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Abstract

A projective-planar signed graph has no two vertex-disjoint negative circles. We prove that every signed
graph with no two vertex-disjoint negative circles and no balancing vertex is obtained by taking a projective-
planar signed graph or a copy of −K5 and then taking 1-, 2-, and 3-sums with balanced signed graphs.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The reader may or may not be familiar with signed graphs as in [12]. If not, then an intro-
duction to signed graphs is given in Section 2 and it contains all necessary information to read
this paper. Most of the motivation for the study of projective-planar signed graphs comes from
matroid theory; however, matroid theory is used only sparingly in this paper.

Given a graph G imbedded in the projective plane, let N be a nonseparating circle in the
topological dual graph G∗. Let σN be a signing on the edges that is negative only on the edges
of G that are dual to the edges of N . It is known that, given the imbedding of G, the signed graph
(G,σN) is unique up to switching. That is, if N ′ is another nonseparating circle in G∗, then
(G,σN ′) and (G,σN) are switching equivalent. Signed graphs that may be obtained in this way
up to switching are called projective planar. One of the first studies of projective-planar signed
graphs is [16] in which Zaslavsky obtains a forbidden-minor characterization of them.
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Given the topology of the projective plane, a circle in the signed graph (G,σN) is negative
iff it is imbedded as a nonseparating closed curve. Also any two nonseparating closed curves in
the projective plane must intersect. Thus no projective-planar signed graph contains two vertex-
disjoint negative circles. Furthermore, a projective-planar signed graph does not have a balancing
vertex iff the associated imbedding in the projective plane has face width at least two.

A signed graph that does not contain two vertex-disjoint negative circles may or may not
have a balancing vertex. If a signed graph has no two vertex-disjoint negative circles and yet has
no balancing vertex, then we call this signed graph tangled. Any projective-planar signed graph
without a balancing vertex is a tangled signed graph and −K5 is a signed graph that is tangled
yet not projective planar.

Given a signed graph Σ containing a balanced Kt subgraph and a balanced signed graph Υ

containing a copy of Kt , we can switch the signs in Σ and Υ so that the sign pattern on the
common Kt subgraph is the same. The t-sum Σ ⊕t Υ is obtained by identifying Σ and Υ along
the common Kt subgraph and then deleting the edges of Kt . Note that for t ∈ {1,2,3} we have
M(Σ ⊕t Υ ) = M(Σ) ⊕t M(Υ ). Theorem 1.1 is found in [9, Lemma 8].

Theorem 1.1. If Σ is unbalanced and Υ is balanced, then the following are true.

(1) Σ ⊕1 Υ is tangled iff Σ is tangled.
(2) For each t ∈ {2,3}, if Υ is vertically t-connected, then Σ ⊕t Υ is tangled iff Σ is tangled.

Theorem 1.1 gives us a method of constructing tangled signed graphs by starting with a copy
of −K5 or a projective-planar signed graph and then taking t-sums with balanced signed graphs.
Theorem 1.2 (which is the main result of this paper) tells us that this method is sufficient for
constructing all tangled signed graphs.

Theorem 1.2. If Σ is a connected and tangled signed graph, then Σ is either

(1) projective planar,
(2) isomorphic to −K5 possibly along with some positive loops and parallel links with the same

sign, or
(3) a 1-sum, 2-sum, or 3-sum of a tangled signed graph and a balanced signed graph where the

balanced signed graph has at least 2, 3, or 5 vertices, respectively.

Theorem 1.2 has been known for some time to L. Lovász, A.M.H. Gerards, and others, but it
has not appeared in the mathematical literature.

1.1. Tangled signed graphs and regular matroids

Tangled signed graphs arise naturally in the study of matroids coming from signed graphs
because with some trivial exceptions the class of signed graphs whose frame matroids are regular
is exactly the class of tangled signed graphs. Theorem 1.3 is implied from [9, Theorems 1.3
and 1.4].

Theorem 1.3. If Σ is connected, then the following are true.

(1) If Σ is tangled, then M(Σ) is regular.
(2) If M(Σ) is regular and not graphic, then Σ is tangled.
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Since the classes of graphic matroids and cographic matroids are prominent within the class
of regular matroids, it would also be useful to know when the frame matroid of a tangled signed
graph is graphic and when it is cographic. In the cographic case, the answer is given in [4,7]
where it is shown that a connected cographic matroid M∗(G) satisfies M∗(G) = M(Σ) for
some signed graph Σ iff Σ is projective planar or M(Σ) is graphic. Theorem 1.4 along with
Theorem 1.1 and the fact that the class of graphic matroids is closed under k-summing give a
complete construction method for tangled signed graphs whose frame matroids are graphic.

Theorem 1.4. If Σ is a connected and tangled signed graph such that M(Σ) is graphic, then Σ

is either

(1) a projective planar signed graph whose topological dual graph is planar, or
(2) a 1-sum, 2-sum, or 3-sum of a tangled signed graph whose frame matroid is graphic and a

balanced signed graph with at least 2, 3, or 5 vertices, respectively.

1.2. Organization of this paper

In Section 2 we have definitions and some preliminary results. In Section 3 we will prove
many lemmas for the proof of our main results in Section 4. Sections 3.1 and 3.2 are the only
places in this paper that we use matroid theory.

As a final comment we would like to mention the following. Since M(Σ) is regular when Σ

is tangled (see Theorem 1.3), it would seem that the obvious place to start a proof of Theorem 1.2
would be with Seymour’s Decomposition Theorem for regular matroids [5]. However it seems to
the author that a proof using Seymour’s theorem would likely be no easier than the direct graph-
theoretical proof presented in this paper. So rather than start by quoting a deep and difficult result
like Seymour’s theorem, a direct proof seems preferable.

2. Definitions and background information

Graphs. A graph G consists of a collection of vertices (i.e., topological 0-cells), denoted by
V (G), and a set of edges (i.e., topological 1-cells), denoted by E(G), where an edge has two
ends each of which attached to a vertex. A link is an edge that has its ends incident to distinct
vertices and a loop is an edge that has both of its ends incident to the same vertex.

A circle is a connected, 2-regular graph (i.e., a simple closed path). In graph theory a circle
is often called a cycle, circuit, polygon, etc. If X ⊆ E(G), then we denote the subgraph of G

consisting of the edges in X and all vertices incident to an edge in X by G:X. The collection of
vertices in G:X is denoted by V (X), the number of vertices in G:X is denoted by vX , and the
number of connected components in G:X is denoted by cX .

For k � 1, a k-separation of a graph is a bipartition (A,B) of the edges of G such that
|A| � k, |B| � k, and |V (A) ∩ V (B)| = k. A vertical k-separation (A,B) of G is a k-separation
where V (A) \ V (B) �= ∅ and V (B) \ V (A) �= ∅. A separation or vertical separation (A,B) is
said to have connected parts when G:A and G:B are both connected. A connected graph on at
least k + 1 vertices is said to be vertically k-connected when there is no vertical r-separation for
r < k. Vertical k-connectivity is usually just called k-connectivity, but here we wish to distin-
guish between this kind of graph connectivity and the second type used in Tutte’s book on graph
theory [10].
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Given a subgraph H of G, an H -bridge is either an edge not in H whose endpoint(s) are both
in H or a connected component C of G \ H along with the links between C and H . Given an
H -bridge B of G: a foot of B is an edge of B with an endpoint in H , a vertex of attachment of B

is a vertex in H that is an endpoint of a foot of B , and B denotes the bridge B minus the vertices
of attachment of B (i.e., either a connected component of G \ H or ∅ when B is a single edge).
An H -bridge of G with n vertices of attachment is called an n-bridge.

If G′ is a subdivision of a graph G with minimum degree three, then a branch vertex of G′ is
a vertex of degree at least three in G′ and a branch is a path in G′ corresponding to an edge in G.
A G′-bridge B is called local if all attachments of B are on the same branch of G′.

Graphic matroids. A matroid is said to be graphic if it is the cycle matroid of a graph G.
A matroid is said to be cographic if it is the dual of the cycle matroid of an ordinary graph G. We
denote the cycle matroid of G by M(G). This is the matroid with element set E(G) and circuits
consisting of edge sets of circles in G. If X ⊆ E(G), then r(X) = vX −cX . For each edge e in G,
M(G \ e) = M(G) \ e and M(G/e) = M(G)/e.

Signed graphs. A signed graph is a pair (G,σ ) in which σ :E(G) → {+1,−1}. A circle or path
in a signed graph Σ is called positive if the product of signs on its edges is positive, otherwise
the circle or path is called negative. If H is a subgraph of Σ , then H is called balanced when
all circles in H are positive. A balancing vertex of an unbalanced signed graph is a vertex whose
removal leaves a balanced subgraph. Not all unbalanced signed graphs have balancing vertices
and balanced signed graphs do not have balancing vertices. We use ‖Σ‖ to denote the underlying
graph of Σ . We consider a graph G to be a signed graph with all edges signed positively. In this
sense, the class of signed graphs contains the class of graphs.

When drawing signed graphs, positive edges are represented by solid curves and negative
edges by dashed curves. One special convention we will also utilize is that a crosshatched curve
represents a positive path that may have length zero or may have positive length.

A switching function on a signed graph Σ = (G,σ ) is a function η :V (Σ) → {+,−}. The
signed graph Ση = (G,ση) has sign function ση defined on all edges of Σ by ση(e) =
η(v)σ (e)η(w) where v and w are the endpoint vertices (or endpoint vertex) of edge e. The
signed graphs Σ and Ση have the same list of positive circles. When two signed graphs Σ1 and
Σ2 satisfy Σ

η
1 = Σ2 for some switching function η, the two signed graphs are said to be switch-

ing equivalent. An important notion in the study of signed graphs is that two signed graphs with
the same underlying graph are switching equivalent iff they have the same list of positive circles
(see [12, Proposition 3.2]).

In a signed graph Σ = (G,σ ), the deletion of e from Σ is defined as Σ \ e = (G \ e, σ )

where σ is restricted to the domain E(G \ e). The contraction of an edge e is defined for three
distinct cases. If e is a link, then Σ/e = (G/e,σ η) where η is a switching function satisfying
ση(e) = +, which always exists. Note that the contraction Σ/e is only well defined up to switch-
ing. If e is a positive loop, then Σ/e = Σ \ e. If e is a negative loop, then Σ/e is the signed
graph obtained from Σ as follows: links incident to v become negative loops incident to their
other endpoint, loops incident to v become positive loops incident to v, and edges not incident
to v remain unchanged. The reason for this definition of contraction in signed graphs is so that
contractions in signed graphs will correspond to contractions in their signed-graphic matroids.
(See the discussion on signed-graphic matroids below.)

A minor of Σ is a signed graph obtained from Σ by a sequence of contractions and deletions
of edges, deletions of isolated vertices, and switchings. A link minor of Σ is a minor obtained
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without contracting any negative loops. A subdivision of Σ is a signed graph obtained from Σ

by replacing each edge by a path (between the same endpoints) whose sign is the same as the
sign on the replaced edge.

A signed graph is called tangled if it is unbalanced, has no balancing vertex, and no two
vertex-disjoint negative circles. Proposition 2.1 is from [9, Proposition 1.7]. Its proof is easy.

Proposition 2.1. If Σ is a tangled signed graph, then Σ has exactly one unbalanced block (in
particular, Σ does not contain any negative loops).

Given a graph G, by −G we mean the signed graph obtained from G by replacing each
edge with a negative edge. By ±G we mean the signed graph obtained from G by replacing
each edge with a positive edge and a negative edge on the same endpoints. Theorem 2.2 is [9,
Theorem 3.16]. It follows from Theorem 1.1 and the decomposition theorem of Gerards [1,
Theorem 3.2.3] for signed graphs containing no −K4 nor ±C3 link minor. A more general result
will be proven directly in a future paper [8].

Theorem 2.2. If Σ is a tangled signed graph, then Σ has a −K4 or ±C3 link minor.

A signed graph is called vertically k-connected when its underlying graph is vertically k-
connected. We say that a signed graph is almost 4-connected if it vertically 3-connected and any
3-separation (not necessarily a vertical 3-separation) of Σ does not contain a balanced part with
five or more vertices. If (A,B) is a 3-separation of Σ in which Σ :B is balanced with at least five
vertices, then we shall call (A,B) a bad 3-separation.

Matroids of signed graphs. There are three matroids associated with a signed graph. Two of
them coincide when the signed graph is tangled.

The frame matroid (often called the bias matroid) of Σ is denoted by M(Σ). The element set
of M(Σ) is E(Σ) and a circuit of M(Σ) is either the edge set of a positive circle or the edge set
of a subdivision of a subgraph in Fig. 1 with no positive circles.

With the definition of deletions and contractions of signed graphs above, for any e ∈ E(Σ),
we have that M(Σ \ e) = M(Σ) \ e and M(Σ/e) = M(Σ)/e (see [12, Theorem 5.2]). Given
X ⊆ E(Σ) we denote the number of balanced components of Σ :X by bX . If X ⊆ E(Σ), then
rM(X) = vX − bX (see [12, Theorem 5.1(j)]). If a signed graph Σ is not connected and has no
isolated vertices, then M(Σ) is not connected.

The lift matroid of Σ is denoted by L(Σ). The element set of L(Σ) is E(Σ) and a circuit of
L(Σ) is either the edge set of a positive circle or the edge set of a subdivision of a subgraph in
Fig. 2 with no positive circles.

Fig. 1.
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Fig. 2.

Given the definition of circuits in M(Σ) and L(Σ) we see that M(Σ) = L(Σ) iff Σ has
no two vertex-disjoint negative circles, that is, iff Σ is tangled or has a balancing vertex. Now
L(Σ \ e) = L(Σ) \ e for any edge e. For any link or positive loop f , L(Σ/f ) = L(Σ)/f and,
for any negative loop f , L(Σ)/f = M(‖Σ‖ \ f ) (see [15, Theorem 3.6]). If X ⊆ E(Σ), then
εX is defined to be 1 if X is unbalanced and 0 if X is balanced. So now rL(X) = vX + εX − cX

(see [15, Theorem 3.6]).
The complete lift matroid of Σ is denoted by L0(Σ). It is defined by L0(Σ) = L(Σ0) where

Σ0 consists of Σ along with a negative loop, call it p0, attached to a new vertex.

Matroid connectivity. For k � 1, a k-separation of a matroid M on E is a bipartition (X,Y )

of E such that |X|, |Y | � k and r(X) + r(Y ) − r(M) � k − 1. A k-separation is exact if there is
equality in the latter inequality. A matroid is said to be disconnected when it has a 1-separation.
For k � 2, a matroid is said to be k-connected when k is the minimum integer for which M has
a k-separation.

If (X,Y ) is a k-separation of M(Σ) (or L(Σ)) for which Σ :X and Σ :Y are both connected,
then we call (X,Y ) a k-separation of M(Σ) (or L(Σ)) with connected parts.

3. Lemmas for the main results

A signed graph is said to be simple if it has no positive loops, no two negative loops with the
same endpoint, and no two parallel links of the same sign. Note that M(Σ) is a simple matroid
iff Σ is simple and certainly Σ is projective planar iff its associated simple signed graph is
projective planar. Throughout the rest of this paper, Σ will denote a tangled simple signed graph
unless otherwise stated.

3.1. Connectivity lemmas

Lemma 3.1. If Σ is a signed graph (not necessarily tangled) and (A,B) is a vertical t-sepa-
ration with t ∈ {1,2,3} such that both parts are balanced, then Σ is balanced or has a balancing
vertex.

Proof. The conclusion for t ∈ {1,2} is evident, so say t = 3. Let η be a switching function on
Σ :A that makes all edges positive and let ξ be a switching function on Σ :B that makes all edges
positive. By replacing ξ with −ξ if necessary, we may assume that η and ξ disagree on at most
one of the three vertices of (Σ :A) ∩ (Σ :B). If they agree on all vertices, then Σ is balanced. If
they disagree on one vertex, then that vertex is a balancing vertex of Σ . �
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Lemma 3.2. If Σ is vertically 2-connected and (X,Y ) is a vertical 2-separation with both
parts unbalanced, then either there is a bipartition (Y1, Y2) of Y such that Y2 is balanced and
(X ∪ Y1, Y2) is a vertical 2-separation of Σ or there is a bipartition (X1,X2) of X satisfying the
corresponding conclusion.

Proof. Let u and v be the vertices of V (X) ∩ V (Y ). Since Σ has no balancing vertex Σ \ u

contains a negative circle C1 and Σ \ v contains a negative circle C2. Each Ci must then be
contained entirely in X or entirely in Y . Furthermore, it cannot be that C1 is contained in Σ :X
and C2 in Σ :Y (or C2 in Σ :X and C1 in Σ :Y ) because then C1 and C2 would be vertex disjoint,
a contradiction. So without loss of generality C1 and C2 are both contained in Σ :X. Since Y is
unbalanced, it contains negative circles and since Σ is tangled, each negative circle must contain
both u and v. Thus u and v are both balancing vertices of Σ :Y .

In [13, Corollary 2] it is shown then that there is a bipartition (Y1, Y2) of Y such that V (Y1) ∩
V (Y2) = {u,v} and each Yi is balanced. Since vY � 3 we have that vY1 � 3 or vY2 � 3 (assume
the latter). So now (X ∪ Y1, Y2) is our desired vertical 2-separation. �
Lemma 3.3. L0(Σ) is a 3-connected matroid iff Σ is vertically 3-connected.

Proof. Suppose that L0(Σ) is a 3-connected matroid and by way of contradiction, there is a
vertical k-separation of (X,Y ) of Σ with k � 2. Assuming that k is a minimum gives us that Σ :X
and Σ :Y are both connected. So now rL0(X∪p0)+rL0(Y )−rL0(Σ0) = vX +vY +εY −1−vΣ =
k + εY − 1 � 2 with equality only when k = 2 and Y is unbalanced. It must be the case that k = 2
and Y is unbalanced because otherwise (X ∪ p0, Y ) would be a 1-separation or 2-separation
of L0(Σ). However if Y is unbalanced and k = 2, then rL0(X) + rL0(Y ∪ p0) − rL0(Σ0) =
vX + εX − 1 + vY − vΣ = 1 + εX � 2 with equality only when X is unbalanced. Again, it
must be the case that X is unbalanced. So (X,Y ) is a vertical 2-separation of Σ with both sides
unbalanced; however, Lemma 3.2 implies that there is a vertical 2-separation (A,B) of Σ with
A unbalanced and B balanced. But now rL0(A ∪ p0) + rL0(B) − rL0(Σ0) � 1 which makes
(A ∪ p0,B) a 1-separation or 2-separation of L0(Σ), a contradiction.

Conversely, assume that Σ is vertically 3-connected and yet L0(Σ) has a k-separation for
k ∈ {1,2}. Now it is either the case that there is a k-separation (A ∪ p0,B) of L0(Σ) such that
(A,B) is a vertical t-separation of Σ with connected parts or no such k-separation of L0(Σ)

exists. Let these be Cases 1 and 2, respectively.

Case 1. If (A,B) has connected parts and is a vertical t-separation of Σ , then t � 3. So now
1 � k − 1 = rL0(A ∪ p0) + rL0(B) − rL0(Σ0) = vA + vB + εB − 1 − vΣ = t + εB − 1 � 2,
a contradiction. Thus no such k-separation of L0(Σ) exists.

Case 2. Either there is a k-separation (A ∪ p0,B) of L0(Σ) such that (A,B) has connected
parts or not. Let these be Cases 2.1 and 2.2, respectively. In each case, it cannot be that |B| = 1
because then B is a loop or coloop of L0(Σ) which would make B a bridge of Σ (contradicting
vertical 3-connectedness) or a positive loop (contradicting simplicity).

Case 2.1. If (A,B) has connected parts, then by Case 1 it cannot be that (A,B) is a vertical
t-separation of Σ . So either V (A) = V (Σ) or V (B) = V (Σ).

If V (A) = V (Σ), then 1 � k − 1 = rL0(A ∪ p0) + rL0(B) − rL0(Σ0) = vB + εB − 1 and so
vB = 1 or vB = 2 and B is balanced. If vB = 1, then the elements of B are all loops. But Σ
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has no negative loops by Proposition 2.1 and no positive loops by simplicity, a contradiction. If
vB = 2 and B is balanced with |B| � 2, then since Σ has no loops, B contains at least two links
and these links all are of the same sign, a contradiction of simplicity.

If V (B) = V (Σ), then 1 � rL0(A ∪ p0) + rL0(B) − rL0(Σ0) = vA + εB − 1 and so vA = 1
or vA = 2 and B is balanced. As in the previous paragraph we cannot have that vA = 1 because
Σ is loopless. If vA = 2 and B is balanced, then since Σ is loopless, either vertex of V (A) is a
balancing vertex of Σ , a contradiction.

Case 2.2. It must be that one of Σ :A or Σ :B is disconnected.

Claim 1. If (A ∪ p0,B) is a k-separation of L0(Σ) for k ∈ {1,2}, then A is unbalanced.

Proof. Suppose that A is balanced, then rL0(A ∪ p0) + rL0(B) − rL0(Σ0) � 1 implies that
rL(A) + rL(B) − rL(Σ) = 0 and so L(Σ) is not connected. Thus by [3, Theorem 1.2.2], there is
a 1-separation (X,Y ) of L(Σ) with connected parts. The equation rL(X) + rL(Y ) − rL(Σ) = 0
will now imply that |V (X)∩V (Y )| � 2. So, since Σ is 3-connected, it cannot be that (X,Y ) is a
vertical separation of Σ . Thus either V (X) = V (Σ) or V (Y ) = V (Σ) (without loss of generality
assume that V (X) = V (Σ)). So now 0 = rL(X) + rL(Y ) − rL(Σ) = vY + εY + εX − 2 and so
1 � vY = 2 − (εX + εY ) � 2. But vY �= 1 because Σ is loopless and vY = 2 would imply that
X and Y are both balanced and so each of the two vertices of V (Y ) is a balancing vertex of Σ ,
a contradiction. �
Claim 2. If A1, . . . ,An are the edge sets of the connected components of Σ :A, then at most one
Ai is unbalanced and rL(A) = rL(A1 ∪ · · · ∪ An) = ∑

i rL(Ai).

Proof. This is evident because Σ has no two vertex-disjoint negative circles and from the form
of the rank function. �

Now since A is unbalanced (by Claim 1), rL0(A ∪ p0) + rL0(B) − rL0(Σ0) = rL(A) +
rL(B) − rL(Σ). Let A1, . . . ,An be the edge sets of the connected components of Σ :A. Since
A is unbalanced, we may assume that A1 is unbalanced and so |A1| � 2 because Σ is loop-
less. So now it follows from Claim 2, submodularity of the rank function, and the fact that
rL(A) + rL(B) − rL(Σ) = t ∈ {0,1} that

t + rL(Σ) = rL(A) + rL(B)

= rL(A1) + rL(A2 ∪ · · · ∪ An) + r(B)

� rL(A1) + rL(B ∪ A2 ∪ · · · ∪ An)

� rL(Σ).

Use X to denote the set complement of X in E(Σ). So writing A1 = B ∪ A2 ∪ · · · ∪ An we get
that (A1,A1) is an m-separation of L(Σ) for m ∈ {1,2} with Σ :A1 connected and unbalanced.
Now let B1, . . . ,Bm be the edge sets of the connected components of Σ :A1. Either there is
some |Bi | � 2 or each |Bi | = 1. In the latter case, we can perform a rank calculation as above
to get a g-separation (B1,B1) of L(Σ) with g ∈ {1,2} and A1 ⊆ B1. Since Σ :A1 and Σ are
connected, Σ :B1 is connected and so (B1,B1) is a g-separation of L(Σ) with connected parts
and B1 unbalanced. Thus (B1 ∪ p0,B1) would be a g-separation of L0(Σ) with connected parts
which can be used in Case 1 or Case 2.1 and we are done. So assume that each |Bi | = 1. Since
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Σ is vertically 3-connected and loopless, V (A1) = V (Σ) and rL(A1) = |A1|. So since A1 is
unbalanced 1 � rL(A1) + rL(A1) − rL(Σ) = |A1| � |B| � 2, a contradiction. �
3.2. Splitter lemmas

Lemma 3.4. If Σ is vertically 3-connected, then Σ ∼= ±C3 or Σ contains a subdivision of −K4.

Proof. Since Σ is tangled, Σ contains a ±C3 or −K4 link minor by Theorem 2.2. If Σ contains
a −K4 link minor, then since every vertex of −K4 is of degree three, Σ contains a subdivision
of −K4. So assume that Σ does not contain a −K4 minor. Since Σ must now contain a ±C3
minor, we can assume Σ contains ±C3 as a proper minor or we are done.

First, since Σ contains a ±C3 minor and since L0(Υ ) ∼= F7 iff Υ ∼= ±C3 (see [14, §3]),
L0(Σ) contains an F7 minor. Also in [14, §3] it is shown that L(Υ ) ∼= F7 iff Υ is the disjoint
union of ±C3 and a negative loop or the one-vertex join of ±C3 and a negative loop.

Second, since Σ is vertically 3-connected, L0(Σ) is 3-connected by Lemma 3.3. Thus us-
ing the splitter theorem, there are edges e1, . . . , en and operations �1, . . . , �n ∈ {/,\} such that
L0(Σ) �1 e1 · · · �n en

∼= F7 and each L0(Σ) �1 e1 · · · �i ei is 3-connected. So now L0(Σ) �1 e1 · · · �n
en = L(Σ0) �1 e1 · · · �n en = L(Σ0 �1 e1 · · · �n en) ∼= F7 and since Σ is tangled and ±C3 is tangled,
the negative loop of Σ0 �1 e1 · · · �n en must be the edge p0 of Σ0 and Σ0 �1 e1 · · · �n en is obtained by
contracting and deleting links only. So now Σ0 �1 e1 · · · �n−1 en−1 is obtained from Σ0 �1 e1 · · · �n en

by adding a link or decontracting a link. Since L(Σ0 �1 e1 · · · �n−1 en−1) = L0(Σ) �1 e1 · · · �n−1 en−1
is 3-connected, there is no way to add a link to Σ0 �1 e1 · · · �n en without loosing simplicity. Thus
Σ0 �1 e1 · · · �n−1 en−1 is obtained from Σ0 �1 e1 · · · �n en by decontracting a link. One can check
that, up to isomorphism, there is only one way to decontract a link from ±C3 without ruin-
ing cosimplicity and without creating two vertex-disjoint negative circles; however, this way of
decontracting a link leaves a signed graph with a −K4 subgraph, a contradiction. �
Lemma 3.5. If Σ is vertically 3-connected and contains −K5 as a link minor, then Σ ∼= −K5.

Proof. Suppose by way of contradiction, that Σ properly contains −K5 as a link minor. Thus
L0(Σ) has a L0(−K5) minor. Since Σ and −K5 are vertically 3-connected, Lemma 3.3 implies
that L0(Σ) and L0(−K5) are 3-connected. So by the Splitter Theorem, there are edges e1, . . . , en

in Σ0 and operations �1, . . . , �n ∈ {/,\} such that L0(Σ) �1 e1 · · · �n en
∼= L0(−K5) and each

L0(Σ) �1 e1 · · · �i ei is 3-connected. So now L(Σ0 �1 e1 · · · �n en) ∼= L0(−K5).

Claim 1. If L(Υ ) ∼= L0(K5), then Υ is a disjoint union or one-vertex join of −K5 and a negative
loop.

Proof. Since L(Υ ) ∼= L0(−K5), there is an edge f in Υ such that L(Υ \ f ) = L(Υ ) \ f ∼=
L0(−K5) \ p0 = L(−K5). From [14, §6], L(Σ ′) ∼= R10 iff Σ ′ ∼= −K5. Thus Υ \ f ∼= −K5.
Now if f is a negative loop in Υ , then we are done. So suppose that f is a link. Thus f must
have both endpoints in Υ \ f ∼= −K5 or else f would be a coloop of L0(Υ ), a contradiction
of 3-connectedness. Thus f is parallel to a link f ′ in Υ ∼= −K5. Since L0(−K5) is a simple
matroid, it cannot be that f and f ′ have the same sign. Evidently f along with any three edges
of Υ \f ∼= −K5 do not form a circuit in L(Υ ). However, p0 along with the edges of any triangle
is a circuit in L0(−K5), contradicting that L(Υ ) ∼= L0(−K5). �
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By Claim 1, Σ0 �1 e1 · · · �n en is a disjoint union or one-vertex join of −K5 and a negative
loop. However, since Σ and −K5 are both tangled, it must be that Σ0 �1 e1 · · · �n en contains
the negative loop p0 of Σ0, e1, . . . , en are links in Σ , and Σ �1 e1 · · · �n en

∼= −K5. So now
since each L(Σ0 �1 e1 · · · �i ei) = L0(Σ) �1 e1 · · · �i ei is 3-connected, each Σ �1 e1 · · · �i ei is
vertically 3-connected by Lemma 3.3. Thus Σ �1 e1 · · · �n−1 en−1 is vertically 3-connected and
tangled. However one can easily check that there is no way to decontract a link or add a link to
−K5 and preserve all of the following properties: vertical 3-connectedness of Σ , simplicity and
cosimplicity of L0(Σ), and the property of containing no two vertex disjoint negative circles,
a contradiction. �
3.3. Lemmas on subdivisions of −K4 in Σ

In the remainder of Section 3, S will denote a subdivision of −K4 in Σ . A basic fact that will
be used repeatedly without further reference is Lemma 3.6.

Lemma 3.6. If B is an S-bridge in Σ , then B is balanced.

Proof. First, B must be balanced because any negative circle in B will be vertex disjoint from S ,
a contradiction. So let η be a switching function on Σ so that B is all positive. If B were to
contain a negative circle it would be because there is a vertex of attachment v of B and two feet
e and f of v with different signs in Ση. Since B is connected there is a path γ in B joining the
endpoints of e and f . So now e ∪ f ∪ γ is a negative circle that intersects S is a single vertex.
Thus we have two vertex disjoint negative circles in S ∪ B , a contradiction. �

Consider the subdivision of −K4 labeled and signed as in Fig. 3. Let T denote the triad
τ1 ∪ τ2 ∪ τ3 and let L denote the lower triangle θ1 ∪ θ2 ∪ θ3. For the rest of Section 3, when
working with a subdivision of −K4, we will usually assume by switching that the signing and
labeling is as in Fig. 3 unless otherwise specified. This signing has all edges on the triad signed
positively. The terms above, below, higher and lower will also be applied to describe the relative
position of vertices on the triad T .

Every path in Σ that has its endpoints on S and is internally disjoint from S is called an
S-path. Note that every S-path is contained in a unique S-bridge and when Σ is vertically
2-connected, every edge in Σ that is not in S is contained in some S-path. An S-path is called
positive if the product of signs on its edges is positive, otherwise it is called negative.

Fig. 3.
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3.3.1. S-bridges that force bad 3-separations
Given a collection H of subgraphs of G, by

⋃
H we mean the subgraph that is the union of

subgraphs in H. Lemma 3.7 is a technical result that will be very useful in subsequent proofs.

Lemma 3.7. Let Σ be vertically 3-connected, A a collection of S-bridges, and a1, a2, a3 vertices
on T . If the following are all satisfied, then Σ is not almost 4-connected.

(1) a1, a2, a3 are pairwise distinct,
(2) ai is the lowest attachment of a bridge in A on τi or if no bridge in A has an attachment on

τi then ai = a,
(3) bridges in A only have attachments on the triad T of S ,
(4) T ∪ (

⋃
A) is balanced, and

(5) if v is a vertex above ai on τi , v /∈ {a1, a2, a3}, and T is the part of the triad at and above
{a1, a2, a3}, then we may mark any two vertices from {v, a1, a2, a3} with an x and the other
two vertices with a y and there are two disjoint paths in T ∪ (

⋃
A), one with the x-labeled

vertices as endpoints and one with the y-labeled vertices as endpoints.

Proof. By way of contradiction, assume that Σ is almost 4-connected. By switching assume
that S is signed as in Fig. 3 with all edges on the triad signed positively. Let L the collection
of S-bridges containing negative S-paths and/or with attachments on the interior of the lower
triangle L. Note that a negative S-path cannot have both endpoints off the lower triangle or we
would create two vertex-disjoint negative circles. If must be that L �= ∅ or we will have a bad
3-separation of Σ at {l1, l1, l3} because when L = ∅ all S-bridges of Σ have attachments on the
triad T and their union with the triad is balanced because they contain no negative S-paths. Let
l̂i either be li or if there is a bridge in L with an attachment on τi , then let l̂i be the highest such
attachment.

Claim 1. Let v be a vertex on τi below l̂i in Σ and let S be the subgraph of S consisting of the
lower triangle along with each li l̂i -subpath of τi . If we label l̂i with x and v with y, then there is
one vertex of {l̂1, l̂2, l̂3} \ {l̂i} that may be labeled with x and the other is then labeled with y and
there are two disjoint negative paths in the subgraph S ∪ (

⋃
L), one with the x-labeled vertices

as endpoints and the other with the y-labeled vertices as endpoints.

Proof. Without loss of generality, let i = 2. By the definition of l̂2, there is some L ∈ L that has
l̂2 as an attachment. Now either L has an attachment in the interior of the lower triangle or not.

In the former case, there is an S-path δ′ in L that connects l̂2 to some vertex w in the interior
of the lower triangle. The vertex w subdivides its branch into two subpaths. Since the branch of
w is negative, exactly one of these subpaths may be appended to δ′ to obtain a negative path δ.
Note that the other endpoint of δ must be l1 or l3 or there will be two vertex-disjoint negative
circles in S ∪ (

⋃
L) ∪ δ′, a contradiction. If this other endpoint of δ is lj then label l̂j with an x

and the other vertex of {l̂1, l̂3} with a y. One can now easily construct the two desired disjoint
negative paths in S ∪ (

⋃
L) ∪ δ′ (see Fig. 4).

In the latter case, L must contain a negative S-path and so there is a negative S-path δ con-
taining l̂2. The second endpoint of δ must be either l1 or l3 or there will be two vertex-disjoint
negative circles in S ∪ (

⋃
A) ∪ δ, a contradiction. If this other endpoint of δ is lj then label

l̂j with an x and the other vertex of {l̂1, l̂3} with a y. One can now easily construct the desired
disjoint negative paths in S ∪ (

⋃
L) ∪ δ (see Fig. 4). �



704 D. Slilaty / Journal of Combinatorial Theory, Series B 97 (2007) 693–717
Fig. 4.

Claim 2. l̂i is not above ai on τi unless l̂i = a and a ∈ {a1, a2, a3}.

Proof. By way of contradiction, assume that l̂i is above ai on τi and if l̂i = a, then a /∈
{a1, a2, a3}. Label the vertices in {ai, l̂1, l̂2, l̂3} as in Claim 1. Now using part (5) of the hypoth-
esis and the corresponding labels on {l̂i , a1, a2, a3} and we can use the disjoint paths in Claim 1
and (5) to obtain two vertex-disjoint negative circles in S ∪ (

⋃
A) ∪ (

⋃
L), a contradiction. �

Now, let Σ0 = S and Σ1 = S ∪ (
⋃

A) ∪ (
⋃

L). By Claim 2 and parts (3) and (4) of the
hypothesis, Σ1 has a bad 3-separation at {a1, a2, a3}. Let D1 be the collection of S-bridges that
do not appear in Σ1. Note that all bridges in D1 have attachments only on the triad T and only
contain positive S-paths. Thus T ∪ (

⋃
A) ∪ (

⋃
D1) is balanced. Also let T1 = T , ai,1 = ai ,

a1,0 = a2,0 = a3,0 = a, and B0 = A. Thus Σ1 satisfies the P1(1) ∧ P2(1) ∧ P3(1) ∧ P4(1).

P1(m) There is a bad 3-separation of Σm at {a1,m, a2,m, a3,m}.
P2(m) Each ai,m is not above ai,m−1 and not below l̂i .
P3(m) No bridge in Dm has an attachment above ai,m−1 on τi .
P4(m) If v is a vertex on τi above ai,m but not above ai,m−1, then we can label any two vertices

from {v, a1,m, a2,m, a3,m} with an x and the other two vertices with y and there are two
disjoint paths in Tm∪(

⋃
B0)∪· · ·∪(

⋃
Bm−1), one path connecting the x-labeled vertices

and the other connecting the y-labeled vertices.

Now suppose for some n � 1 that Σn, {a1,n, a2,n, a3,n}, Tn, and Dn are all defined and that
P1(n) ∧ P2(n) ∧ P3(n) ∧ P4(n) is true. We will show that P1(n) ∧ P2(n) ∧ P3(n) ∧ P4(n) guar-
antees that there is a subgraph Σn+1 along with {a1,n+1, a2,n+1, a3,n+1}, Tn+1, and Dn+1 such
that Σn � Σn+1 ⊆ Σ and P1(n + 1) ∧ P2(n + 1) ∧ P3(n + 1) ∧ P4(n + 1) is true. This will give
us a contradiction as Σ is a finite graph.

Let Bn be the S-bridges in Dn that have attachments above {a1,n, a2,n, a3,n}. It must be that
Bn �= ∅ because otherwise Σ has a bad 3-separation at {a1,n, a2,n, a3,n} by P1(n).

Claim 3. No bridge in Bn has an attachment below l̂i on τi .

Proof. Suppose by way of contradiction that B ∈ Bn has an attachment b below l̂i on τi . By the
definition of Bn, the bridge B also has an attachment v above aj,n on τj but not above aj,n−1 by
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P2(n). Thus there is a positive S-path δ with endpoints b and v. So now using P4(n) and Claim 1
we can construct two vertex-disjoint negative circles in Σn ∪ δ, a contradiction. �

So now let Σn+1 = Σn ∪ (
⋃

Bn). Since Bn �= ∅, Σn � Σn+1 ⊆ Σ . Let ai,n+1 = ai,n or if there
is a bridge in Bn with an attachment on τi that is lower than ai,n, then let ai,n+1 be the lowest
such attachment. By Claim 3, Σn+1 has a bad 3-separation at {a1,n+1, a2,n+1, a3,n+1}. Thus
Σn+1 satisfies P1(n + 1). Evidently Σn+1 satisfies P2(n + 1). Now let Dn+1 be the S-bridges
of Σ that do not appear in Σn+1. Since each B ∈ Dn+1 did not appear in Σn+1 it must be
that Σn+1 and Dn+1 satisfy P3(n + 1). Now let Tn+1 be the part of the triad T at and above
{a1,n+1, a2,n+1, a3,n+1}. We need only show that Σn+1, Dn+1, and Tn+1 satisfy P4(n + 1) and
we will complete our proof.

So, without loss of generality, let v be a vertex on τ2 above a2,n+1 but not above a2,n. Label
v with an x. If we label a2,n+1 with an x, then our conclusion follows easily. So label a2,n+1
with y. Without loss of generality then label a1,n+1 with an x and a3,n+1 with y. By the definition
of a2,n+1 and by P2(n) there is a positive S-path in some bridge of Bn from a2,n+1 to some
vertex above ai,n on τi but not above ai,n−1 on τi (see Fig. 5). We can now easily construct the
two desired disjoint paths using property P4(n), δ, and three paths from the subgraphs of Σn+1
shown in Fig. 5. �
3.3.2. Lemmas on belonging

We say that an S-bridge B of Σ belongs to a subdivided quadrilateral Q of S when all vertices
of attachment of B are on Q and Q ∪ B is balanced.

Lemma 3.8. If B is an S-bridge of Σ and R is a subdivided triangle of S , then B does not have
an attachment on the interior of each branch of R.

Fig. 5.
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Fig. 6.

Proof. By way of contradiction, if B has an attachments v1, v2, v3 on the interiors of the three
branches of R, then there is a vertex v ∈ B and three internally disjoint paths γ1, γ2, γ3 in B

connecting v to v1, v2, v3. (See Fig. 6. Signs on edges are suppressed in Fig. 6.)
However, since all subdivided triangles of −K4 are negative, there is a negative circle besides

R in R ∪ γ1 ∪ γ2 ∪ γ3 and this negative circle would be vertex disjoint from some negative circle
in S , a contradiction. �
Lemma 3.9. If Σ is almost 4-connected, then no S-bridge has a vertex of attachment in the
interior of each branch τi of the triad of S .

Proof. By way of contradiction, assume that such a bridge B exists. The strategy of the proof
will be to let A = {B} and show that this satisfies all of the properties in the hypothesis of
Lemma 3.7. This will contradict that Σ is almost 4-connected and complete our proof.

For each i ∈ {1,2,3}, let âi be the lowest attachments of B in the interior of τi and let ai

be the lowest attachment of B on τi . Note that âi �= a and âi = ai iff B does not have li as a
vertex of attachment. Evidently Σ , A, and a1, a2, a3 satisfy parts (1) and (2) of the hypothesis of
Lemma 3.7. Part (3) follows from Lemma 3.8. It remains only to show that they satisfy parts (4)
and (5).

For part (4) suppose, by way of contradiction, that T ∪B is unbalanced. By switching we may
assume that all edges of T and B are positive. Thus B has two feet of different signs; however,
if two feet off the lower triangle have different signs, then we would have two vertex-disjoint
negative circles in S ∪ B , a contradiction. Thus we may assume by switching that all feet of B

off the lower triangle are positive. So now there must be a negative foot of B incident to one of
{l1, l2, l3}, say l1, without loss of generality. So if δ is an S-path in B from l1 to â1, then there
are two vertex-disjoint negative circles in S ∪ δ, a contradiction. Thus T ∪ B is balanced.

To prove part (5), recall that T is the part of the triad at and above {a1, a2, a3}. Now let v be
a vertex on τi above ai (say, without loss of generality, i = 1). If we mark v with an x, then our
conclusion easily follows if a1 is marked with an x. So assume that a1 is marked with y and,
without loss of generality, a2 with an x and a3 with y. Now there is a path in T from v to a2 and
there is an S-path in B from a1 to a3, as required. �
Lemma 3.10. If Σ is almost 4-connected, then every S-bridge has all of its attachments on at
least one of the three subdivided quadrilaterals of S .

Proof. Every branch vertex of S is on all three subdivided quadrilaterals of S and every vertex in
the interior of a branch is on exactly two subdivided quadrilaterals. So say there is some S-bridge
B whose vertices of attachment are not all on some subdivided quadrilateral. Thus B has three



D. Slilaty / Journal of Combinatorial Theory, Series B 97 (2007) 693–717 707
vertices of attachment on the interiors of three branches that form a subdivided triangle of S or
a subdivided triad of S . The latter case cannot happen because of Lemma 3.9 and in the former
case cannot happen because of Lemma 3.8. Our conclusion follows. �
Lemma 3.11. If Σ is almost 4-connected and Σ � −K5, then every S-bridge B has a unique
subdivided quadrilateral of S to which it belongs.

Proof. Let B be an S-bridge. If B is a 2-bridge, then the conclusion is easy to verify. So assume
that B is an n � 3-bridge. By Lemma 3.10, all attachments of B are on a subdivided quadrilateral
Q of S . Label the branch vertices of S and the branches of S on Q as shown in Fig. 7. Switch
Σ so that all edges of Q are positive and so S is signed as shown in Fig. 7. Let Qα be the other
quadrilateral of S that contains α1 and α2.

Now switch B so that all of its edges are positive. So now Q∪B is balanced (and so B belongs
to Q) unless B has a positive foot and a negative foot. Since the feet of B form an edge separation
of Σ , we may switch the feet of B so that B has at least as many positive feet as negative feet.
Let f− be a negative foot of B and since B is a n � 3-bridge, there are at least two positive feet
of B . Now either we can choose f− so that it is attached to the interior of a branch of Q or all
negative feet of B are on branch vertices of S . Let these be Cases 1 and 2, respectively.

Claim 1. If B has two feet on the same branch of Q, then these feet have the same sign save
when they are attached to the endpoints of the branch. If B has two feet on the interiors of two
adjacent branches of Q, then these feet must have the same sign.

Proof. If the two feet mentioned have different signs, then there would be two vertex-disjoint
negative circles in S ∪ B , a contradiction. �
Case 1. Without loss of generality, say that f− is attached to a vertex in the interior of α1. By
Claim 1 any positive feet of B must now be attached to α2. Now since B has at least two positive
feet and all positive feet are attached to α2, every negative foot of B must then be attached to α1

Fig. 7.
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by Claim 1. Thus all attachments of B are on Qα and B ∪ Qα is balanced hence B belongs
to Qα .

Case 2. Without loss of generality say that f− is attached to v1. It follows by Claim 1 that any
positive foot of B must then be attached to a vertex on α2 ∪ β2. Now either all positive feet are
contained on one of α2 and β2 or not. Let these be Cases 2.1 and 2.2, respectively.

Case 2.1. Without loss of generality we have that all positive feet of B are on α2 and then since
there are at least two positive feet, all negative feet must be contained on α1 and so B belongs
to Qα as in Case 1.

Case 2.2. We must have one positive foot fα on α2 \ v3 and one positive foot fβ on β2 \ v3. By
Claim 1 there can be no feet, positive or negative, of B on the interiors of α1 and β1. Thus all
attachments of B are on v1 ∪ α2 ∪ β2 and any other negative feet of B must be attached to v3.
However, if there is a negative foot f ′− attached to v3, then S ∪ B ∪ {f−, f ′−, fα, fβ} contains
−K5 as a link minor. Thus Σ ∼= −K5 by Lemma 3.5, a contradiction of our hypothesis. Thus all
feet of B besides f− are positive.

Now switch Σ on vertex v3 and now S ∪ B is signed as in Fig. 8. (Each crosshatched path in
Fig. 8 may have length zero.)

By the previous paragraph B only has attachments on the triad of S at v3 and the union of the
triad at v3 with B is balanced. We can now apply Lemma 3.7 in a similar fashion as in the proof
of Lemma 3.9 and we will contradict that Σ is almost 4-connected. �
Lemma 3.12. Say that Σ is almost 4-connected, Σ � −K5, and B1, . . . ,Bn are the S-bridges
of Σ that belong to Q, then Q ∪ B1 ∪ · · · ∪ Bn is balanced.

Proof. We may switch Σ so that Q has only positive edges. Now we may switch on the vertices
in each Bi so that the edges in Bi are all positive. Thus Q ∪ B1 ∪ · · · ∪ Bn is balanced. �
3.3.3. Lemmas on noncrossing S-paths
Lemma 3.13. If Σ is almost 4-connected, then there does not exist two vertex-disjoint and posi-
tive S-paths β and γ as in Fig. 9. (Each crosshatched path in the figure may be of length zero.)

Fig. 8.
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Proof. By way of contradiction, assume that the S-paths β and γ exist. Let B and C be
S-bridges, containing β and γ , respectively. The strategy of the proof will be to let A = {B,C}
and show that this satisfies all of the properties in the hypothesis of Lemma 3.7. This will con-
tradict that Σ is almost 4-connected and complete our proof.

Let â2 = a and for each i ∈ {1,3}, let âi be the lowest endpoint of β ∪ γ on τi . Let ai be the
lowest attachment of B ∪ C on τi . Evidently Σ , A, and a1, a2, a3 satisfy parts (1) and (2) of the
hypothesis of Lemma 3.7. It remains only to show that they satisfy each of parts (3)–(5).

For part (3) suppose, by way of contradiction, that v is an attachment of B or C on the interior
of the lower triangle. Thus there is a path δ in B ∪ C that is internally disjoint from S ∪ β ∪ γ

with one endpoint at v and the other endpoint in the interior of β or γ . It is easy to check that
S ∪ β ∪ γ ∪ δ must now have two vertex-disjoint negative circles, a contradiction.

For part (4) suppose, by way of contradiction, that T ∪ B ∪ C is unbalanced. Since B

and C are balanced we may assume by switching that all edges in B and C are positive.
So one of B and C has both a positive foot and a negative foot. Since β and γ are both
positive S-paths, the feet of β have the same sign and the feet of γ have the same sign.
By switching we may furthermore assume that the feet of both β and γ are all positive un-
less possibly when B = C. In the latter case, however, we would have a negative S-path
between the endpoints of β and γ that are off the lower triangle which would create two
vertex-disjoint negative circles, a contradiction. So now if all of the feet of β and γ are
positive, then there is a negative path δ that is internally disjoint from S ∪ β ∪ γ and has
one endpoint in the interior of β or γ and the other endpoint somewhere on the triad of S .
One can now check that S ∪ β ∪ γ ∪ δ has two vertex-disjoint negative circles, a contradic-
tion.

For part (5), let v /∈ {a1, a2, a3} be above ai on τi . There are three cases to consider: v �= a

and v is above âi on τi for i ∈ {1,3}, a2 �= a and v is above a2 on τ2, and v is above ai but not
above âi for i ∈ {1,3}. In each case, one can check that (5) is satisfied. �
Lemma 3.14. Let Σ be almost 4-connected and A be a collection of S-bridges with endpoints
only on the triad T of S and such that T ∪ (

⋃
A) is balanced. Then there does not exist three

internally disjoint S-paths α,β, δ in A as shown in one of the signed graphs in Fig. 10.

Proof. Again apply Lemma 3.7 to contradict almost 4-connectedness. �

Fig. 9.
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Fig. 10.

Now say that α and β are vertex-disjoint S-paths that both belong to the same subdivided
quadrilateral Q of S . If the endpoints of α and β alternate in cyclic order around Q, then we say
that α and β are crossing S-paths on Q.

Lemma 3.15. Let Σ be almost 4-connected. If α and β are crossing S-paths on Q, then at least
three of the four endpoints of α and β must all be contained on one branch of Q.

Proof. Suppose by way of contradiction that no three of the four endpoints of α and β appear on
the same branch of Q. Using Lemma 3.13 we cannot have that all four of the endpoints of α and
β appear on two adjacent branches of Q. We can now easily conclude that S ∪ α ∪ β contains
two vertex-disjoint negative circles, a contradiction. �

Lemma 3.16 is an adaptation of [2, Lemma 6.2.1]. Note that if Σ � −K5 and Σ is almost
4-connected, then each S-bridge B belongs to a subdivided quadrilateral Q by Lemma 3.11.
Now choose S as in Lemma 3.16 so that there are no local bridges save possibly for a link B

with endpoints the same as some branch β of S and with the opposite sign as β . Now then this
special bridge B is local on β but does not belong to either subdivided quadrilateral of S that
contains β . So if S is chosen as in Lemma 3.16, then the bridges belonging to a given Q are not
local any of the branches of Q.

Lemma 3.16. Let Σ be vertically 3-connected. If S has local bridges, then there is another
subdivision S ′ of −K4 such that

(1) the branch vertices of S ′ are the same as the branch vertices of S , and
(2) if B is a local bridge on a branch β ′ of S ′, then B is a single edge whose endpoints are the

endpoints of β ′ and whose sign is the opposite of the sign of β ′.

Proof. Since Σ is vertically 3-connected and simple, all S-bridges have at least two attachments
and any 2-bridge consists of a single link. Note that if β is a local S-bridge on β , then B ∪β will
be balanced if B has an attachment on the interior of β because otherwise there would be two
vertex-disjoint negative circles in S ∪ B , a contradiction. So the only possibility for B ∪ β to be
unbalanced is if B is a link whose only attachments are the endpoints of β .

Now it suffices to show how to replace each branch β of S with a branch β ′ that satisfies (1)
and (2). So now let �(β) be the union of β and all its local S-bridges besides the special links



D. Slilaty / Journal of Combinatorial Theory, Series B 97 (2007) 693–717 711
from the previous paragraph. So now �(β) is balanced and β ′ may be chosen from �(β) as in the
proof from [2, Lemma 6.2.1]. �
Lemma 3.17. Let Σ be almost 4-connected, not isomorphic to −K5, and say that S has no
local bridges in the sense of Lemma 3.16. Suppose that α and β are crossing S-paths on Q.
Furthermore assume that any crossing S-paths on Q have at least three of four endpoints on the
same branch of Q. Then α and β do not belong to different S-bridges.

Proof. Suppose by way of contradiction that α and β belong to distinct S-bridges A and B ,
respectively. Let τ1 be the branch of Q, that contains three or four endpoints of α and β . If τ1
contains four endpoints of α and β , then since B is not a local bridge, we can rechoose β so
that τ1 contains exactly three of their endpoints. Since A is not a local bridge, there is some
attachment of A off τ1. But since Q does not have two crossing S-paths without three or four
endpoints on the same branch, the only attachment of A off τ1 is the same as the endpoint of β

off τ1, call it d . Similarly, B now only has the attachment d off τ1.
Let b0 and c0 be the extreme attachments of A on τ1. Let C1 be the collection of S-bridges

belonging to Q that have attachments strictly between b0 and c0 on τ1. Note that C1 �= ∅ as
B ∈ C1, no bridge in C1 has attachments off τ1 except for d (by our hypothesis on crossing
paths), and all bridges in C1 have d as an attachment (because there are no local bridges for Q).
Let b1 = b0 or if there is an attachment of a bridge in C1 further out on τ1, then let b1 be the
attachment furthest out along τ1. Similarly define c1. Now suppose that for some n � 1 that
C1, . . . ,Cn are collections of S-bridges belonging to Q and (b0, c0), . . . , (bn, cn) are pairs of
vertices on τ1 such that P1(n) ∧ P2(n) is true.

P1(m) All bridges in C1 ∪ · · · ∪ Cm have d as an attachment and all other attachments are on τ1.
P2(m) For each i ∈ {1, . . . ,m}, the vertices b0, . . . , bi−1, c0, . . . , ci−1 are attachments from

C1, . . . ,Ci−1; bi and ci are attachments from Ci ; and b0, . . . , bi−1, c0, . . . , ci−1 are con-
tained between bi and ci on τ1.

Now let Cn+1 be the collection of S-bridges belonging to Q that have an attachment on the
interior of the bncn-subpath on τ1. If Cn+1 �= ∅, then by our hypothesis on crossing S-paths, each
bridge in Cn+1 has no attachments other than on τ1 and d . Also, since S has no local bridges,
d is an attachment of each bridge in Cn+1. So now define bn+1 and cn+1 as before and we have
that P1(n + 1) ∧ P2(n + 1) is true. If Cn+1 = ∅, then this process halts. Since Σ is finite, the
process halts at some iteration, say n � 1, with Cn+1 = ∅. Now there are no S-bridges belonging
to Q that have attachments strictly between bn and cn on τ1. However, now note that there is a
bad 3-separation of S ∪ A ∪ (

⋃
(C1 ∪ · · · ∪ Cn)) at {bn, cn, d}. Since Σ has no bad 3-separation,

there is an S-bridge C /∈ {A} ∪ C1 ∪ · · · ∪ Cn that has an attachment, call it m, strictly between bn

and cn on τ1. Now C must belong to Q2 where Q2 is the other quadrilateral of S that has τ1 as
a branch.

By the construction of C1, . . . ,Cn there must be an S-bridge, call it A′, in {A} ∪ C1 ∪ · · · ∪ Cn

such that m is strictly between the extreme attachments of A′ on τ1. Call these extreme attach-
ments b and c. Also by the construction of C1, . . . ,Cn, there is some S-bridge, call it B ′, in
{A} ∪ C1 ∪ · · · ∪ Cn that has an attachment in the interior of the bc-subpath of τ1. Let α′ be an
bc-path in A′ and let β ′ be a path in B from the interior of the bc-subpath of τ1 to d . So now
S ∪ α′ ∪ β ′ after switching is a subdivision of one of the signed graphs in Fig. 11 minus the
S-path in Q2.
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Fig. 11.

Now since C is not a local bridge on Q2, there is an attachment of C off τ1. It can be shown
that C does not have attachments on the interior of the l1l3l2-path on the lower triangle, because
such an attachment would create two vertex-disjoint negative circles in S ∪ α′ ∪ β ′ ∪ C, a con-
tradiction. So C must have an attachment on τ2 \ a. Let a2 be the lowest such attachment and let
γ be an S-path in C connecting a2 to m. So now S ∪ α′ ∪ β ′ ∪ γ is a subdivision of one of the
signed graphs in Fig. 11.

If d is on the interior of the l2l3-branch of S , then one can check that S ∪α′ ∪β ′ ∪ γ contains
two vertex-disjoint negative circles, a contradiction. Thus d is on τ3 and so A′, B ′, C only have
attachments on the triad T = τ1 ∪ τ2 ∪ τ3 and T ∪ A′ ∪ B ′ ∪ C is balanced. Thus Σ is not almost
4-connected by Lemma 3.14, a contradiction. �
Lemma 3.18. Let Σ be almost 4-connected, not isomorphic to −K5, and say that S has no
local bridges in the sense of Lemma 3.16. Suppose that α and β are crossing S-paths on Q.
Furthermore assume that any crossing S-paths on Q have at least three of four endpoints on the
same branch of Q. Then α and β do not belong to the same S-bridge.

Proof. Suppose by way of contradiction that α and β belong to the same S-bridge B . Let τ1 be
the branch of Q containing three or four endpoints of α and β . If τ1 contains four endpoints of
α and β , then since B is not a local bridge, then we can rechoose α and β so that τ1 contains
exactly three of their endpoints. By symmetry assume that the endpoints of α are both on τ1.
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Fig. 12.

Since B is connected, there is a path γ in B that is internally disjoint from α ∪ β and with
one endpoint on the interior of α and the other on the interior of β (see the two upper graphs in
Fig. 12).

Note that, by definition, the hd-path on β must have at least one edge. We claim that the l1b-
path on τ1 has length zero. If it did not, then there is a new subdivision Sg of −K4 consisting of
the same lower triangle as S and then the triad with apex vertex g and the three branches from
g to the lower triangle shown in Fig. 12. But then there is an Sg-bridge Bg containing the vertex
m and Bg has three attachments b, c,h on the interiors of the three branches of the triad of Sg .
This is a contradiction of Lemma 3.9. So S ∪ B contains a subdivision of one of the two lower
graphs in Fig. 12.

Rechoose α and β so that the length of the ac-path on τ1 is minimal and α ∪ β has three of
four endpoints on τ1. Now leaving α fixed, rechoose β and γ so that the length of the hd-path
on β is a minimum including length zero (if possible). Let βd be the hd-subpath of β , let βm be
the hm-subpath of β , and let τ be the bc-subpath on τ1.

Note that (τ ∪ βm ∪ α ∪ γ ) \ {b, c,h} has two connected components, one containing m and
another containing g. Let X be the union of the connected components of (S ∪B) \ {b, c,h} that
contain m and g.

Claim 1. There is a vertical 3-separation (R,S) of S ∪ B at {b, c,h} with X ⊆ R ⊆ (B ∪ τ).
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Proof. Let v be a vertex of attachment of B off τ . To prove our claim we need only show that
there is no path from v to m or g that does not pass through {b,h, c}.

First suppose v is on τ1 and suppose by way of contradiction that there is a path from v to
{m,g} that avoids {b,h, c}. Thus there is a path δ in B such that is internally disjoint from S , is
internally disjoint from (τ ∪ βm ∪ α ∪ γ ) \ {b, c,h}, has v as one endpoint, and has its second
endpoint z somewhere on (τ ∪ βm ∪ α ∪ γ ) \ {b, c,h}. It cannot be that z is in the interior of
α or γ because then we would contradict the minimality of the length of the ac-path on τ1. It
cannot be that the z is on the interior of βm or τ else S ∪ B would contain a subdivision of one
of the two upper graphs in Fig. 12 where the l1b-subpath of τ1 has nonzero length, which would
contradict Lemma 3.9 as in the second to last paragraph before this claim.

Second suppose that v is not on τ1. Thus there is a path δ in B such that is internally disjoint
from S , is internally disjoint from (τ ∪ βm ∪ α ∪ γ ) \ {b, c,h}, has v as one endpoint, and has
its second endpoint z somewhere on (τ ∪ βm ∪ α ∪ γ ) \ {b, c,h}. If v �= d , then we easily get a
contradiction of our hypothesis about crossing S-paths having at least three of four vertices on
the same branch of S . Thus v = d and either v = d = h or v = d �= h. The former case is not
possible because we did not avoid {b,h, c} and the latter case is not possible because β and γ

were chosen to minimize the length of the hd-subpath of β . �
By Claim 1 there is a bad 3-separation of S∪B at {b, c,h} and since Σ is almost 4-connected,

there is an S-bridge C such that S ∪ B ∪ C does not have a bad 3-separation. Thus C has an
attachment on the interior of τ and so C belongs either to Q or the other quadrilateral of S
that has τ1 as a branch, call it Q2. If C belongs to Q, then since C is not local on Q, C has
an attachment off τ1. But then we would have two crossing S-paths on Q with three or four
endpoints on τ1 that are in different bridges, a contradiction of Lemma 3.17. Thus C belongs
to Q2 and since C is not local on Q2, there is an attachment of C off τ1. It cannot be, however,
that C has an attachment on the interior of the l1l3l2-path on the lower triangle as this would
create two vertex-disjoint negative circles, a contradiction. So C has all attachments off τ1 on
τ2 \ a. Let a2 be the lowest attachment of C on τ2 and let χ be an S-path in C from an interior
vertex of τ to a2. Now one can show that B has no attachments on the interior of the l1l2l3-path
of the lower triangle as this would create two vertex-disjoint negative circles, a contradiction.
Thus d is on the triad T = τ1 ∪ τ2 ∪ τ3 of S , all attachments of B ∪ C are on the triad T of S ,
and T ∪ B ∪ C is balanced. Now S ∪ α ∪ β ∪ χ is a subdivision of one of the two upper graphs
in Fig. 11 and so Σ is not almost 4-connected by Lemma 3.14, a contradiction. �
3.3.4. Lemmas on tripods

Given a circle C in Σ , a tripod of C is a subdivision of the graph shown in Fig. 13.

Lemma 3.19. Let Σ be almost 4-connected and not isomorphic to −K5. Furthermore assume
that there are no crossing S-paths on any of the subdivided quadrilaterals of S . Then the collec-
tion of bridges belonging to any subdivided quadrilateral Q does not contain a tripod of Q.

Proof. Let B be the collection of S-bridges belonging to Q. Suppose by way of contradiction
that

⋃
B contains a tripod T on Q. Let b1, b2, b3 be the vertices of the tripod on Q, let χi be

the crosshatched path of the tripod that has bi as an endpoint, and let ai,0 be the other endpoint
of χi . Let t1 and t2 be the top vertices of the tripod and let T0 be the tripod T minus the edges
and vertices below {a1,0, a2,0, a3,0}.
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Fig. 13.

If t1 and t2 are separated from Q in Σ by {a1,0, a2,0, a3,0}, then there is a bad 3-separation of
Σ at {a1,0, a2,0, a3,0}, a contradiction. Thus there are paths in

⋃
B from {t1, t2} to Q that avoid

{a1,0, a2,0, a3,0}. However, such a path cannot be internally disjoint from the tripod unless one
endpoint of such a path is from {b1, b2, b3} because otherwise we would have two crossing S-
paths on Q, a contradiction. So any path from {t1, t2} to Q that avoids {a1,0, a2,0, a3,0} includes a
subpath in

⋃
B that is internally disjoint from the tripod, has one endpoint above {a1,0, a2,0, a3,0}

on the tripod, and the other endpoint below {a1,0, a2,0, a3,0} on the tripod. Let P0 be the collection
of all such paths.

Let ai,1 = ai,0 or if there is a path in P0 with an endpoint below ai,0 on χi , then let ai,1 be
the lowest such endpoint. Let T1 be the subgraph of the tripod with all of the edges and vertices
below {a1,1, a2,1, a3,1} removed. It is easy to verify that P1(1) ∧ P2(1) is satisfied.

P1(m) Tm−1 � Tm.
P2(m) If v is a vertex on χi above ai,m but not above ai,m−1 then we can label any two vertices

from {v, a1,m, a2,m, a3,m} with an x and the other two vertices with y and there are two
vertex-disjoint paths in Tm ∪ (

⋃
P0) ∪ · · · ∪ (

⋃
Pm−1), one with the x-labeled vertices

as endpoints and one with the y-labeled vertices as endpoints.

Now for some n � 1 suppose that {a1,n, a2,n, a3,n} and Tn are defined and satisfy P1(n) ∧
P2(n). We will show that this suffices to define {a1,n+1, a2,n+1, a3,n+1} and Tn+1 that satisfy
P1(n + 1) ∧ P2(n + 1). This however is not possible because Σ is a finite graph and this will
complete our proof.

Now {a1,n, a2,n, a3,n} cannot separate {t1, t2} from Q or there would be a bad 3-separation
of Σ at {a1,n, a2,n, a3,n}. Thus there are paths from {t1, t2} to the attachments of

⋃
B on Q that

avoid {a1,n, a2,n, a3,n}. Such a path however cannot be internally disjoint from T unless one
of their endpoints is in {b1, b2, b3} because otherwise, using such a path and P2(n) we could
construct two disjoint crossing paths on Q which by the hypothesis of the lemma do not exist.
So any such path from {t1, t2} to Q must use a subpath that is internally disjoint from T , has one
endpoint above {a1,n, a2,n, a3,n} on T and one endpoint below {a1,n, a2,n, a3,n} on T . Note that
any such path cannot have an endpoint above {a1,n−1, a2,n−1, a3,n−1} on T by the construction
of P0, . . . ,Pn−1. So let Pn be the collection of such paths. Also note that by our construction of
P0, . . . ,Pn−1, any path in Pn must be internally disjoint from all paths in P0, . . . ,Pn−1. Now let
ai,n+1 = ai,n or if there is a path in Pn with an endpoint below ai,n on χi , then let ai,n+1 be the
lowest such endpoint. Let Tn+1 be the subgraph of the tripod with all of the edges and vertices
below {a1,n+1, a2,n+1, a3,n+1} removed. Evidently P1(n+ 1) is satisfied. To show that P2(n+ 1)

is satisfied we would use an argument very similar to the one in the last paragraph of the proof
of Lemma 3.7. �
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4. Proofs of our main results

The following theorem is from [2, Theorem 6.3.1]. Note that if Ĝ is planar, then G has a
planar imbedding with C as a facial boundary cycle.

Theorem 4.1. Let G be a graph and C a circle in G. Let Ĝ be the graph obtained from G by
attaching a new vertex v adjacent to the vertices of C. If Ĝ is vertically 3-connected, then Ĝ is
planar iff G does not contain two crossing C-paths and does not contain a tripod on C.

Proof of Theorem 1.2. Certainly Σ satisfies our conclusion iff the associated simple signed
graphs satisfies the conclusion. So assume that Σ is a simple tangled signed graph.

First, suppose that Σ is almost 4-connected. In this case we may also assume that Σ � −K5
because otherwise Σ satisfies part (2) and we are done. By Lemma 3.4, Σ = ±C3 or contains a
subdivision S of −K4. In the former case, Σ is projective planar. In the latter case, choose S so
that it does not have local bridges in the sense of Lemma 3.16. So now each S-bridge belongs
to a quadrilateral of S by Lemma 3.11. Furthermore, by Lemma 3.12, if B is the collection of
all bridges belonging to a quadrilateral Q of S , then Q ∪ (

⋃
B) is balanced. Now there are no

crossing S-paths on Q by Lemmas 3.15, 3.17, and 3.18. So now there are no tripods on Q by

Lemma 3.19. Now it is easy to check that ̂Q ∪ (
⋃

B) (as in Theorem 4.1) is vertically 3-con-
nected. So by Theorem 4.1, Q ∪ (

⋃
B) has a planar imbedding with Q on the outside face. Thus

we can extend the unique imbedding of S in the projective plane to an imbedding of the entire
signed graph Σ in which each facial boundary is a positive circle in Σ . Given the topology of the
projective plane, this makes a circle in Σ negative iff it is imbedded as a nonseparating closed
curve. Thus Σ is projective planar and so satisfies part (1).

Second, suppose that Σ is vertically 3-connected but not almost 4-connected. Thus there is a
vertical 3-separation (A,B) of Σ with Σ :B balanced and containing at least five vertices. Since
Σ is tangled, Lemma 3.1 implies that A is unbalanced. Switch Σ so that all of the edges of
B are positive and attach an all-positive triangle T to Σ :A and Σ :B on the three vertices in
(Σ :A) ∩ (Σ :B). Write Υ = (Σ :A) ∪ T and Ω = (Σ :B) ∪ T . Evidently Σ = Υ ⊕3 Ω with Υ

unbalanced and Ω balanced. One can show that Ω must be vertically 3-connected and so by
Theorem 1.1, Υ is tangled. Thus Σ satisfies part (3).

Lastly, suppose that Σ is connected but not vertically 3-connected. Thus by Proposition 2.1
and Lemmas 3.1 and 3.2, there is a vertical t-separation (A,B) of Σ with t ∈ {1,2}, A unbal-
anced, and B balanced. In a similar fashion as in the previous paragraph we get that Σ satisfies
part (3). �
Theorem 4.2. (See H. Whitney [11].) If G is a connected graph, then M∗(G) is graphic iff G is
planar.

Proof of Theorem 1.4. Again we may assume that Σ is simple. By Theorem 1.2, Σ ∼= −K5, Σ

is projective planar, or Σ = Υ ⊕t Ω where Υ is tangled and Ω is balanced. Since M(−K5) ∼= R10
is not graphic, Σ � −K5. Also, if Σ = Υ ⊕t Ω , then assume that k is minimal.

If Σ is projective planar, then let G be the topological dual graph of Σ in the projective plane.
In [6, §2] it is shown that M∗(G) = M(Σ). So M(Σ) = M∗(G) is graphic and cographic and so
Theorem 4.2 implies that G is planar. Thus Σ satisfies part (1).

If Σ = Υ ⊕k Ω where Υ is tangled and Ω is balanced, then it must be that M(Υ ) is graphic
because Υ may be obtained as a minor of Σ . Thus Σ satisfies part (2). �
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