938 research outputs found

    On Five-dimensional Superspaces

    Full text link
    Recent one-loop calculations of certain supergravity-mediated quantum corrections in supersymmetric brane-world models employ either the component formulation (hep-th/0305184) or the superfield formalism with only half of the bulk supersymmetry manifestly realized (hep-th/0305169 and hep-th/0411216). There are reasons to expect, however, that 5D supergraphs provide a more efficient setup to deal with these and more involved (in particular, higher-loop) calculations. As a first step toward elaborating such supergraph techniques, we develop in this letter a manifestly supersymmetric formulation for 5D globally supersymmetric theories with eight supercharges. Simple rules are given to reduce 5D superspace actions to a hybrid form which keeps manifest only the 4D, N=1 Poincare supersymmetry. (Previously, such hybrid actions were carefully worked out by rewriting the component actions in terms of simple superfields). To demonstrate the power of this formalism for model building applications, two families of off-shell supersymmetric nonlinear sigma-models in five dimensions are presented (including those with cotangent bundles of Kahler manifolds as target spaces). We elaborate, trying to make our presentation maximally clear and self-contained, on the techniques of 5D harmonic and projective superspaces used at some stages in this letter.Comment: 46 pages, 3 figures. V5: version published in JHE

    Matrix Compactification On Orientifolds

    Get PDF
    Generalizing previous results for orbifolds, in this paper we describe the compactification of Matrix model on an orientifold which is a quotient space as a Yang-Mills theory living on a quantum space. The information of the compactification is encoded in the action of the discrete symmetry group G on Euclidean space and a projective representation U of G. The choice of Hilbert space on which the algebra of U is realized as an operator algebra corresponds to the choice of a physical background for the compactification. All these data are summarized in the spectral triple of the quantum space.Comment: 28 pages, late

    Elliptic Genus of E-strings

    Full text link
    We study a family of 2d N=(0,4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2 K3.Comment: 49 pages, 2 figure

    Monopole Bundles over Fuzzy Complex Projective Spaces

    Full text link
    We give a construction of the monopole bundles over fuzzy complex projective spaces as projective modules. The corresponding Chern classes are calculated. They reduce to the monopole charges in the N -> infinity limit, where N labels the representation of the fuzzy algebra.Comment: 30 pages, LaTeX, published version; extended discussion on asymptotic Chern number

    Special Geometry of Euclidean Supersymmetry III: the local r-map, instantons and black holes

    Full text link
    We define and study projective special para-Kahler manifolds and show that they appear as target manifolds when reducing five-dimensional vector multiplets coupled to supergravity with respect to time. The dimensional reductions with respect to time and space are carried out in a uniform way using an epsilon-complex notation. We explain the relation of our formalism to other formalisms of special geometry used in the literature. In the second part of the paper we investigate instanton solutions and their dimensional lifting to black holes. We show that the instanton action, which can be defined after dualising axions into tensor fields, agrees with the ADM mass of the corresponding black hole. The relation between actions via Wick rotation, Hodge dualisation and analytic continuation of axions is discussed.Comment: 72 pages, 2 figure

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-

    General instanton counting and 5d SCFT

    Get PDF
    Instanton partition functions of 5d N=1 gauge theories are Witten indices for the ADHM gauged quantum mechanics with (0,4) SUSY. We derive the integral contour prescriptions for these indices using the Jeffrey-Kirwan method, for gauge theories with hypermultiplets in various representations. The results can be used to study various 4d/5d/6d QFTs. In this paper, we study 5d SCFTs which are at the UV fixed points of 5d SYM theories. In particular, we focus on the Sp(N) theories with N_f \leq 7 fundamental and 1 antisymmetric hypermultiplets, living on the D4-D8-O8 systems. Their superconformal indices calculated from instantons all show E_{N_f+1} symmetry enhancements. We also discuss some aspects of the 6d SCFTs living on the M5-M9 system. It is crucial to understand the UV incompleteness of the 5d SYM, coming from small instantons in our problem. We explain in our examples how to fix them. As an aside, we derive the index for general gauged quantum mechanics with (0,2) SUSY.Comment: 67 pages, 9 figures; v3: minor changes, published versio
    • …
    corecore