and tuned these
parameters and various rules on how to select the value of a
particular parameter have been proposed. However, to date, no one
has presented a study regarding the size of the chromosome
representation (circuit layout) to be used as a platform for the
evolution in order to increase the evolvability, reduce the number of
generations and optimize the digital logic circuits through reducing
the number of logic gates. In this paper this topic has been
thoroughly investigated and the optimal parameters for these EA
features have been proposed. The evolution of logic circuits has been
carried out by an extrinsic evolvable hardware system which uses
(1+λ) evolution strategy as the core of the evolution.

Keywords—Evolvable hardware, genotype size, computational
intelligence, design of logic circuits.

I. INTRODUCTION
volvable hardware (EHW) [1] techniques introduced by

H. de Garis [2] almost a decade ago enable the automatic
design of antennas [3], [4], electrical circuits (digital [5], [6]
and analogue [7], [8], [9]), robot controllers [10] etc.
Evolvable hardware is able to auto-design and self-
reconfigure the functionality of hardware systems thanks to
the use of evolutionary algorithms [11], [12], [13] which are
generally used to solve search and optimization problems. The
major components of evolutionary algorithms are the genetics
operators, the mechanism of selections and the chromosome
representations. The simplest evolutionary algorithm is shown
in Fig. 1, while in Fig. 2 the simplest evolvable hardware
system is presented. Evolvable hardware, as proposed by
Torresen [14], Andersen [15] and Gordon and Bentley [16],
can be classified in several classes (see Table 1), depending
on: evolutionary algorithm, target technology, building block
levels, fitness evaluation and evolutionary process. Extrinsic

Manuscript received July 15, 2005. This work was supported in part by the
EPSRC under grant number GR/S17178/.

E. Stomeo, C. Lambert are PhD students at School of Engineering and
Design, Brunel University, West London, UK. T. Kalganova is lecture at the
same university. UB8 2TR, Uxbridge, Middlesex, UK. (Tel: 0044 01895
266777; e-mail: emanuele.stomeo@brunel.ac.uk).

EHW refers to a system whereby the evolutionary algorithm is
performed in software, or in a dedicated chip, distinct from the
chip where the chromosome will be downloaded. Intrinsic
EHW describes situations where the evolutionary algorithm is
implemented in hardware but into a different chip than that
from which the evolving design is running. In a complete
hardware the evolutionary algorithm is implemented on the
same chip as the evolving design and mixtrinsic evolvable
hardware [17] is a hybrid combination of intrinsic and
extrinsic methods.

Fig. 1. Classic Evolutionary algorithm

Fig. 2. Basic evolvable hardware system

Table 1. Classification in evolvable hardware

chromosome
representation

evolutionary
algorithm

evaluation

intrinsic extrinsic mixtrinsic complete

hardware

software

hardware

software

software

software

hardware
software

software

hardware

hardwarehardware
software

hardware

EHW
EA

While examining the progress made during the last decade
by the evolvable hardware community in relation to the

Analysis of Genotype Size for an Evolvable
Hardware System

Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

E

procedure EA
{
 t=0;
 produce an initial population on individuals P(t)
 evaluate the fitness of the population P(t)
 while (termination conditions are met)
 {
 t=t+1;
 select fitter individuals for reproduction from P(t-1);
 reproduce individuals in P(t);

 evaluate the fitness of the new individuals P(t);

 }
}

Tatiana Kalganova
Text Box
Stomeo E., T. Kalganova, C. Lambert (2005) Analysis of Genotype Size for an Evolvable Hardware System. Proc. of the 2nd Int. Conf. on Computational Intelligence, ICCI 2005, August 2005, Enformatika pp.70 - 74.

evolution of digital logic circuits [18], [19], [20], it may be
noticed that researchers often appear to tune their EA’s
parameters in order to make their own EA more scalable when
compared with that of others. Therefore in several
publications there are sentences saying: “we used a Population
size = …. Mutation rate =….Crossover rate =…. Genotype
size = ……” without explaining why those values have been
chosen or without presenting any statistical analysis of those
parameters. Therefore, to avoid this downside, a deep analysis
of how to choose the genotype size for evolving digital logic
circuits of different complexity using an extrinsic evolvable
hardware system is provided in this paper. Our extrinsic EHW
is based on the used of (1+λ) rudimentary evolution strategy,
already tested for its efficiency in [5], [21] for the evolution of
digital logic circuits.

The purpose of this paper is to provide a statistical analysis

of the chromosome representation for evolving digital circuits
using an extrinsic evolvable hardware. Different chromosome
representations are analyzed and stressed for finding the best
chromosome representations that improve evolvability, reduce
the number of generations and find the optimal solution (the
design which gives the fewest number of logic gates).
Furthermore, because an extrinsic evolvable hardware system
has been used, which is based on a FPGA structure, therefore
the results here reported will be useful and easy transferable to
an intrinsic evolvable hardware system.

The remaining sections of this paper are organized as

follows: the next section introduces the extrinsic evolvable
hardware used for the evolution of logic circuits. In that
section the evolutionary algorithm used, the chromosome
representation and the fitness functions are also presented.
Section 3 provides the initial set up for the experiment
together with the experimental results. The conclusions are
given in section 4.

II. EXTRINSIC EVOLVABLE HARDWARE
In this section the extrinsic evolvable hardware system

(evolutionary algorithm, fitness function and chromosome
representation) used for the evolution of digital logic circuits
is presented. The evolutionary algorithm chosen is the (1+λ)
evolution strategy. It was decided to consider this algorithm
because it has been widely and successfully used as a core for
several evolutionary designs of logic circuits [5], [21], [6]. A
dynamic fitness function previously tested for its performance
in [5], together with Cartesian Genetic Programming [22] has
also been selected.

A. Evolutionary Algorithm
All the experiments have been carried out using the (1+λ)

rudimentary evolution strategy [5], [21], where λ represents
the population size. Firstly all the chromosomes are randomly

initialized. Secondly, the fitness function of each individual is
calculated and the fittest individual is selected. The new
population is created by mutating the best chromosome (see
Fig. 3). The operation of mutation consists of flipping some
genes of the chromosome, where in this context the genes
represent the behavior and the connections between the logic
gates.

Fig. 3. (1+λ) rudimentary evolution strategy.

B. Chromosome Representation
The “design-evolution” of logic circuits has been carried

out on a system which is based on a FPGA structure.
Therefore the best chromosome representation is a rectangular
array of logic gates which will be connected during the
evolution. The unconnected logic gates are removed following
the design. The logic gates in this rectangular array are: AND,
OR, XOR, NOT and MUX, where MUX is a multiplexer with
2 inputs and one control signal. The chromosome is
represented by a 3 level structure (see Fig. 4):

• Geometry level contains information about the number of

rows, the number of columns of the rectangular array and
the degree of internal connectivity, also referred to as
level-back parameter [22]. The level-back parameter, or
so called connectivity parameter, defines how many
columns of cells to the left of the current column might
have their outputs connected to the inputs of the current
cell.

• Circuit level describes the array of cells and determines

the circuit’s outputs

• Gate level represents the structures of each cell in the

circuit.

Fig. 4. Chromosome structure.

The connection between building blocks (combination of

primitive logic gates) is in interactive and cascade mode. Each
logic gate has up to 4 inputs. The structures of cascade and
interactive building blocks are given in Fig. 5 and Fig. 6. Each
of these blocks represents the combination of primitive logic
gates.

Fig. 5. Cascade building blocks.

Fig. 6. Interactive building blocks.

C. Fitness Function
The fitness function is responsible for evaluating the quality

of the logic circuits together with their functionality. In our
experiments, a dynamic fitness function has been considered
[5]. It has two main stages: first design, and secondly, once
the circuit is fully functionally evolved, optimization, which
leads to a reduced number of active logic gates used in the
circuit configuration.

The dynamic fitness function f is calculated as:

⎪⎩

⎪
⎨
⎧

≥+

<
= onoptimizaticircuit 100 21

designcircuit 100 1
fff

ff
f (1)

where f1 is a design criterion that defines the percentage of

correct bits in the evolved circuit, f2 is the optimization
criterion for the optimization stage.

The fitness function for the functionality of the evolved
circuit f1, or so called design criterion is calculated as follows:

∑∑
− −

=

− −⋅
⋅

=
12 1

0

1
1 2100 n

cf

m

i
ii

i dy
pm

f (2)

where m and n are the number of outputs and the number of
inputs of the given logic function respectively; p is the number
of input-output combinations; yi is the ith digit of the output
combination produced by the evaluation of the circuit, di is the
desired output for the fitness case fc. |yi-di| is the absolute
difference between the actual and the required outputs. The
fitness function for the optimization stage is calculated as:

() lglglg2 pa NNNf ⋅−= (3)

III. EXPERIMENTAL RESULTS
Here, the experimental results obtained from the evolution

of digital logic circuits are shown. The system used for the
evolution is the extrinsic evolvable hardware model presented
in the previous section. The aim of these experiments is to
provide the evolvable hardware community with information
regarding the circuit layout to be used in order to create better,
faster and well optimized logic circuits evolved by the
evolutionary algorithm. The experimental simulation was
performed by taking into account the evolvability and the:

• Number of generations

• Fitness function

• Number of logic gates

required to completely evolve the functionality of the

circuit by changing the circuit layout of the chromosome.

A. Settings: Initial Data
The initial data for the experiments are reported in Table 2;

where the number of generations refers to the number of
cycles of the EA run, the population size is the number of
initial individuals which have been randomly generated,
elitism and mutation rate are the genetic operators used. The
number of runs refers to the number of times a single circuit
has been evolved.

Table 2. Initial data for the experiments carried out using (1+λ)
rudimentary evolution strategy.

Number of
generations 5000

Population size 5
Elitism is applied
Mutation rate 5%
Number of runs 50

The logic circuits evolved were randomly generated and

fully defined by truth tables. The truth tables used to describe
the logic circuits are compatible with the Berkeley format, see
Fig. 7. Where .i specifies the number of inputs, .o the number
of outputs, .p the number of product or input-output
combinations and .e the end of file.

Fig. 7. Example of truth table (in Berkley format) used for the
evolution of logic circuit with (1+λ) evolution strategy.

B. Results: Evolvability
In Fig. 8 the evolvability (the capability of the EA to fully

functional evolve a given task) of a logic circuit with 3 inputs
and 5 outputs is reported. From those results one may notice
that the percentage of fully evolved logic circuits is lower
when the circuit layout used for the evolution is a wider
rectangular array. By varying the chromosome representation

from 1 x100 to 10 x 10 the evolvability increases from 70% to
86%. Therefore a rectangular array of 10 rows by 10 columns
performs better in terms of evolvability.

70

86

82

76

50

55

60

65

70

75

80

85

90

1 x 100 2 x 50 4 x 25 10 x 10

circuit layout during evolution

Pe
rc

en
ta

ge
 o

f d
ig

ita
l c

ir
cu

it
fu

lly
 e

vo
lv

ed
 [%

]

a x b = a rows x b coloumns

Fig. 8. Evolvability. In this figure the percentages of fully evolved
digital logic circuit in relation with the change of the chromosome
representations is given

C. Results: Number of Generations
In Fig. 9 the number of generations with different

chromosome’s sizes (rectangular array) required in order
evolve a circuit with 3 inputs and 5 outputs are reported. In
that figure it is observable that by widening the shape of the
rectangular array (note that the number of total logic gates
does not change, it is always 100) the number of generations
required to fully evolve the circuit (fitness function reaches
100%) increases. For that particular circuit, the number of
generations has been reduced from circa 4500 generations
when the circuit layout is 1 x 100 (1 rows by 100 columns) to
around 1700 generations when the circuit layout is 10 x 10.

60

62.5

65

67.5

70

72.5

75

77.5

80

82.5

85

87.5

90

92.5

95

97.5

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of generations

fit
ne

ss
 fu

nc
tio

n
- f

un
ct

io
na

lit
y

rectangular array 1 x 100

rectangular array 2 x50

rectangular array 4 x 25

rectangular array 10 x 10

Fig. 9. Relationship between the number of generations and the fitness function for the evolution of a digital circuit with 3 inputs and 5 outputs
for different chromosome representations is shown.

In Table 3 the average of 50 experiments (per each kind of
logic circuit evolved and per each different circuit layout
used) of the number of generations required to completely
evolve the functionality of the circuit is shown. In Table 3 n,
m and p refer to the number of inputs, outputs and input-
output combinations respectively. In that table the best results,
the evolution with fewer generations, is highlighted. From
these results we recognize that the best circuit layout for the
evolution of simple logic circuits is a rectangular array of 4
rows by 10 columns and 10 rows by 10 columns. Furthermore
it appears to be clear that it is better to avoid evolution using a
wider rectangular array or a string.

Table 3. Number of generations required to evolve logic circuits of
different complexity with different chromosome representation.

Number of generations for fully functional evolving logic circuits

Logic circuit Chromosome representations
Name n m p 1 x 100 2 x 50 4 x 25 10 x 10

2-2 2 2 4 40 43.82 35.68 44.12
2-3 2 3 8 75.30 85.62 63.56 62.84
2-4 2 4 16 105.62 116.96 83.56 86.98
2-5 2 5 32 160.80 155.78 159.92 101.44

3-2 3 2 4 178.58 233.76 183.20 175.20
3-3 3 3 8 565.92 557.74 483.40 526.04
3-4 3 4 16 1567.90 1545.57 1352.40 1384.71
3-5 3 5 32 2439.29 2176.13 2111.51 2102.20

A. Results: Fitness Function
In this section the fitness function of the evolved logic

circuits before and after the optimization stage, in relation to
the different chromosome representations is presented. The
evolved circuits have been optimized using equation 3. The
highlighted results are the best obtained. The results again
show that the rectangular array of 10 rows by 10 columns is

superior to any other during evolution. After the optimization
stage a big difference between different chromosome
configurations cannot be found

Table 4. Average out of 50 experiments of the fitness function value
obtained during the evolution of logic circuits of different
complexity.

Fitness function for the fully functional solution
Logic circuit Chromosome representations

Name n m p 1 x 100 2 x 50 4 x 25 10 x 10
2-2 2 2 4 2749 2754 2745 2762
2-3 2 3 8 2735 2737 2739 2749
2-4 2 4 16 2729 2729 2730 2739
2-5 2 5 32 2717 2720 2726 2735

3-2 3 2 4 2751 2749 2747 2754
3-3 3 3 8 2732 2735 2735 2744
3-4 3 4 16 2724 2729 2727 2736
3-5 3 5 32 2712 2719 2723 2727

Table 5. Average out of 50 experiments of the fitness function value
obtained after the optimization stage.

Fitness function for the fully functional solution
after optimization

Logic circuit Chromosome representations
Name n m p 1 x 100 2 x 50 4 x 25 10 x 10

2-2 2 2 4 2796 2796 2796 2797
2-3 2 3 8 2795 2796 2796 2796
2-4 2 4 16 2794 2794 2795 2795
2-5 2 5 32 2794 2794 2794 2796

3-2 3 2 4 2792 2793 2793 2793
3-3 3 3 8 2789 2788 2789 2790
3-4 3 4 16 2772 2773 2776 2779
3-5 3 5 32 2752 2760 2764 2771

B. Results: Number of Active Logic Gates during Evolution
and After Optimization Stage
This section shows the average (out of 50 experiments)

number of logic gates required to fully functionally evolve the
digital circuits. The experimental results found and reported in
this section were obtained during the evolution stage, Table 6,
and after the optimization stage, Table 7. The best results are
highlighted. From those results again, we found that the best
chromosome representation is a rectangular array with 10
rows and 10 columns.

Table 6. Average out of 50s experiment of the number of required
logic gates during the evolution stage.

Number of active logic gates for the fully functional solution
Logic circuit Chromosome representations

Name n M p 1 x 100 2 x 50 4 x 25 10 x 10
2-2 2 2 4 23.66 21.44 25.38 17.78
2-3 2 3 8 29.10 28.80 27.52 23.52
2-4 2 4 16 32.94 31.90 31.78 27.50
2-5 2 5 32 37.94 36.66 33.72 29.40

3-2 3 2 4 21.64 22.94 23.52 20.52
3-3 3 3 8 30.92 29.92 29.26 25.20
3-4 3 4 16 34.81 31.69 32.28 28.65
3-5 3 5 32 40.00 36.97 36.07 33.19

Table 7. Average out of 50 experiments of the number of required
logic gates after the optimization stage.

Number of active logic gates for the fully functional solution
after optimization

Logic circuit Chromosome representations
Name n M p 1 x 100 2 x 50 4 x 25 10 x 10

2-2 2 2 4 3.32 3.22 3.24 3.06
2-3 2 3 8 3.76 3.56 3.42 3.30
2-4 2 4 16 4.74 4.96 4.62 4.40
2-5 2 5 32 5.14 5.24 4.88 4.30

3-2 3 2 4 4.92 4.92 4.78 4.46
3-3 3 3 8 7.70 8.36 7.38 6.76
3-4 3 4 16 15.10 14.69 13.63 12.23
3-5 3 5 32 24.71 20.97 19.51 16.20

IV. CONCLUSION
In this paper a deep analysis on how to choose the genotype

size for an evolvable hardware system based on a FPGA
structure for evolving digital logic circuits of different
complexity has been carried out. The goals of the simulations
were to find the best chromosome representation in order:

• to improve the evolvability of the system
• to reduce the number of generations of the

evolutionary algorithm
• to optimize the size of evolved logic circuits.

The experimental results show that our aims are reachable if
wider rectangular arrays as circuit layouts are avoided. For
instance a circuit layout with 10 rows and 10 columns
performs much better than a circuit layout with 2 rows and 50

columns, even though the number of logic gates and the
search space is still the same.

ACKNOWLEDGMENT
Author thank to Bio-Inspired Intelligent Group at Brunel

University, UK. The first author also thanks Hemantha
Kodikara Arachchi for his contributions.

REFERENCES

[1] X. Yao, T. Higuchi; “Promises and challenges of evolvable hardware”

IEEE Trans. Systems, Man and Cybernetics, Part C, volume 29, pp. 87 -
97, February 1999.

[2] H. de Garis. “Evolvable Hardware: Principles and Practice”.
Communications of the Association for Computer Machinery (CACM
Journal). August 1997

[3] J.D. Lohn, D.S. Linden, G.S. Hornby, W.F. Kraus, A. Rodriguez-Arroyo,
S.E. Seufert. “Evolutionary design of an X-band antenna for NASA's
space technology 5 mission”. NASA/DoD Conference on Evolvable
Hardware, 2003.Page(s):155 – 163

[4] S. V. Hum, M. Okoniewski, R. J. Davies. “An Evolvable Antenna
Platform Based on Reconfigurable Reflectarrays”. The 2005 NASA/DoD
Conference on Evolvable Hardware. June 29 - July 1, 2005, Washington
DC, USA. IEEE Computer Society. Pages 139 – 146

[5] E. Stomeo and T. Kalganova. “Improving EHW performance introducing
a new decomposition strategy”. 2004 IEEE Conference on Cybernetics
and Intelligent Systems. Singapore 1-3 December 2004. Publisher IEEE
Inc., New York, NY 10016-5997, United States. Pages 439-444

[6] E. Stomeo, T. Kalganova, C. Lambert, N. Lipnitsakya, Y. Yatskevich.
“On Evolution of Relatively Large Combinational Logic Circuits”. The
2005 NASA/DoD Conference on Evolvable Hardware. June 29 - July 1,
2005, Washington DC, USA. IEEE Computer Society. Pages 59 – 66

[7] S.Zhao, L. Jiao, Y. Wang. “Evolutionary Design of Analog Circuits with
a Uniform Design Based Multi-Objective Adaptive Genetic Algorithm”.
The 2005 NASA/DoD Conference on Evolvable Hardware. June 29 -
July 1, 2005, Washington DC, USA. IEEE Computer Society. Pages 26 –
29

[8] A.H. Aguirre, R. Zebulum, C. Coello Coello. “Evolutionary
multiobjective design targeting a Field Programmable Transistor Array”.
NASA/DoD Conference on Evolvable Hardware, 2004. 24-26 June 2004
Page(s):199 – 205

[9] A. Stoica, D. Keymeulen, T. Arslan, Vu Duong, R. Zebulum, I. Ferguson,
Xin Guo “Circuit self-recovery experiments in extreme environments”.
NASA/DoD Conference on Evolvable Hardware, 2004. 24-26 June 2004
Page(s):142 - 145

[10] A. M. Tyrrell, R. A. Krohling and Y. Zhou. “Evolutionary algorithm for
the promotion of evolvable hardware”. Computers and Digital
Techniques, IEE Proceedings- Volume 151, Issue 4, 18 July 2004
Page(s):267 – 275

[11] D. E. Goldberg. Genetic algorithm in search, optimization and machine
learning. Addison-Wesley Publishing Company, Incorporated, Reading,
Massachusetts, 1989.

[12] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press, 1975.

[13] M. D. Vose. “The Simple Genetic Algorithm”. MA: MIT Press 1999.
[14] Jim Torresen. “Two-Step Incremental Evolution of a Prosthetic Hand

Controller Based on Digital Logic Gates”. 4th Int. Conf. on Evolvable
Hardware (ICES2001), October 2001, Tokyo, Japan.

[15] P. Andersen. Evolvable Hardware: Artificial Evolution of Hardware
Circuits in Simulation and Reality, M.Sc. Thesis, University of Aarhus,
Denmark.

[16] Timothy G. W. Gordon and Peter J. Bentley. “On Evolvable Hardware”.
In Ovaska, S. and Sztandera, L. (Ed.) Soft Computing in Industrial
Electronics. Physica-Verlag, Heidelberg, Germany, pp. 279-323.

[17] A. Stoica, R. Zebulum, and D. Keymeulen, “Mixtrinsic evolution,” in
International Conference on Evolvable Systems, Edinburgh, U.K., Apr.
2000, pp. 208–217.

[18] T. Kalganova and J. Miller. “Evolving more efficient digital circuits by
allowing circuit layout evolution and multi-objective fitness”.
Proceedings of the First NASA/DoD Workshop on Evolvable Hardware,
19-21 July 1999 Page(s):54 – 63

[19] Jim Torresen. “Evolving Multiplier Circuits by Training Set and Training
Vector Partitioning”. In proc. of Fifth International Conference on
Evolvable Hardware (ICES03), Springer LNCS 2606, pp. 228-237,
March 2003, Trondheim, Norway

[20] Higuchi, T.; Iwata, M.; Keymeulen, D.; Sakanashi, H.; Murakawa, M.;
Kajitani, I.; Takahashi, E.; Toda, K.; Salami, N.; Kajihara, N.; Otsu, N.;
“Real-world applications of analog and digital evolvable hardware”
IEEE Transactions on Evolutionary Computation , Vol.: 3 Issue: 3 ,
Sept. 1999 Page(s): 220 -235.

[21] J. Miller. “An empirical study of the efficiency of learning Boolean
functions using a Cartesian genetic programming approach” In Proc. of
the Genetic and Evolutionary Computation Conference, volume 1, pp.
1135–1142, Orlando, USA, July 1999.

[22] J. F. Miller and P. Thomson. “Cartesian genetic programming”. In
Riccardo Poli, Wolfgan Banzhaf, William B. Langdon, Julian F. Miller,
Peter Nordin and Terence C. Forgaty, editors. Genetic Programming,
Proceedings of EuroGP 2000. Vol. 1802 of LNCS, pages 121-132,
Edinburg, 16 April 2000. Springer-Verlag.

