15,876 research outputs found

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Tabling as a Library with Delimited Control

    Get PDF
    Tabling is probably the most widely studied extension of Prolog. But despite its importance and practicality, tabling is not implemented by most Prolog systems. Existing approaches require substantial changes to the Prolog engine, which is an investment out of reach of most systems. To enable more widespread adoption, we present a new implementation of tabling in under 600 lines of Prolog code. Our lightweight approach relies on delimited control and provides reasonable performance.Comment: 15 pages. To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Pengines: Web Logic Programming Made Easy

    Full text link
    When developing a (web) interface for a deductive database, functionality required by the client is provided by means of HTTP handlers that wrap the logical data access predicates. These handlers are responsible for converting between client and server data representations and typically include options for paginating results. Designing the web accessible API is difficult because it is hard to predict the exact requirements of clients. Pengines changes this picture. The client provides a Prolog program that selects the required data by accessing the logical API of the server. The pengine infrastructure provides general mechanisms for converting Prolog data and handling Prolog non-determinism. The Pengines library is small (2000 lines Prolog, 150 lines JavaScript). It greatly simplifies defining an AJAX based client for a Prolog program and provides non-deterministic RPC between Prolog processes as well as interaction with Prolog engines similar to Paul Tarau's engines. Pengines are available as a standard package for SWI-Prolog 7.Comment: To appear in Theory and Practice of Logic Programmin

    Enhancing a Search Algorithm to Perform Intelligent Backtracking

    Full text link
    This paper illustrates how a Prolog program, using chronological backtracking to find a solution in some search space, can be enhanced to perform intelligent backtracking. The enhancement crucially relies on the impurity of Prolog that allows a program to store information when a dead end is reached. To illustrate the technique, a simple search program is enhanced. To appear in Theory and Practice of Logic Programming. Keywords: intelligent backtracking, dependency-directed backtracking, backjumping, conflict-directed backjumping, nogood sets, look-back.Comment: To appear in Theory and Practice of Logic Programmin

    Improving Prolog programs: Refactoring for Prolog

    Full text link
    Refactoring is an established technique from the object-oriented (OO) programming community to restructure code: it aims at improving software readability, maintainability and extensibility. Although refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied to Logic Programming until now. This paper applies the ideas of refactoring to Prolog programs. A catalogue is presented listing refactorings classified according to scope. Some of the refactorings have been adapted from the OO-paradigm, while others have been specifically designed for Prolog. The discrepancy between intended and operational semantics in Prolog is also addressed by some of the refactorings. In addition, ViPReSS, a semi-automatic refactoring browser, is discussed and the experience with applying ViPReSS to a large Prolog legacy system is reported. The main conclusion is that refactoring is both a viable technique in Prolog and a rather desirable one.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    Customisable Handling of Java References in Prolog Programs

    Full text link
    Integration techniques for combining programs written in distinct language paradigms facilitate the implementation of specialised modules in the best language for their task. In the case of Java-Prolog integration, a known problem is the proper representation of references to Java objects on the Prolog side. To solve it adequately, multiple dimensions should be considered, including reference representation, opacity of the representation, identity preservation, reference life span, and scope of the inter-language conversion policies. This paper presents an approach that addresses all these dimensions, generalising and building on existing representation patterns of foreign references in Prolog, and taking inspiration from similar inter-language representation techniques found in other domains. Our approach maximises portability by making few assumptions about the Prolog engine interacting with Java (e.g., embedded or executed as an external process). We validate our work by extending JPC, an open-source integration library, with features supporting our approach. Our JPC library is currently compatible with three different open source Prolog engines (SWI, YAP} and XSB) by means of drivers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 pages, 2 figure
    corecore