74 research outputs found

    Graphical representations of graphic frame matroids

    Full text link
    A frame matroid M is graphic if there is a graph G with cycle matroid isomorphic to M. In general, if there is one such graph, there will be many. Zaslavsky has shown that frame matroids are precisely those having a representation as a biased graph; this class includes graphic matroids, bicircular matroids, and Dowling geometries. Whitney characterized which graphs have isomorphic cycle matroids, and Matthews characterised which graphs have isomorphic graphic bicircular matroids. In this paper, we give a characterization of which biased graphs give rise to isomorphic graphic frame matroids

    Structural and decomposition results for binet matrices, bidirected graphs and signed-graphic matroids.

    Get PDF
    In this thesis we deal with binet matrices and the class of signed-graphic matroids which is the class of matroids represented over R by binet matrices. The thesis is divided in three parts. In the first part, we provide the vast majority of the notions used throughout the thesis and some results regarding the class of binet matrices. In this part, we focus on the class of linear and integer programming problems in which the constraint matrix is binet and provide methods and algorithms which solve these problems efficiently. The main new result is that the existing combinatorial methods can not solve the {lcub}0, 1/2{rcub}-separation problem (special case of the well known separation problem) with integral binet matrices. The main new results of the whole thesis are provided in the next two parts. In the second part, we present a polynomial time algorithm to construct a bidirected graph for any totally unimodular matrix B by finding node-edge incidence matrices Q and S such that QB = S. Seymour's famous decomposition theorem for regular matroids states that any totally unimodular matrix can be constructed through a series of composition operations called k-sums starting from network matrices and their transposes and two compact representation matrices B1 and B2 of a certain ten element matroid. Given that B1 and B2 are binet matrices, we examine the k-sums of network and binet matrices (k = 1,2, 3). It is shown that the k-sum of a network and a binet matrix is a binet matrix, but binet matrices are not closed under this operation for k = 2, 3. A new class of matrices is introduced, the so-called tour matrices, which generalises network and totally unimodular matrices. For any such matrix there exists a bidirected graph such that the columns represent a collection of closed tours in the graph. It is shown that tour matrices are closed under 1-, 2- and 3-sum as well as under elementary operations on their rows and columns. Given the constructive proofs of the above results regarding the k-sum operations and existing recognition algorithms for network and binet matrices, an algorithm is presented which constructs a bidirected graph for any totally unimodular matrix. In the third part of this thesis we deal with the frame matroid of a signed graph, or simply the signed-graphic matroid. Several new results are provided in this last part of the thesis. Specifically, given a signed graph, we provide methods to find representation matrices of the associated signed-graphic matroid over GF(2), GF(3) and R. Furthermore, two new matroid recognition algorithms are presented in this last part. The first one determines whether a binary matroid is signed-graphic or not and the second one determines whether a (general) matroid is binary signed-graphic or not. Finally, one of the most important new results of this thesis is the decomposition theory for the class of binary signed-graphic matroids which is provided in the last chapter. In order to achieve this result, we employed Tutte's theory of bridges. The proposed decomposition differs from previous decomposition results on matroids that have appeared in the literature in the sense that it is not based on k-sums, but rather on the operation of deletion of a cocircuit. Specifically, it is shown that certain minors resulting from the deletion of a cocircuit of a binary matroid will be graphic matroids except for one that will be signed-graphic if and only if the matroid is signed-graphic. The decomposition theory for binary signed-graphic matroids is a joint work with G. Appa and L. Pitsoulis

    Low-depth Clifford circuits approximately solve MaxCut

    Full text link
    We introduce a quantum-inspired approximation algorithm for MaxCut based on low-depth Clifford circuits. We start by showing that the solution unitaries found by the adaptive quantum approximation optimization algorithm (ADAPT-QAOA) for the MaxCut problem on weighted fully connected graphs are (almost) Clifford circuits. Motivated by this observation, we devise an approximation algorithm for MaxCut, \emph{ADAPT-Clifford}, that searches through the Clifford manifold by combining a minimal set of generating elements of the Clifford group. Our algorithm finds an approximate solution of MaxCut on an NN-vertex graph by building a depth O(N)O(N) Clifford circuit, with worst-case runtime and space complexities O(N6)O(N^6) and O(N2)O(N^2), respectively. We implement ADAPT-Clifford and characterize its performance on graphs with positive and signed weights. The case of signed weights is illustrated with the paradigmatic Sherrington-Kirkpatrick model, for which our algorithm finds solutions with ground-state mean energy density corresponding to ∼94%\sim94\% of the Parisi value in the thermodynamic limit. The case of positive weights is investigated by comparing the cut found by ADAPT-Clifford with the cut found with the Goemans-Williamson (GW) algorithm. For both sparse and dense instances we provide copious evidence that, up to hundreds of nodes, ADAPT-Clifford finds cuts of lower energy than GW. Since good approximate solutions to MaxCut can be efficiently found within the Clifford manifold, we hope our results will motivate to rethink the approach so far used to search for quantum speedup in combinatorial optimization problems.Comment: 15 pages, 9 figures, 5 pages appendi

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Projective-planar signed graphs and tangled signed graphs

    Get PDF
    A projective-planar signed graph has no two vertex-disjoint negative circles. We prove that every signed graph with no two vertex-disjoint negative circles and no balancing vertex is obtained by taking a projective-planar signed graph or a copy of −K5 and then taking 1, 2, and 3-sums with balanced signed graphs.
    • …
    corecore