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Abstract: Over the past few years, accurate 3D surface reconstruction using remotely-sensed data
has been recognized as a prerequisite for different mapping, modelling, and monitoring applications.
To fulfill the needs of these applications, necessary data are generally collected using various digital
imaging systems. Among them, laser scanners have been acknowledged as a fast, accurate, and
flexible technology for the acquisition of high density 3D spatial data. Despite their quick accessibility,
the acquired 3D data using these systems does not provide semantic information about the nature
of scanned surfaces. Hence, reliable processing techniques are employed to extract the required
information for 3D surface reconstruction. Moreover, the extracted information from laser scanning
data cannot be effectively utilized due to the lack of descriptive details. In order to provide a
more realistic and accurate perception of the scanned scenes using laser scanning systems, a new
approach for 3D reconstruction of planar surfaces is introduced in this paper. This approach aims to
improve the interpretability of the extracted planar surfaces from laser scanning data using spectral
information from overlapping imagery collected onboard modern low-cost aerial mapping systems,
which are widely adopted nowadays. In this approach, the scanned planar surfaces using laser
scanning systems are initially extracted through a novel segmentation procedure, and then textured
using the acquired overlapping imagery. The implemented texturing technique, which intends to
overcome the computational inefficiency of the previously-developed 3D reconstruction techniques,
is performed in three steps. In the first step, the visibility of the extracted planar surfaces from
laser scanning data within the collected images is investigated and a list of appropriate images for
texturing each surface is established. Successively, an occlusion detection procedure is carried out to
identify the occluded parts of these surfaces in the field of view of captured images. In the second
step, visible/non-occluded parts of the planar surfaces are decomposed into segments that will be
textured using individual images. Finally, a rendering procedure is accomplished to texture these
parts using available images. Experimental results from overlapping laser scanning data and imagery
collected onboard aerial mapping systems verify the feasibility of the proposed approach for efficient
realistic 3D surface reconstruction.

Keywords: laser scanning; segmentation; boundary detection; texturing; occlusion detection;
3D surface reconstruction
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1. Introduction

In recent years, accurate 3D surface reconstruction has been noticed as one of the most
important necessities of different mapping and monitoring applications such as urban planning [1],
environmental monitoring [2], infrastructure monitoring [3], cultural heritage documentation [4],
indoor localization [5], and disaster management [6]. Considering the requirements of these
applications, the required data for 3D surface reconstruction are usually acquired using different
passive and active digital imaging systems mounted on static or mobile airborne and terrestrial
platforms. Among these systems, laser scanners have been recognized as the leading technology
for the rapid collection of high density 3D data due to their capability for fast and accurate data
acquisition, flexibility, and accessibility in different atmospheric conditions [7]. Despite their proven
potential for 3D data acquisition, the collected data using these systems cannot be solely utilized
for accurate 3D modeling applications [8]. The acquired laser scanning data should be processed to
extract and reconstruct individual scanned surfaces. Moreover, the reconstructed surfaces through
laser scanning data processing cannot be effectively interpreted due to the lack of descriptive details.
On the other hand, imagery collected onboard multi-platform photogrammetric systems provide rich
descriptive information regarding the scanned surfaces, which facilitates the interpretability of those
surfaces. In order to take advantage of complementary characteristics of these data sources, efficient
data integration techniques are needed to accurately incorporate these two data sources, reconstruct
the scanned surfaces, and generate realistic 3D views of the those surfaces.

Traditionally, the required imagery for 3D reconstruction applications were acquired
using high-end photogrammetric systems. However, the utilization of these systems for
emerging/lower-budget 3D mapping applications is not cost-effective due to their high initialization
costs and the need for expert users. Hence, significant attempts have recently been made to develop
and operate lower-cost mapping systems which are affordable and applicable tools for the collection
of required data for diverse 3D reconstruction applications. The progressive hardware advancements
(e.g., development of low-cost high-resolution digital cameras and multi-camera systems) and
emergence of low-cost mapping platforms (Unmanned Aerial Vehicles (UAVs) and mobile robots) have
also facilitated these developments and access to the required data for 3D surface reconstruction.
Although these newly-developed mapping systems have tremendously been acknowledged by
different user sectors due to their cost-saving benefits and ability to provide descriptive details
from the scanned surfaces, they are not widely adopted for 3D reconstruction applications due to
concerns about using consumer-grade sensors onboard unstable platforms [9]. The application of these
low-cost sensors onboard newly-developed mapping platforms presents several processing challenges
and deteriorates the quality and accuracy of 3D surface reconstruction [10].

In order to tackle these challenges, 3D surface reconstruction techniques need to be developed
while exploiting the complementary characteristics of laser scanning data and imagery collected
onboard modern mapping systems. Hence, different research activities have been conducted over
the past few years to introduce novel 3D surface modelling techniques using laser scanning-derived
positional information and imagery descriptive details [11–20]. The first step for exploiting the
synergistic properties of these data sources is to successfully register them relative to a common
reference frame [21–23]. In the second step, the descriptive details and positional surface information
from both datasets are linked together through a texturing procedure. Traditionally, the integration
of laser scanning data and images is carried out through point-by-point projection of the dense
laser point clouds onto the images [11,13–15]. Due to the large volume of scanned points,
the texturing of a complete laser scanning dataset using this approach will be computationally
inefficient. Moreover, the laser-scanned surfaces might not be completely represented due to possible
occlusions and point density variations. Hence, different surface-based texturing approaches have
been introduced in recent years to overcome the limitations of the point-based surface modelling.
These approaches are initiated by structuring the laser scanning point cloud into continuous surfaces
using surface modelling techniques (e.g., fitting smooth surfaces [24], fitting basic geometric shapes [25],
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or triangulation/meshing [26]). The vertices of the established surfaces are then projected onto the
images using collinearity equations [27–29]. Finally, these surfaces are textured using their projection
onto the images to generate a photo-realistic representation of those surfaces [12,30–35]. Similar to
point-based texturing approaches, these techniques are also computationally inefficient due to vertex
by vertex projection of the reconstructed mesh surfaces onto the overlapping images.

The other drawback of point-by-point projection—in both point-based and surface-based
texturing approaches—is the occlusion problem. This problem occurs when two laser points, in
the vicinity of sudden elevation changes, are projected onto the same image location. To identify
and resolve instances of this problem, different point-based visibility analysis techniques have been
adopted [36]. These visibility analysis approaches can be categorized into distance-based, angle-based,
and polygon-based methods. In distance-based methods (e.g., Z-buffer method), the occluding and
occluded points are determined while comparing the distances between the competing points and the
perspective center of the given image [36–38]. The point which is closest to the perspective center is
visible in the given image, while the other point is recognized to be occluded. Although distance-based
approaches are easily implemented, they cannot accurately and efficiently identify the instances of
occlusion problem in complex scenes [39]. In angle-based methods, the occluded points are detected
based on the effect of relief displacement in perspective imagery [29]. These approaches assume that
abrupt surface changes usually take place along radial directions from the image space nadir point [40].
Hence, these approaches determine the occluded points by sequentially checking the off-nadir angles
with the lines that connect individual laser scanning points and the perspective center of the image.
The instances of occlusion problem are identified where the investigated angles decrease proceeding
away from the nadir point along a radial direction. The drawback of these approaches is that they are
only applicable for frame imagery and cannot be applied for the images captured by line cameras due
to the existence of multiple exposure locations [41].

In contrast to distance-based and angle-based methods, polygon-based methods are implemented
based on the detection of occluded regions [42]. In these approaches, the occluded areas are detected
using the polygonal surfaces generated from a DBM. The polygons that are closer to the perspective
center are considered to be visible, while the other polygons are deemed to be occluded areas. Although
this method is fast and accurate, it demands the availability of a DBM. Moreover, it can only be applied
for the detection of the occluded surfaces in airborne laser scanning data [43]. In the past few years,
different types of polygon-based approaches have also been proposed for the detection of occluded
surfaces derived from terrestrial laser data within overlapping images (depth sorting algorithm [44]
and Binary Space Partitioning (BSP) algorithm [45]). Since these approaches compare the surfaces in the
object space, they provide much more accurate results in complex scenes. However, the implemented
algorithms are still computationally intensive.

To avoid the problems associated with the aforementioned techniques, a new approach for
photo-realistic reconstruction of 3D planar surfaces, which are most common features especially in
urban areas, is introduced in this paper. The main motivation behind such an alternative technique
is to realistically reconstruct the 3D planar surfaces scanned by laser scanners and low-cost digital
cameras onboard modern aerial mapping systems (e.g., UAVs which are low-cost mapping platforms of
interest for different traditional and emerging applications). This approach tries to avoid challenges of
image-based 3D surface reconstruction techniques (i.e., dense matching techniques). These challenges
are usually originated in using low-cost cameras onboard modern mapping systems and include
limited quality of the utilized digital cameras, instability of system calibration parameters, as well
as the nature of the collected imagery (e.g., tilted/oblique imagery with irregular overlap/side lap
characteristics). This approach also aims at reducing the volume of the required computations for
3D surface reconstruction and effectively handling images captured onboard modern low-cost aerial
mapping systems. Furthermore, the introduced 3D surface reconstruction approach presents a novel
visibility analysis technique to identify the occluded surfaces within available imagery. Figure 1 shows
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the outline of the proposed method for 3D scene reconstruction using datasets collected onboard
modern mapping systems.Remote Sens. 2017, 9, 212 4 of 32 
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Figure 1. The outline of the proposed 3D scene reconstruction approach.

This paper starts with the introduction of the utilized procedure for the extraction of planar
surfaces from laser scanning data. In the next section, the proposed approach for texturing of the
extracted planar surfaces using nadir and oblique imagery acquired onboard modern photogrammetric
systems is described. The presented visibility analysis technique for the identification of the occluded
surfaces within those images is also explained in this section. The performance of the introduced
approach for photo-realistic reconstruction of 3D planar surfaces is then assessed through experiments
using real airborne and UAV-borne laser scanning data and imagery. Finally, concluding remarks and
recommendations for future research are provided.

2. Laser Scanning Data Segmentation and Planar Feature Extraction

The first step in the proposed technique for 3D reconstruction of planar surfaces is to segment and
extract individual planar surfaces from laser scanning point cloud. Over the past few decades, different
methodologies have been proposed for the segmentation and feature extraction from unstructured
laser point clouds. However, the majority of these techniques do not take the internal characteristics
of laser scanning data—i.e., local point density variations and noise level in data—into account [8].
In order to overcome this limitation, an adaptive approach for the segmentation and extraction of
planar surfaces, proposed by [46], is employed in this research. This approach is implemented while
considering the possibility of application to multi-platform laser scanning datasets and considers
local point density variations and random errors within datasets. This segmentation procedure is
implemented in three successive steps: (1) point cloud characterization and planar features detection;
(2) segmentation attributes computation; and (3) clustering of the estimated attributes and planar
features segmentation. In the following subsections, the detailed explanation of above-mentioned
steps will be provided. One should note that although this approach is equivalently applicable for
both airborne and terrestrial laser scanning datasets, this paper and implemented experiments have
mainly focused on the datasets achieved from aerial mapping systems.



Remote Sens. 2017, 9, 212 5 of 32

2.1. Point Cloud Characterization and Planar Features Detection

The implemented segmentation procedure starts with characterization of the acquired laser
scanning point cloud. The objective of this characterization procedure is to evaluate and quantify
the internal characteristics of the point clouds which will be considered for adaptive point cloud
processing. In the first step of this characterization procedure, the systematic biases and random
noise in point clouds is quantified and investigated [47]. So far, different data-driven [47–49] and
system-driven [47,50] approaches have been presented for the quantification and elimination of these
errors. However, since raw laser scanning systems’ measurements (i.e., POS information, range,
and scanner encoder angles) are not always accessible for the provided laser scanning datasets,
the quantification of systematic and random errors is performed using data-driven methods in this
research [47–49]. In these approaches, the errors in laser scanning data are evaluated by analyzing the
compatibility between conjugate features in overlapping point clouds.

In the second step, the laser scanning points are classified into primitive features based on
Principal Component Analysis (PCA) of their local 3D neighborhoods [51] and potential planar
neighborhoods are identified (Figure 2a). Once the primitive planar features are detected through
the PCA procedure, appropriate representation models are selected to parametrically describe these
features. These representation models are initially selected based on the components of normal
vectors to the planes and perpendicular distance from an arbitrary origin to the planes. Once the best
representation models for local planar neighborhoods are chosen, an iterative plane fitting procedure
for individual planar neighborhoods is carried out to precisely estimate their describing parameters [52].
This procedure aims at minimizing the squared sum of the normal distances between the points in a
local planar neighborhood and the best-fitted plane to that neighborhood (Figure 2b). To eliminate
the impact of outliers (gray points in Figure 2b) during iterative plane fitting procedure, the points
within a local planar neighborhood are assigned weights that are inversely proportional to their normal
distances from the best-fitted plane in the previous iteration.
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Figure 2. Established local neighborhood for (a) the detection and (b) precise representation of planar
features (through iterative plane fitting procedure).

Finally, this point cloud characterization procedure is concluded by the estimation of local point
density variations along locally classified and represented planar neighborhoods. In this research,
these variations are quantified using cylindrical buffers established based on a novel approach
proposed by [53], while considering the 3D relationship among the points belonging to a local
planar neighborhood and noise level in the point cloud. For individual points belonging to planar
neighborhoods, the diameter of cylindrical buffer defined for local point density estimation is specified
by the distance between the query point and its furthest neighboring point within that neighborhood.
The orientation of this buffer is determined to be aligned along the normal to the represented planar
neighborhood and its height is defined based on the noise level in the data (Figure 3). The successive
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steps for the segmentation of planar features are performed while considering the internal characteristic
of laser scanning points estimated and quantified during this characterization procedure.Remote Sens. 2017, 9, 212 6 of 32 
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Figure 3. Established adaptive cylindrical buffer for local point density estimation in a
planar neighborhood.

2.2. Segmentation Attributes Computation

The utilized procedure for the segmentation of planar surfaces is then followed by the definition
and estimation of characteristic attributes describing those surfaces. In this approach, the coordinates
of normal projections of an arbitrary origin to the best-fitted planes to locally-classified planar
neighborhoods are defined as segmentation attributes [46]. The coordinates of these attribute points are
computed based on the precisely-estimated parameters representing these neighborhoods. The benefit
of such an attribute definition is that it provides unique and homogeneous parameters for laser
scanning points belonging to individual planar surfaces regardless of their position and orientation in
spatial domain. Figure 4 shows the attribute points defined for the best-fitted planes to three different
locally-classified planar neighborhoods.
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2.3. Clustering of the Estimated Attributes and Segmentation of Planar Surfaces

In the final step of this segmentation procedure, a clustering technique is implemented to
detect accumulated peaks of attribute points representing individual planar surfaces. Traditionally,
the clustering of segmentation attributes was performed based on a tessellated accumulator array that
keeps track of the frequency of the estimated attributes in individual cells. In such a discretization
procedure, the segmentation outcome is highly sensitive to the selected cell size. Moreover, these
techniques suffer from large storage requirements and computational inefficiency when dealing with
large point clouds. In order to tackle these drawbacks, a new clustering technique is introduced and
utilized in this segmentation procedure [46]. This clustering procedure starts by organizing attribute
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points in a kd-tree structure and followed by meaningful definition of the extent of clusters in parameter
domain. The appropriate extent of individual clusters is estimated while considering the acceptable
deviations among the attributes associated to coplanar points (acceptable normal distance, ∆d, and
angular deviation, ∆α, among coplanar points) as shown in Figure 5. These thresholds are determined
based on the noise level in point cloud and previous knowledge about separable neighboring planes.
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Once the cluster extent associated to each attribute point is estimated, a two-step peak detection
approach is implemented for the identification of clusters of attributes in parameter domain [46]. In this
approach, an octree space portioning procedure is initially implemented to detect approximate peak
locations in parameter domain [54]. This space division technique is sequentially carried out in the
octants with highest attributes’ count and continued until the extent of last octant becomes equivalent
or less than the previously-estimated cluster extent for coplanar points (Figure 6a). All the points within
last octant—i.e., approximate peak location—are then checked for the number of neighboring attribute
points within the established cluster extent (Figure 6b). The neighborhood including highest number of
adjacent attribute points is finally detected as the precise peak location and laser scanning points whose
associated attributes are clustered within that neighborhood are segmented as a single planar surface.
The attribute points within the first detected peak are then excluded from the parameter domain and
the search for next peaks is continued until the number of attribute points in the latest-identified peak is
less than the minimum number of points required for reliable planar surface definition. This technique
optimizes the computational efficiency of clustering attributes in parameter domain by avoiding
unnecessary neighborhoods definition. However, it cannot differentiate between the attribute points
belonging to coplanar but spatially-disconnected planar surfaces. Hence, a neighborhood analysis
through the boundaries of the segmented planar surfaces is implemented to separate disjoint coplanar
surfaces in the spatial domain.
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3. Texturing of Extracted Planar Surfaces from Laser Scanning Data

The proposed 3D surface reconstruction procedure is followed by texturing the extracted
planar surfaces from laser scanning data using collected imagery onboard aerial mapping systems.
This texturing procedure, which is an extension of the research work presented in [55], aims to
integrate image-based descriptive details and laser scanning-based positional information and provide
an accurate and realistic perception of the scanned planar surfaces. As a prerequisite for this procedure,
the acquired laser scanning datasets and overlapping imagery are firstly registered relative to a common
reference frame to ensure accurate integration of these two data sources. The proposed approach for
texturing the extracted planar surfaces from laser scanning data is then implemented in four steps.
In the first step, the visibility of the extracted planar surfaces in the available imagery is investigated
using a novel visibility analysis technique. In the second step, an occlusion detection procedure is
performed to identify the parts of segmented planar surfaces that are occluding/being occluded by
other surfaces in the field of view of provided images. In the third step, the extracted planar surfaces
are decomposed based on their visibility within the available images. Finally, a rendering procedure
is implemented to texture and visualize these planar surfaces on the screen. Detailed explanation of
these steps will be provided in the following subsections.

3.1. Visibility Check

In this subsection, a novel visibility analysis approach is introduced to identify fully/partially
visible parts of the extracted planar surfaces in the available images. The main objective of this analysis
is to investigate if the footprint of a given image along the infinite plane defined by the intended planar
surface overlaps that surface fully or partially. This visibility check is initiated by investigating the
suitability of captured images for texturing of individual segmented planar surfaces. For a segmented
planar surface, this appropriateness is inspected by considering the angle between the normal to that
surface and optical axes of the acquired images. The images whose optical axes make an acute angle
(between 0◦ to 25◦) with surface normal are considered to be appropriate for texturing an extracted
planar surface (Figure 7).
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In the second step of this visibility analysis procedure, the appropriate images for texturing
a planar surface are individually projected onto the infinite plane enclosing that surface using
collinearity equations, while enforcing the planar surface’s mathematical equation. Finally, in the
third step, the overlap area between the projected image footprints and the intended planar surface is
checked—using Weiler-Atheron algorithm [56]—to determine if that planar surface is fully or partially
visible within those images. A segmented planar surface is fully visible in an image if it is completely
enfolded by the projected image footprint (Figure 8a). On the other hand, that surface is partially
visible in a given image if more than the predefined percentage of its area overlaps the projected image
footprint (Figure 8b).
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Figure 8. Representation of (a) a fully visible and (b) a partially visible planar surface in an image.

Once the visibility check for all segmented planar surfaces within the acquired images is
accomplished, a list of the appropriate images for the texturing those surfaces will be established.
In such a list, the images whose optical axes make smaller angles with the normal to a planar surface
and have been captured closer to that surface are considered as the highest qualified candidates for
texturing procedure and provide the best sampling distance along the infinite plane encompassing
that surface.

3.2. Occlusion Detection

In the previous step, the visibility of the segmented planar surfaces within the acquired images
was investigated using the proposed visibility analysis technique. Although this approach can precisely
determine the visible parts of planar surfaces using a polygon-clipping algorithm, it does not consider
and exclude the occlusions caused by other planar surfaces. Hence, an occlusion detection procedure
for the identification of occluded parts of the segmented planar surfaces needs to be implemented.
Traditionally, this occlusion detection was performed for individual points within the visible part/parts
of a planar surface in the field of view of a given image. In such a case, a point is considered to be
occluded if the line connecting the perspective center of that image to the query point intersects
any other planar surface which is closer to the perspective center. The drawback of this occlusion
detection procedure is its computational inefficiency when dealing with massive number of the points
aggregated in the visible part/parts of planar surfaces. In order to avoid this shortcoming, a novel
procedure for occlusion detection is presented in this subsection [55]. In this procedure, the occluded
part/parts of a visible planar surface is/are specified based on visibility analysis of its/their inner
and outer boundary points. This visibility analysis starts by defining the line segments connecting
the perspective center of a given image and those boundary points. The established line segments
are then intersected with the visible parts of all planar surfaces within the field of view of that image.
The boundary points whose associated line segments do not intersect other visible planar surfaces
are visible within the field of view of the investigated image (Figure 9a). On the other hand, for the
boundary points whose respective line segments intersect one or multiple visible planar surfaces
(Figure 9b), two different situations might occur:

1. The boundary point (as well as its respective planar surface) is occluded by the intersecting planar
surface if the latter is closer to the perspective center than the former (green plane in Figure 10).

2. The boundary point (as well as its respective planar surface) is occluding the intersecting planar
surface if the former is closer to the perspective center than the latter (yellow plane in Figure 10).
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Figure 10. The surfaces occluding (green surface) and being occluded (yellow surface) by a boundary
point of the intended planar surface.

In the first situation, where the intended planar surface is occluded, the boundary points of the
occluding surface are projected onto that surface’s infinite plane to specify its invisible part within
the given image. The projected occluding surface is then intersected by the intended surface and the
overlap area between these surfaces is omitted from the intended planar surface. The remaining part
of the intended planar surface is visible within the given image. Figure 11 shows how the occluded
part of the intended planar surface is excluded. In the second situation, where the intended planar
surface is occluding another surface, the boundary points of the intended surface are projected onto
the occluded surface. If all the boundary points of the intended planar surface are projected inside the
occluded surface, the invisible part of the occluded surface is determined and omitted by intersecting
the projected surface and the occluded planar surface (Figure 12a). On the other hand, for a planar
surface that is not completely projected inside the occluded surface, the situation will be handled when
the occluded surface is investigated as the intended planar surface (Figure 12b).
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Figure 12. The occlusions caused by the intended planar surface (a) all the boundary points of the
intended surface projected inside the occluded surface and (b) a section of the boundary points
projected inside the occluded surface.

In summary, to identify visible parts of a planar surface in an image, one should sequentially
trace the points along the image footprint intersection with that surface, its visible boundary points,
and the internal points occluded by the boundary points of the other surfaces. The outcome of this
procedure, for a given planar surface, will be the segment/segments that is/are visible in different
images. In optimal situations (where the planar surface has not been occluded by the other surfaces),
the union of these sub-surfaces should add up to the entire area of the intended surface.

3.3. Planar Surface Decomposition

Once the visible part/parts of the segmented planar surfaces within available images are
determined using the introduced visibility analysis and occlusion detection procedures, the segments
of these parts, which will be optimally textured using individual images, need to be identified. Hence,
a new procedure for decomposition of the visible parts of planar surfaces into the segments that will
be textured using the individual images is introduced in this subsection [55]. In order to accurately
texture visible parts of planar surfaces within the acquired images, two different scenarios will be
considered in this subsection:
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1. In the first scenario, the intended planar surface is entirely visible in one or multiple images,
which are appropriate for texturing that surface. For a planar surface, which is completely
visible in a single image, the rendering procedure will be carried out using that image. However,
for the planar surface, which is fully visible in more than one image, the rendering procedure is
performed using the image which has the best sampling distance along that surface. This image
(either nadir or oblique) is selected as the one which is within an acceptable distance from the
surface’s centroid and its optical axis makes the smallest angle with the surface’s normal. In order
to identify the best candidate image satisfying the above-mentioned conditions, a cost function is
defined as in Equation (1):

Cost Candidate Image = wd

(
dmax − d
dmax + d

)
+ wang((−

→
c )·→n ) (1)

In this cost function, d is the distance between the perspective center of a candidate image and the
centroid of the intended surface, dmax is the maximum allowable distance between the perspective
center of an appropriate image and the centroid of the intended surface,

→
c is the candidate

image’s optical axis,
→
n is the normal vector to the intended planar surface, and wd and wang are

the weight parameters which determine the contribution of the distance and angle components
in the selection of best candidate image. This cost function will be maximized for the image
which has the closest distance to the intended surface and the smallest angle between its optical
axis and normal to that surface. The respective image is used for rendering the intended surface.
Once the most appropriate image for texturing procedure is selected, the boundary points of the
intended planar surface are projected onto the chosen image and the part of the image within the
projected boundary will be rendered onto the given surface (Figure 13).
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Figure 13. Rendering of a fully-visible planar surface within (a) a single appropriate image or (b) 
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2. In the second scenario, the intended surface is partially visible within multiple images.  

The rendering of such a surface is carried out by decomposing this surface into the segments 

which are visible in single or multiple appropriate images. In order to delineate these segments, 

visible/non-occluded parts of the intended surface within individual appropriate images  

(Figure 14) are first intersected together using the Weiler-Atheron algorithm [56]. The outcome 

of this polygon intersection procedure will be the segments, which are visible in a single image 
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Figure 13. Rendering of a fully-visible planar surface within (a) a single appropriate image or
(b) multiple appropriate images.

2. In the second scenario, the intended surface is partially visible within multiple images.
The rendering of such a surface is carried out by decomposing this surface into the segments
which are visible in single or multiple appropriate images. In order to delineate these segments,
visible/non-occluded parts of the intended surface within individual appropriate images
(Figure 14) are first intersected together using the Weiler-Atheron algorithm [56]. The outcome
of this polygon intersection procedure will be the segments, which are visible in a single image
(e.g., segment11, segment22, and segment33 in Figure 15) or multiple images (e.g., segment12 and
segment23 in Figure 15). Figure 15 shows the segments of the intended planar surface that are
visible in single or multiple images.
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Figure 15. Visible segments in (a) multiple images (segment12 and segment23) and (b) in a single image 

(segment11, segment22, and segment33). 

For the segments, which are visible in a single image (segment11, segment22, and segment33), the 

rendering procedure is carried out in the same way as the previous scenario. However, for the 

segments which are visible in multiple images, the rendering procedure is carried out using all 

appropriate images including those segments. Accordingly, the boundary points of such a 

segment are firstly projected onto all the appropriate images enclosing that segment. The 

projected boundary onto the best candidate image for texturing that segment is selected as the 

master texture and the spectral information from other enclosing images are incorporated into 

the identified master texture. In order to accurately integrate the spectral information from 

multiple images, the correspondence between the conjugate pixels within the projected 

boundary onto the relevant images is established using a 2D projective transformation (Equation 

(2)). The coefficients of this 2D projective transformation are derived using the image coordinates 

of corresponding boundary points projected onto the images through a least-squares adjustment 

procedure. 

 𝑥𝑙 =
𝑎1𝑥𝑟 + 𝑏1𝑦𝑟 + 𝑐1

𝑎3𝑥𝑟 + 𝑏3𝑦𝑟 + 1
 

(2) 

 𝑦𝑙 =
𝑎2𝑥𝑟 + 𝑏2𝑦𝑟 + 𝑐2

𝑎3𝑥𝑟 + 𝑏3𝑦𝑟 + 1
 

The assigned color to a pixel within the master texture is ultimately derived by averaging the 

colors of its conjugate pixels within all images enclosing the intended segment as in Equation 

(3). This segment will ultimately be textured using the modified master texture. Figure 16 shows 

the rendering procedure for a segment which is visible in two images (segment12). 

𝑅𝐺𝐵𝑃𝑖𝑥𝑒𝑙−𝑖 𝑀𝑎𝑠𝑡𝑒𝑟 𝑡𝑒𝑥𝑡𝑢𝑟𝑒
=

∑ 𝑅𝐺𝐵𝑃𝑖𝑥𝑒𝑙−𝑖
𝑛𝑜.𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒  
𝑖=1

𝑛𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒
 (3) 

Figure 14. A partially-visible planar surface within multiple overlapping images.

Remote Sens. 2017, 9, 212 13 of 32 

 

                     Projected image 3
Projected image 2

PC2

Image 2

   P
rojected im

age 1

PC1

Im
age 1

PC
3

Image 3

Intended 
planar surfaceSubsurface1

Subsurface2

Subsurface3

 

Figure 14. A partially-visible planar surface within multiple overlapping images. 

  

S
u

b
su

rf
a
ce

1

Subsurface2

S
u

b
su

rfa
ce

3

Segment12 Segment23

  

S
u

b
su

rf
a
ce

1

Subsurface2

S
u

b
su

rfa
ce

3

Segment11

Segment22

S
e
g

m
e
n

t
3
3

 
(a) (b) 

Figure 15. Visible segments in (a) multiple images (segment12 and segment23) and (b) in a single image 

(segment11, segment22, and segment33). 

For the segments, which are visible in a single image (segment11, segment22, and segment33), the 

rendering procedure is carried out in the same way as the previous scenario. However, for the 

segments which are visible in multiple images, the rendering procedure is carried out using all 

appropriate images including those segments. Accordingly, the boundary points of such a 

segment are firstly projected onto all the appropriate images enclosing that segment. The 

projected boundary onto the best candidate image for texturing that segment is selected as the 

master texture and the spectral information from other enclosing images are incorporated into 

the identified master texture. In order to accurately integrate the spectral information from 

multiple images, the correspondence between the conjugate pixels within the projected 

boundary onto the relevant images is established using a 2D projective transformation (Equation 

(2)). The coefficients of this 2D projective transformation are derived using the image coordinates 

of corresponding boundary points projected onto the images through a least-squares adjustment 

procedure. 

 𝑥𝑙 =
𝑎1𝑥𝑟 + 𝑏1𝑦𝑟 + 𝑐1

𝑎3𝑥𝑟 + 𝑏3𝑦𝑟 + 1
 

(2) 

 𝑦𝑙 =
𝑎2𝑥𝑟 + 𝑏2𝑦𝑟 + 𝑐2

𝑎3𝑥𝑟 + 𝑏3𝑦𝑟 + 1
 

The assigned color to a pixel within the master texture is ultimately derived by averaging the 

colors of its conjugate pixels within all images enclosing the intended segment as in Equation 

(3). This segment will ultimately be textured using the modified master texture. Figure 16 shows 

the rendering procedure for a segment which is visible in two images (segment12). 

𝑅𝐺𝐵𝑃𝑖𝑥𝑒𝑙−𝑖 𝑀𝑎𝑠𝑡𝑒𝑟 𝑡𝑒𝑥𝑡𝑢𝑟𝑒
=

∑ 𝑅𝐺𝐵𝑃𝑖𝑥𝑒𝑙−𝑖
𝑛𝑜.𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒  
𝑖=1

𝑛𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒
 (3) 

Figure 15. Visible segments in (a) multiple images (segment12 and segment23) and (b) in a single image
(segment11, segment22, and segment33).

For the segments, which are visible in a single image (segment11, segment22, and segment33),
the rendering procedure is carried out in the same way as the previous scenario. However,
for the segments which are visible in multiple images, the rendering procedure is carried out
using all appropriate images including those segments. Accordingly, the boundary points
of such a segment are firstly projected onto all the appropriate images enclosing that segment.
The projected boundary onto the best candidate image for texturing that segment is selected as the
master texture and the spectral information from other enclosing images are incorporated into the
identified master texture. In order to accurately integrate the spectral information from multiple
images, the correspondence between the conjugate pixels within the projected boundary onto the
relevant images is established using a 2D projective transformation (Equation (2)). The coefficients
of this 2D projective transformation are derived using the image coordinates of corresponding
boundary points projected onto the images through a least-squares adjustment procedure.

xl =
a1xr+b1yr+c1
a3xr+b3yr+1

yl =
a2xr+b2yr+c2
a3xr+b3yr+1

(2)

The assigned color to a pixel within the master texture is ultimately derived by averaging the
colors of its conjugate pixels within all images enclosing the intended segment as in Equation (3).
This segment will ultimately be textured using the modified master texture. Figure 16 shows the
rendering procedure for a segment which is visible in two images (segment12).

RGBPixel−i Master texture =
∑

no.o f the images where the segment is visible
i=1 RGBPixel−i

no.o f appropriate images where the segment is visible
(3)
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Figure 16. Rendering a segment visible in two images (segment12).

3. In the third scenario, which occurs in special cases, a planar surface is partially occluded by other
planar surface/surfaces in the field of view of the best candidate image for texturing that surface.
In such a case, the rendering procedure for the intended surface is performed after excluding
the occluded area from that surface. However, some parts of the occluded/excluded area might
be visible in other images. Hence, the intersection between the visible surfaces within multiple
images is carried out to determine the parts of the occluded area within a surface that can be
textured using the other images. Figure 17 shows the intersection between two surfaces which are
partially visible in two images, where one of them has an occluded area inside. Figure 18 shows
the segments of these surfaces which are visible in single or multiple images. As seen in Figure 18,
a part of the occluded area within visible surface in image 1 is covered by the visible surface in
image 2 (segment222). Therefore, segment11 will be projected onto and textured using image 1,
segment221 and segment222 will be projected onto and textured using image 2, and segment12

will be projected onto and textured using both images.
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3.4. Rendering and Visualization

Once the extracted planar surfaces were decomposed into visible segments within the acquired
images and the associated textures for rendering individual segments are delineated using the
presented approach in the previous subsection, a texture mapping procedure is implemented to
apply these textures onto the decomposed planar surfaces and visualize them on a 2D screen [57].
This texture mapping procedure is composed of the transformations between three spaces (Figure 19):

• Texture space (2D image space),
• 3D object space, and
• 2D screen space.

More specifically, in texture mapping procedure, the identified textures are firstly mapped
onto the extracted planar surfaces in 3D object space and then mapped onto the destination image
(on the screen) using a projective transformation.
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Figure 19. Transformations between texture, object, and screen spaces.

The transformation between 3D object space and 2D texture(image) space has already been
established using the collinearity equations in the previous section. Furthermore, the transformation
between the 3D object space and 2D screen space is performed using the Open Graphics Library
(OpenGL) interface [58]. This library, which is a cross-language multi-platform Application
Programming Interface (API), provides several functions which control rendering 3D objects via
computer hardware accelerators. In order to optimize the computational efficiency of the rendering
procedure, OpenGL is only capable of rendering convex and solid planar surfaces onto 2D screen space
(Figure 20a). However, in reality, we might also deal with concave polygons (Figure 20b), polygons
with holes (Figure 20c), and complex polygons (Figure 20d) within the segmented planar surfaces.
In order to handle the projection of theses surfaces onto a 2D screen, they should be tessellated into
simple convex polygons. Therefore, a tessellation procedure is performed to divide concave, hollow,
and complex polygons into easier-to-render convex polygons (triangles).
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complex surfaces.
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Since the correspondence between texture space and object space has already been established
through the texturing procedure, the vertices of the derived triangles (in the object space) are projected
onto the assigned textures to the surfaces to identify the parts of the textures that belongs to those
triangles. The clipped textures are finally rendered onto the triangles and visualized in 2D screen
space. Detailed explanation of the aforementioned steps will be provided in the following subsections.

3.4.1. Tessellation

As mentioned before, the utilized rendering interface (OpenGL) cannot depict concave, hollow,
and complex planar surfaces. Therefore, a tessellation procedure should be performed to subdivide
these surfaces into simple convex polygons and render them efficiently. Therefore, the Delaunay
triangulation algorithm [59,60] is implemented to tessellate different types of planar surfaces
(concave, hollow, and/or complex convex surfaces), derived through laser scanning data segmentation,
into triangular surfaces while preserving their geometric details. This triangulation procedure starts
with larger coarse triangles and gradually adds points to the triangulated mesh. After each additional
point is added, the generated triangle is checked to ensure satisfying Delaunay triangulation criteria:

• No other vertex lies within the interior of any of the circumcircles of the triangles constructed by
three nearby vertices in the planar surface (Figure 21).

• The minimum interior angle is maximized, and the maximum is minimized. Therefore, triangles
are generated as equiangular as possible and long and thin triangles are avoided.

This procedure provides a unique set of simple polygons (triangles) for each planar surface that
can be easily and efficiently rendered using OpenGL API routines.
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Figure 21. Delaunay triangulation of (a) a concave and (b) a hollow planar surface.

3.4.2. Texture Mapping

Once the segmented planar regions were tessellated, the texture mapping procedure is
implemented to apply the 2D texture images to the laser scanning-derived planar surfaces in object
space and visualize them in 2D screen space. The textured planar surfaces also can be individually
investigated for object extraction and interpretation purposes. The texture mapping procedure is
implemented in four successive steps:

1. Specification of the texture,
2. Assignment of texture coordinates to the triangulated polygon vertices,
3. Specification of filtering method, and
4. Drawing the surfaces on the screen using geometric coordinates and texture images.

In the first step, the textures corresponding to individual triangular surfaces are read from the
processor memory and assigned a specific ID. In the second step, the image coordinates of these
textures are arranged in a specific order to ensure proper mapping of the texture image onto the
triangulated polygon (Figure 22). The object coordinates of the triangle vertices determine where
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a particular vertex is rendered on the screen, and the image coordinates specify which pixel in the
texture image is assigned to that vertex.
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Figure 22. Correspondence between object space and texture space.

The identified textures and the objects to be textured (on the screen) are rarely the same size in
pixels. Therefore, in the third step of this texture mapping procedure, filtering methods are employed
to determine how each pixel, in the texture image, should be expanded or shrunk to match a screen
pixel size (Figure 23). In this case, the color information for each pixel on the screen is simulated or
interpolated based on the utilized texture image. If the quality of the texture image is lower than the
screen resolution, the color information for each pixel in the filtered texture image is sampled using
the color information from the nearest neighboring pixel in the original texture image. However, if the
quality of the texture image is higher than the screen resolution, the assigned color to each pixel in
the filtered texture is derived by linear interpolation of its neighboring pixels in the original texture
image. OpenGL API supports alternative types of filters for texture mapping procedure. The filters
that provide better results need greater computational power from the GPU and may have an impact
on the visualization frame rate. Consequently, choosing the appropriate filter type is performed while
considering the balance between the desired result and the capability of the target platform. In our case,
since the quality of the utilized images is higher than screen resolution, bilinear interpolation technique
introduced in [61] is applied. Finally, the filtered textures are mapped onto the transformed surfaces
on the screen using OpenGL routines and visualized to provide a three-dimensional perception of the
two-dimensional textured model. The rendered scenes (textured planar surfaces) can be utilized for
object extraction, processing, and interpretation activities.
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4. Experimental Results

In this paper, we introduced a new approach for realistic 3D surface reconstruction using laser
scanning data and imagery collected onboard modern photogrammetric systems. This approach
tries to overcome the computational inefficiency of traditional point-based 3D surface reconstruction
approaches by implementing a surface-based texturing procedure, introducing novel visibility analysis
and occlusion detection techniques, and conducting adaptive texturing mapping procedure. In order
to evaluate the performance of the proposed approach for realistic 3D reconstruction of planar surfaces
using, three different datasets were chosen and utilized in this section.
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The first dataset comprises a laser scanning point cloud collected using a Reigl LMS-Q1560
airborne scanner and overlapping imagery acquired using a Cannon Powershot S110 Camera mounted
on a 3DR X8+ Multicopter drone at an average flying height of 85 m over an educational complex
in Calgary, AB, Canada. Table 1 summarizes the specifications of the utilized laser scanning data
and imagery as presented by the data providers. Figure 24a,b show an overview of the area of
interest as seen from Google Earth and provided laser scanning point cloud over this complex
(displayed in different colors according to the height) and Figure 24c shows two of the captured
images over this complex.

Table 1. A summary of the laser scanning point cloud and imagery characteristics utilized in the first
experimental dataset.

Dataset Laser Scanning Data Photogrammetric Data
System Reigl LMS-Q1560 Cannon Powershot S110

Date acquired 2006 2015
Number of overlapping scans/images 5 18

Average point density (laser point cloud)
Ground sampling distance (image) 2 pts/m2 2.5 cm

Planimetric accuracy 68 cm 2.5 cm
Vertical accuracy 8 cm 15 cm
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Figure 24. (a) An overview of the educational complex in CalgaryCanada) from Google Earth; (b) laser
scanning point cloud colored according to height; and (c) two of the acquired images over the
same complex.
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The second dataset includes a laser scanning point cloud collected using a Leica ALS50 airborne
laser scanner and overlapping almost-nadir imagery acquired using a Rollei ACI Pro(P65+) mounted
on an integrated airborne mapping system at an average flying height of 400 m over an urban area in
Burnaby, BC, Canada. Table 2 summarizes the specifications of the utilized laser scanning data and
imagery as presented by the data providers. Figure 25a–c show an overview of the area of interest as
seen from Google Earth, provided laser scanning point cloud (displayed in different colors according
to the height) and some of the acquired images over this area.

Table 2. A summary of the laser scanning point cloud and imagery characteristics utilized in the second
experimental dataset.

Dataset Laser Scanning Data Photogrammetric Data
System Leica ALS50 Rollei ACI Pro (P65+)

Date acquired 2008 2011
Number of overlapping scans/images 6 36

Average point density (laser point cloud)
Ground sampling distance (image) 4 pts/m2 5 cm

Planimetric accuracy 41 cm 5 cm
Vertical accuracy 10 cm 14 cm
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Figure 25. (a) An overview of the area of interest (in Burnaby, BC, Canada) from Google Earth; (b) laser
scanning point cloud colored according to height; and (c) three of the captured images over same area.

The third dataset comprises a laser scanning point cloud collected by an Optech ALTM 3100
airborne laser scanner and overlapping oblique and nadir imagery acquired using a GoPro Hero 3+
camera mounted on a DJI Phantom 2 UAV at an average flying height of 26 m over a complex building
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located in Calgary, AB, Canada. Table 3 summarizes the specifications of the utilized laser scanning
data and imagery as presented by the data providers. Figure 26a–c show an overview of the building
of interest as seen from Google Earth, provided laser scanning point cloud (displayed in different
colors according to the height) and some of the acquired images over this building.

Table 3. A summary of the laser scanning point cloud and imagery characteristics utilized in the first
experimental dataset.

Dataset Laser Scanning Data Photogrammetric Data
System Optech ALTM 3100 GoPro HERO 3 + black edition

Date acquired 2013 2015
Number of overlapping scans/images 28 28

Average point density (laser point cloud)
Ground sampling distance (image) 50 pts/m2 1.7 cm

Planimetric accuracy 14 cm 1.7 cm
Vertical accuracy 6 cm 15 cm
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Figure 26. (a) An overview of the building of interest (located in Calgary, AB, Canada) from Google
Earth; (b) laser scanning point cloud colored according to height; and (c) three of the captured images
over the same building.

The performance analysis of the proposed 3D surface reconstruction procedure is implemented in
four successive steps. In the first step, the quality of the extracted planar surfaces from the provided
laser scanning datasets is evaluated using a novel quality control procedure. The second step of
this procedure is devoted to the quality assessment of realistic 3D reconstruction of the extracted
planar surfaces from laser scanning datasets using the provided imagery. Afterwards, in the third
step of this performance evaluation, the quality of the proposed approach for 3D surface modeling
procedure is analyzed using the quality control technique presented in [62]. Finally, the computational
efficiency of the introduced 3D surface reconstruction technique is assessed in comparison with a
traditional point-based surface reconstruction approach. In the following subsections, the details of
these experiments will be presented in detail.
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4.1. Quality Control of the Extracted Planar Surfaces from Laser Scanning Data

To investigate the performance of the implemented approach for the segmentation and extraction
of planar surfaces, experiments using the provided laser scanning data are conducted. These point
clouds include a variety of planar surfaces such as building rooftops, building facades, and road
surfaces. The provided point clouds are initially processed using the presented segmentation approach
to extract individual planar surfaces while considering thresholds which have been selected based on
general knowledge about the nature of the scanned area and the utilized scanner. Figure 27a–c show
planar surface segmentation/extraction outcome for these laser scanning data.
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Figure 27. Planar surface extraction results for the (a) first; (b) second; and (c) third laser scanning
datasets before quality control procedure.

The performance of the implemented approach for planar surface extraction technique is then
quantitatively evaluated using a novel quality control procedure proposed in [63]. This quality
control approach keeps track of different problems affecting segmentation and planar surface
extraction from point clouds—i.e., unincorporated points, over-segmentation, under-segmentation,
and invading/invaded surfaces, identifies the frequency of their occurrence, and recommends solutions
for resolving these problems without the need for the reference data and regardless of the utilized
processing procedure. Table 4 summarizes the achieved quality control measures for the extracted
planar surfaces from these laser scanning point clouds. The identified segmentation problems are
then resolved using the proposed solutions in this quality control procedure. Figure 28a–c show
the extracted planar surfaces from the provided laser scanning datasets after implementation of
the utilized quality control procedure. The qualitative analysis of final outcome through visual
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inspection of achieved results and re-evaluation of the modified planar surfaces using the same quality
control procedure verifies that this technique is capable of effective identification and resolution of
segmentation/surface extraction issues.

Table 4. Derived quality control measures for the planar feature segmentation results from airborne
laser scanning datasets.

QC Measures First Dataset Second Dataset Third Dataset
Unincorporated points 15% 18% 22%

Over-segmentation 12% 14% 21%
Under-segmentation 0% 0.3% 3%
Invading/invaded
surfaces segments 1% 0% 2%
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Figure 28. Planar surface extraction results for the (a) first; (b) second; and (c) third laser scanning
datasets after quality control procedure.

The re-evaluation of the modified planar surfaces can be carried out through analysis of the
achieved roughness factors for the extracted surfaces. The surface roughness factors, which are
preliminary tools for the investigation of the quality of the extracted planar surfaces, are defined as the
deviation of the segmented points within those surfaces from the best-fitted planes to those points.
This quality measure is estimated as in Equation (4).

Sur f ace Roughness Factorj = RMSEndi
=

√
∑n

i=1 ndi
2

n
(4)
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where ndi is the normal distance between point i (which belongs to the planar surface j) and the
best-fitted plane through the entire surface j’s points, and n is the total number of the points aggregated
in the segmented planar surface j. In order to perform this evaluation and ensure that surfaces with
intended accuracy have been extracted, the accumulation of extracted surfaces within the provided
laser scanning datasets with respect to their estimated surface roughness factors is investigated
(Figure 29a–c). The analysis of the estimated surface roughness factors for the extracted surfaces from
all three provided laser scanning point clouds verifies that the extracted surfaces meet the required
accuracy standards for 3D surface reconstruction procedure specifically after performing quality
control procedure for the laser scanning data segmentation outcome. The required accuracy standards
are different for various applications. However, for the intended precise surveying and 3D modelling
applications are in centimeter level.
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Figure 29. Analysis of the quality of the extracted surfaces from: (a) first; (b) second;
and (c) third provided laser scanning point clouds after quality control of segmentation/planar surface
extraction outcome.

4.2. Evaluation of Realistic 3D Reconstruction of the Extracted Planar Surfaces Using Acquired Imagery

In this subsection, the feasibility of the proposed approach for realistic 3D reconstruction of
the extracted planar surfaces from laser scanning data is investigated through experiments using
the imagery collected onboard UAV-borne and airborne photogrammetric systems. As mentioned
in the previous section, these experiments are conducted while considering the visibility of the
extracted planar surfaces within the provided nadir and oblique imagery. To provide a more complete
visualization of the scanned scenes, the laser scanning points which have not been aggregated in
planar surfaces are individually projected onto their enclosing images and colored using the spectral
information of their nearest neighboring pixels after visibility analysis using Z-buffer approach.
Figures 30–32 show different views of the realistically-reconstructed 3D planar surfaces and colored
non-segmented points of the datasets of interest while considering probable occlusion problems
(the occluded areas have been visualized in black color).



Remote Sens. 2017, 9, 212 24 of 32
Remote Sens. 2017, 9, 212 24 of 32 

 

 

(a) 

 

(b) 

Figure 30. Realistic 3D surface reconstruction outcome for the first dataset: (a) and (b) two different 

views from the textured planar surfaces and individually colored non-segmented points. 

 

Figure 31. Realistic 3D surface reconstruction outcome for the second dataset: a single view of the 

textured planar surfaces and individually colored non-segmented points. 

Figure 30. Realistic 3D surface reconstruction outcome for the first dataset: (a) and (b) two different
views from the textured planar surfaces and individually colored non-segmented points.
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Figure 32. Realistic 3D surface reconstruction outcome for the third dataset: (a) and (b) two different
views from the textured planar regions and individually colored non-segmented points.

Qualitative evaluation of the derived texturing results through visual inspection of Figures 30–32
verifies the feasibility of the proposed approach for realistic 3D surface reconstruction using laser
scanning data and overlapping images collected onboard various photogrammetric systems while
considering the visibility of those surfaces within the images. In these textured 3D scenes, the occluded
areas are visualized in black color.

4.3. Quality Control of 3D Surface Reconstruction Outcome

The third set of conducted experiments aims to evaluate the quality of the reconstructed 3D
surfaces from laser scanning data and overlapping imagery collected onboard photogrammetric
systems. This quality control procedure is conducted in two steps as proposed in [62]. The first step
of this procedure, which is devoted to qualitative evaluation of the reconstructed 3D surfaces and
identification of occluded surfaces within the captured images, has already been conducted during
the implementation of the proposed 3D surface reconstruction technique (occluded surfaces have
represented as black surfaces in the provided reconstruction results (Figures 30–32)). The second step
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of this quality control procedure is implemented with respect to control surfaces extracted from higher
quality data sources (point clouds achieved using more accurate laser scanners or derived through
image dense matching techniques).

In order to carry out such an evaluation, a few corresponding 3D surfaces are firstly identified
within extracted/achieved from both investigated data sources using a 3D surface matching
technique [64]. Once the correspondence between the extracted surfaces from both data sources
established, optimal rotation, translation, and scale parameters between two point clouds are estimated.
The estimated transformation parameters facilitate the identification of other corresponding surfaces
between two data sources. The corresponding surfaces are then compared according to their estimated
surface parameters (the components of normal vectors to the extracted surfaces). The deviation of the
extracted surfaces’ normal from the normal to their corresponding control surfaces is then computed
and utilized as a measure for quality assessment of the reconstructed surfaces. Figure 33 shows how
the quality control of reconstructed surfaces with respect to control surfaces is performed.
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Figure 33. Quality control of an extracted planar surface with respect to its corresponding control
planar surface.

The quality assessment of the reconstructed surfaces using provided laser scanning and imagery
datasets is then carried out comparing to control surfaces extracted from overlapping higher quality
laser scanning or image-based point clouds. Figure 34 provides the pie charts representing the
distribution of reconstructed surfaces according to their deviations from control datasets in the
provided datasets. To explain these charts in more details, the discrepancy angle between normal
vectors to all the reconstructed surfaces and normal vectors to their matched surface within the
control data is estimated and classified. The percentage of the accumulated surfaces in each class with
respect to all the reconstructed surfaces is then calculated and represented on the provided pie charts.
The qualitative evaluation of achieved results verifies that for the surfaces reconstructed from the
first two datasets, which compared to the extracted surfaces to higher-quality laser scanning point
clouds, the deviations of the reconstructed surfaces is less than the deviations of the reconstructed
surfaces from third dataset, where control surfaces extracted from higher density imagery-based point
cloud. Furthermore, the analysis of the reconstructed surfaces’ deviations from their control surfaces
proves that the proposed surface reconstruction approach provides realistic 3D models with acceptable
accuracy (which in our case is below 15◦ deviation from control surfaces for more than 75% of the
reconstructed surfaces).
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Figure 34. Pie charts representing distribution of the reconstructed surfaces w.r.t to their deviations
from corresponding surfaces extracted from overlapping control data sources for the (a) first dataset;
(b) second dataset; and (c) third dataset.

4.4. Evaluation of the Computational Efficiency of the Proposed 3D Scene Reconstruction Technique

The performance evaluation of the proposed technique for 3D surface reconstruction using
overlapping laser scanning data and imagery is finally concluded by comparative analysis of
computational efficiency of this technique with respect to traditional point-based and image-based
scene reconstruction techniques. In order to perform this comparative analysis, a laser scanning
and imagery dataset collected over a complex building is utilized. The laser scanning point cloud
has been collected using a Leica ALS50 airborne laser scanner and overlapping imagery has been
acquired using Leica ADS100 digital imaging system (Figure 35). The computational efficiency of
the proposed surface-based 3D reconstruction approach in comparison with a traditional point-based
reconstruction technique is then investigated through comparison of the required processing time
for 3D reconstruction using these two techniques. Figure 36 shows the reconstructed 3D surfaces
using these two techniques and Table 5 lists the number of the projected points onto the images and
required processing time for realistic 3D surface reconstruction using these two approaches as well as
image-based surface reconstruction (dense matching). The comparison of the tabulated processing
times for these approaches shows that the implementation of the proposed surface-based technique
greatly improves the efficiency of realistic 3D surface reconstruction procedure. In addition, the visual
inspection of the reconstructed surfaces using both approaches (Figure 36a,b) verifies that the proposed
surface-based 3D surface reconstruction technique provides a more homogenous 3D representation of
the scanned surfaces.
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point-based and (b) the proposed surface-based scene reconstruction techniques.

Table 5. Required processing time for 3D scene reconstruction for the provided dataset using
point-based, surface-based, and image-based techniques.

3D Scene Reconstruction
Approach

Total Number of
Points

Number of Projected
Points

Processing
Time

Point-based
45,370

45,370 5 min
Surface-based 3449 69 s

Image-based (dense matching) 584,320 NA 12 min

5. Conclusions and Recommendations for Future Research Work

Over the past few decades, accurate 3D surface reconstruction has been established as a
prerequisite for a variety of mapping, modelling, and monitoring applications. The required data for
realistic 3D reconstruction of surfaces satisfying the needs of these applications are usually provided
by high-end photogrammetric and alternative active digital imaging systems. Despite their proven
feasibility for the collection of the required data for 3D scene reconstruction, these systems cannot be
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widely used due to their high initialization costs and the need for high-level expertise for their operation.
To overcome these limitations, tremendous research attempts have been made to provide lower-cost
passive and active digital imaging system. However, the application of these newly-developed
consumer-grade digital imaging systems introduces challenges which negatively affect the quality
of final reconstructed 3D models. Therefore, novel 3D scene reconstruction techniques need to be
developed which address these challenges while preserving the quality of final 3D reconstructed
surfaces in a scene.

Hence, a new surface-based technique for 3D scene reconstruction using laser scanning data and
imagery captured using modern photogrammetric systems was introduced in this paper. The proposed
technique is implemented in four steps: In the first step of this procedure, the laser scanning point cloud
is processed using a novel segmentation approach to extract individually scanned planar surfaces.
In the second step, the visibility of the extracted planar surfaces within the acquired images investigated
in two stages. A new visibility analysis procedure is initially conducted to identify the visible parts of
the extracted surfaces within individual images. A novel occlusion detection approach is consecutively
implemented to check whether the visible part/parts of a single surface is occluding/being occluded
by other extracted surfaces within the field of view of individual images. In the third step of this
3D surface reconstruction procedure, a surface decomposition procedure is performed to determine
which part/parts of each planar surface will be textured as best as possible using individual images.
An efficient rendering technique is finally used to apply the identified textures within the images to
the extracted surfaces in 3D space and visualize them on 2D screen.

The feasibility and computational efficiency of the proposed approach is then verified through
experiments conducted using real laser scanning data and imagery captured by both high-end and
modern low-cost photogrammetric systems. The quality evaluation of the extracted surfaces from
provided laser scanning data was initially conducted using a novel quality control procedure to
identify problems affecting the quality of planar feature segmentation and provide solutions to
resolve these issues. The qualitative and quantitative analysis of the reconstructed surfaces was then
performed through visual inspection of realistically-reconstructed 3D surfaces and comparing the
quality of the reconstructed surfaces with control surfaces extracted with higher-quality imagery-based
or laser scanning point clouds. The outcome of these experiments verified that the proposed
approach delivers more homogenous representation of the scanned surfaces with acceptable accuracy.
The final experiment was carried out to investigate the computational efficiency of the proposed
surface-based 3D scene reconstruction approach in comparison with traditional point-based scene
reconstruction techniques using laser scanning point cloud and imagery. The comparative analysis
of the achieved processing times from both techniques proved that the proposed surface-based 3D
scene reconstruction technique overcomes the computational inefficiency of the previously-developed
point-based reconstruction techniques. This improvement in computational efficiency is mainly
achieved through checking the visibility of the boundary points of the extracted surfaces within the
acquired images rather than their entire points.

In conclusion, the contributions of the proposed realistic 3D surface reconstruction technique can
be summarized as follows:

1. Implementation a surface-based 3D surface reconstruction procedure as opposed to
previously-developed point-based techniques,

2. Expansion of the occlusion/visibility analysis approaches to handle surface-based
texturing procedure,

3. Rendering the extracted surfaces using the images where they are fully or partially visible, and,
4. Enhancement of the interpretability of the segmented planar surfaces.

Future research work will be concentrated on the extension of the proposed approach for 3D
reconstruction of non-planar surfaces (e.g., linear/cylindrical features, cones, spheres) to provide
complete view of the scanned scenes. It will also be focused on the development of boundary
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regularization techniques for the extracted planar surfaces to generate more visually appealing 3D
reconstruction outcomes. In addition, the assigned textures to the extracted planar surfaces can be
processed using image processing techniques (e.g., image segmentation) to identify and quantify
characteristics of individual planar surfaces (e.g., possible deteriorations or cracks that have not been
properly represented in the laser scanning point cloud).
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