913 research outputs found

    Rekonstruktion und skalierbare Detektion und Verfolgung von 3D Objekten

    Get PDF
    The task of detecting objects in images is essential for autonomous systems to categorize, comprehend and eventually navigate or manipulate its environment. Since many applications demand not only detection of objects but also the estimation of their exact poses, 3D CAD models can prove helpful since they provide means for feature extraction and hypothesis refinement. This work, therefore, explores two paths: firstly, we will look into methods to create richly-textured and geometrically accurate models of real-life objects. Using these reconstructions as a basis, we will investigate on how to improve in the domain of 3D object detection and pose estimation, focusing especially on scalability, i.e. the problem of dealing with multiple objects simultaneously.Objekterkennung in Bildern ist für ein autonomes System von entscheidender Bedeutung, um seine Umgebung zu kategorisieren, zu erfassen und schließlich zu navigieren oder zu manipulieren. Da viele Anwendungen nicht nur die Erkennung von Objekten, sondern auch die Schätzung ihrer exakten Positionen erfordern, können sich 3D-CAD-Modelle als hilfreich erweisen, da sie Mittel zur Merkmalsextraktion und Verfeinerung von Hypothesen bereitstellen. In dieser Arbeit werden daher zwei Wege untersucht: Erstens werden wir Methoden untersuchen, um strukturreiche und geometrisch genaue Modelle realer Objekte zu erstellen. Auf der Grundlage dieser Konstruktionen werden wir untersuchen, wie sich der Bereich der 3D-Objekterkennung und der Posenschätzung verbessern lässt, wobei insbesondere die Skalierbarkeit im Vordergrund steht, d.h. das Problem der gleichzeitigen Bearbeitung mehrerer Objekte

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    A New Approach for Realistic 3D Reconstruction of Planar Surfaces from Laser Scanning Data and Imagery Collected Onboard Modern Low-Cost Aerial Mapping Systems

    Get PDF
    Over the past few years, accurate 3D surface reconstruction using remotely-sensed data has been recognized as a prerequisite for different mapping, modelling, and monitoring applications. To fulfill the needs of these applications, necessary data are generally collected using various digital imaging systems. Among them, laser scanners have been acknowledged as a fast, accurate, and flexible technology for the acquisition of high density 3D spatial data. Despite their quick accessibility, the acquired 3D data using these systems does not provide semantic information about the nature of scanned surfaces. Hence, reliable processing techniques are employed to extract the required information for 3D surface reconstruction. Moreover, the extracted information from laser scanning data cannot be effectively utilized due to the lack of descriptive details. In order to provide a more realistic and accurate perception of the scanned scenes using laser scanning systems, a new approach for 3D reconstruction of planar surfaces is introduced in this paper. This approach aims to improve the interpretability of the extracted planar surfaces from laser scanning data using spectral information from overlapping imagery collected onboard modern low-cost aerial mapping systems, which are widely adopted nowadays. In this approach, the scanned planar surfaces using laser scanning systems are initially extracted through a novel segmentation procedure, and then textured using the acquired overlapping imagery. The implemented texturing technique, which intends to overcome the computational inefficiency of the previously-developed 3D reconstruction techniques, is performed in three steps. In the first step, the visibility of the extracted planar surfaces from laser scanning data within the collected images is investigated and a list of appropriate images for texturing each surface is established. Successively, an occlusion detection procedure is carried out to identify the occluded parts of these surfaces in the field of view of captured images. In the second step, visible/non-occluded parts of the planar surfaces are decomposed into segments that will be textured using individual images. Finally, a rendering procedure is accomplished to texture these parts using available images. Experimental results from overlapping laser scanning data and imagery collected onboard aerial mapping systems verify the feasibility of the proposed approach for efficient realistic 3D surface reconstruction

    Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    Get PDF
    This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects

    Points clouds generation using TLS and dense-matching techniques. A test on approachable accuracies of different tools

    Get PDF
    3D detailed models derived from digital survey techniques has increasingly developed and focused in many field of application, ranging from the land and urban areas survey, using remote sensed data, to landscape assets and finally to Cultural Heritage items. The high detailed content and accuracy of such models makes them so attractive and usable for large sets of purposes. The present paper is focused on a test aimed to point clouds generation fulfilled by archaeological data; active and passive sensors techniques and related image matching systems have been used in order to evaluate and compare the accuracy of results, achievable using proper TLS and low cost image-matching software and techniques. After a short review of approachable methods some attained results will be discussed; the test area consists of a set of mosaic floorings in a late roman domus located in Aquileia (UD-Italy) requesting a very high level of details and high scale and precision. The experimental section provides the descriptions of the applied tests in order to compare the different software and the employed method

    Reconstructing specular objects with Image Based Rendering using Color Caching

    Get PDF
    Various Image Based Rendering (IBR) techniques have been proposed to reconstruct scenes from its images. Voxel-based IBR algorithms reconstruct Lambertian scenes well, but fail for specular objects due to limitations of their consistency checks. We show that the conventional consistency techniques fail due to the large variation in reflected color of the surface for different viewing positions. We present a new consistency approach that can predict this variation in color and reconstruct specular objects present in the scene. We also present an evaluation of our technique by comparing it with three other consistency methods
    corecore