342 research outputs found

    Relay selection methods for maximizing the lifetime of wireless sensor networks

    No full text
    Combined analytical and fuzzy techniques are proposed for improving the battery lifetime, performance, as well as energy efficiency of wireless sensor networks (WSNs) with the aid of efficient relay selection methods. We determine the best relay selection method by striking an appealing performance versus network lifetime trade-off. Furthermore, the beneficial regions of cooperation are determined considering asymmetric traffic scenarios, where relaying provides energy saving

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    ENHANCE FAIR ROUTING WITH RESOURCE FLEXIBLE NODE ALLOCATION IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor network is a network composed of a large number of sensor nodes with limited radio capabilities and one or a few sinks that collect data from sensor nodes. Sensor nodes are powered by small batteries, hence, the energy consumption in operating a WSN should be as low as possible. The wireless sensor network present all sensor nodes generate an equal amount of data packets in a WSN, nodes around a sink have to relay more packets and tend to die earlier than other nodes because the energy consumption of sensor nodes is almost completely dominated by data communication rather than by sensing and processing. Hence, the whole network lifetime can be prolonged by balancing the communication load at heavily loaded nodes around a sink. This problem is called the energy hole problem and is one of the most important issues for WSNs. Existing system analysis the heterogeneity of networks and a fair cooperative routing method, to avoid unfair improvement only on certain networks and to introduce one or a few shared nodes that can use multiple channels to relay data packets

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    Cooperative relay selection for load balancing with mobility in hierarchical WSNs: A multi-armed bandit approach

    Get PDF
    © 2013 IEEE. Energy efficiency is the major concern in hierarchical wireless sensor networks(WSNs), where the major energy consumption originates from radios for communication. Due to notable energy expenditure of long-range transmission for cluster members and data aggregation for Cluster Head (CH), saving and balancing energy consumption is a tricky challenge in WSNs. In this paper, we design a CH selection mechanism with a mobile sink (MS) while proposing relay selection algorithms with multi-user multi-armed bandit (UM-MAB) to solve the problem of energy efficiency. According to the definition of node density and residual energy, we propose a conception referred to as a Virtual Head (VH) for MS to collect data in terms of energy efficiency. Moreover, we naturally change the relay selection problem into permutation problem through employing the two-hop transmission in cooperative power line communication, which deals with long-distance transmission. As far as the relay selection problem is concerned, we propose the machine learning algorithm, namely MU-MAB, to solve it through the reward associated with an increment for energy consumption. Furthermore, we employ the stable matching theory based on marginal utility for the allocation of the final one-to-one optimal combinations to achieve energy efficiency. In order to evaluate MU-MAB, the regret is taken advantage to demonstrate the performance by using upper confidence bound (UCB) index. In the end, simulation results illustrate the efficacy and effectiveness of our proposed solutions for saving and balancing energy consumption

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments
    corecore