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guerrier@dit.unitn.it

Davide Prandi

The Microsoft Research - University of Trento

Centre for Computational and Systems Biology

prandi@cosbi.eu

Corrado Priami

The Microsoft Research - University of Trento

Centre for Computational and Systems Biology

and

Dipartimento di Informatica e Telecomunicazioni, Università di Trento
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quaglia@dit.unitn.it

Abstract

Several approaches have been proposed to model biological systems by
means of the formal techniques and tools available in computer science. To
mention just a few of them, some representations are inspired by Petri Nets
theory, and some other by stochastic processes. A most recent approach
consists in interpreting the living entities as terms of process calculi where
the behavior of the represented systems can be inferred by applying syntax-
driven rules.

A comprehensive picture of the state of the art of the processcalculi
approach to biological modeling is still missing. This paper goes in the di-
rection of providing such a picture by presenting a comparative survey of the
process calculi that have been used and proposed to describethe behavior of
living entities.

1 Introduction

The recent progress of biology is rapidly producing a huge number of experimen-
tal results and it is becoming impossible to coherently organize them using only
human power. Abstract models to reason about biological systems is becoming
an indispensable conceptual and computational tool for biologists, so calling for
computer science.

The biological approach clarifies components, for example proteins and cells.
It also gives graphical and very readable representations of the interactions among
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the above entities. However, all these aspects are far from being formally defined.
Formal foundations of descriptions are mandatory requirements for enhancing the
understanding of complex biological systems and for automatic simulation and
analysis. Computer science modeling is specifically designed to meet the above
requirements, but it heavily uses mathematical symbolism that is not easy to read
for a neophyte. Therefore we need an approach that hides as many technical details
as possible from users.

A further aspect to consider is the abstraction level that one wants to imple-
ment. Biology tries to answer a wide set of questions that aredistributed on an
(imaginary) scale. For example, classical genetic analysis uses thegeneas ele-
mentary unit, ignoring (i.e. abstracting from) the biochemical properties of its ele-
ments. Abstraction is a powerful technique in computer science, where researchers
often face undecidable problems. An abstraction has to capture the essential prop-
erties of the phenomenon under consideration, and, at the same time, it has to be
computable, to allow automatic analysis, and extensible, to permit the addition of
further details [65].

The models and the computational tools developed over the last years focused
on molecular biology. Research in bioinformatics started from the observation
that biological molecules in real systems participate in very complex networks,
like regulatory networks for gene expression, intracellular metabolic networks and
intra/inter-cellular communication networks. Due to the (relatively) recent studies
in molecular biology and the omics disciplines, there is an accurate description of
the fundamental components of the living systems, especially of proteins and cells,
but there is not a complete knowledge on how these individualcomponents are
related and interact to form complex systems.

To cope with the complexity of these systems various computational approaches
have been developed and used. Among them we mention the following ones:

• biochemical kinetic models(see, e.g., [3, 77, 71]);

• generalized models of regulation(see, e.g, [74, 1, 2, 20]);

• functional object-oriented databases(see, e.g., [76, 4, 38];

• integrated frameworks with GUI(see, e.g., [75, 70];

• exchange languages(see, e.g., [39, 23]).

In recent times, a paradigmatic shift occurred in biology. Researchers started
trying to build system visions rather than component visions, and the focus is now
rapidly moving from structure to function. This process leads to the so-calledSys-
tems Biology[40] that is mostly interested in the behavior of cellular processes and
in the description of the interactions among components. Seen from a computer
science point of view, the methods and the techniques that could be best suited
to face the challenge of systems biology are those related tothe description and
simulation of interacting distributed systems.

Indeed, formal methods have gained increasing attention. Notable examples
are those that use the graphical formalism ofPetri Nets[67]. A Petri Net is an au-
tomaton whose states are sets of distributed components. A transition may trans-
form some elements of a state, and more than one transition can be allowed to
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occur at the same time. Thanks to their intuitive graphical representations, some
variants of Petri Nets have been successfully developed to model biological sys-
tems (see, e.g., [27, 30, 63, 55, 34, 42]). More sophisticated models like self-
modified Petri Nets [34], Hybrid Petri Nets [46], StochasticActivity Networks [49]
and MetaNets [42] have been used, too. Recent studies also usedStatechartsand
Live Sequence Charts[36, 22, 37] for biological modeling. Both formalisms are
visual languages originating from the theory of reactive systems and software engi-
neering. Moreover, Live Sequence Charts allow, through a specific methodology,
the automated analysis of the biological data they represent [29]. Finally, mem-
brane systems[54] (also called PSystems) are computational models based upon
the notion ofmembranestructure. The model is founded on the observation that
complex biological systems are composed by independent computing processes
separated by and communicating through membranes. Membranes delimit regions
and compriseobjectsandevolution rules. A computation is obtained starting from
an initial configuration of membrane and objects and then applying evolution rules.
The research in this area is currently very active and a comprehensive bibliography
includes hundreds of papers [51], some of them aiming at finding formal prop-
erties (e.g., [53, 52]) and some of them working on systems biology applications
(e.g., [24, 56]).

The above modeling examples witness that the use of formal methods for sys-
tems biology is actually promising, but the conceptual tools used are either limited
in compositionality or in their ability to handle quantitative data. Another approach
to biological modeling is based on process calculi [47, 11, 48, 69]. Processes are
the basic units of these languages: they have internal states and interaction ca-
pabilities. When a process receives an input its behavior isbased on its internal
state and on the content of the input. A direct consequence ofinteraction can
be the modification of the internal state and of the interaction capabilities of the
interacting processes. In the setting of process calculi, complex entities, like pro-
tein complexes, can be described hierarchically, and this allows either top/down
or bottom/up analysis. Moreover, process calculi typically come equipped with
well-assessed equivalence relations which could be powerful tools for biology. For
example, the equivalence of the same functional unit in different organisms could
be used as a measure of behavioral and structural similarity.

The process calculi approach to the formal modeling of biological systems
has gained more and more attention over the last few years, particularly since the
publication on Nature of the landmark paper by Regev and Shapiro [65]. A com-
prehensive picture of the state of the art, however, is stillmissing. This paper goes
in the direction of providing such a picture and presents a survey of the process
calculi that have been proposed to describe the behavior of living entities. We will
also point out the available tools based on the calculi we describe.

This survey paper is mainly intended for computer scientists who are interested
in understanding how formal techniques from process calculi theory can be used
to model biological systems. The reader who is not familiar with process calculi
descriptions of concurrent tasks can find in Sect. 2 a short and high-level presenta-
tion that outlines the main features of the process calculi approach to concurrency
and provides references to basic literature in the field.

The rest of the paper is organized as follows. Sect. 3 sets up some biological
notions, providing a common background that allows the comparison of the pro-
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posed calculi. Sect. 4 introduces the basic abstraction principle that relates biology
and process calculi. Sect. 5 presents a particular biological phenomenon relative
to the immune system. Such phenomenon is used as running example in Sect. 6
to comment on various calculi for biology which have been proposed in the lit-
erature. In particular, we deal withbiochemical stochasticπ-calculus [66, 62],
BioAmbients[64], Brane calculi[9], CCS-R[15], Beta-binders[61], PEPA [31]
andκ-calculus [16]. The primitives of the above calculi and languages are ana-
lyzed by referring to the running example. Sect. 7 concludesthe presentation with
some final remarks on the set of calculi considered.

2 Overview on process calculi

Starting from the forerunner CCS, the ‘Calculus of Communicating Systems’ [47],
process calculi have been defined with the primary goal of providing formal speci-
fications of concurrent processes, namely of computationalentities executing their
tasks in parallel and able to synchronize over certain kindsof activities. The model
of a system is typically given as a program or a term that defines the possible be-
haviors of the various components of the system. Calculi arethen equipped with
syntax-driven rules, the so-calledoperational semantics[58]. These rules, that can
automatically allow the inference of the possible future ofthe system under analy-
sis. For instance, they can specify that a certain processP evolves into processQ,
writtenP −→ Q.

The basic entities of process calculi areactionsandco-actions(complementary
actions). In the most basic view, like e.g. in CCS, an action is seen as an input
or an output over a channel. Input is complementary to outputand vice-versa.
Actions and co-actions can also transmit/receive names over the channel (e.g. the
IP address of the Internet) on which input and output are supposed to take place.
This is, indeed, the underlying assumption taken in theπ-calculus [48]. As it will
be clear in the rest of the paper, the actual interpretation of complementarity varies
from one calculus to the other. The relevant fact to be pointed out here is that
complementary actions are those that parallel processes can perform together to
synchronize their (otherwise) independent behaviors.

A process is an elaboration unit that evolves by performing actions (a, b, . . .)
and co-actions (e.g.a, b, . . .). To constraint the temporal order of the concurrent
activities there is a limited set of operators.

Sequential ordering is rendered via theprefix operatorwritten as an infix dot.
For instance the terma. a. P denotes a process that may execute the activitya, then
a, and then all the activities modeled byP .

Two processesP andQ that run in parallel are represented by the infixparallel
compositionoperator ‘|’ as inP | Q. As anticipated, processesP andQ can either
evolve independently or synchronize over complementary actions. For instance,
the operational semantics ofa. P | a.Q allows the inference of the following syn-
chronizing transition:

a. P | a.Q −→ P | Q .

The restriction operator is essential for the representation of encapsulation.
In basic calculi like CCS, this operator, written(νa), is only meant to limit the
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visibility of actions. For instance, is not possible to infer

a. P | (νa)(a.Q) −→ P | (νa)Q

becausea is a private resource of the right-hand process of the parallel composition
and the left-hand process cannot interact on it. This fact guarantees, e.g., that the
two processesR and S in (νa)(R | S) have the opportunity to interact over a
shared resourcea without any interference by the external world.

In more sophisticated calculi, as for instance in theπ-calculus, the restriction
operator ensures a relevant gain in expressiveness. Theπ-calculus allows channel
names to be sent in interactions and hence the representation of mobile (i.e. dy-
namically changing) systems, because receiving new names means acquiring new
interaction capabilities. This is what happens in biological networks, where the
connections between nodes, and so the structure of the network, can change at any
time.

In all the calculi for mobility, restricted names cannot be transmission media
outside the scope of their definition implemented by the restriction operator. For
example, no interaction overa can occur betweenP andQ or R in the process
P | (νa (Q | R)), while Q andR can use their provate resourcea to communicate.
Restricted names can however be used as transmitted data and, once transmitted,
become private resources shared by the sender and the receiver (hereafter we say
public (private) names or channels to mean not restricted (restricted) names or
channels). Suppose for instance that the restricted namea has been sent fromQ
to P in the above example. This is semantically rendered by a modification of the
scope(i.e. the visibility) of the restricted name, yielding

P | νa (Q | R) −→ (νa)(P ′ | Q′ | R) .

The peculiarity of the restriction operator of mobile process calculi has been ex-
tensively used in modeling biological behaviors. SinceQ andR and thenP ′, Q′

andR can privately interact overa, if P , Q, P ′ are taken to represent molecules,
then the processesνa (Q | R) andνa (P ′ | Q′ | R) can be seen as the complexes
of respectively two and three molecules.

We recalled only the fundamental operators which are commonto various pro-
cess calculi. Each calculus then adopts some specific operators and has a specific
view about which activities must be considered complementary. For instance in
CSP-like calculi (e.g. PEPA [31]) the interaction is not limited to be binary and the
parallel composition is usually equipped with the set of channel names over which
interaction can occur. Another common feature of process calculi is that their op-
erational semantics allows the interpretation of process behaviors as graphs, called
transition systems. The nodes of the graph represent processes, and there is an arc
between the two nodesP andQ if P evolves intoQ. For instance the immediate
futures ofa. P1 | a. P2 | a. P3 is drawn as

νa (a. P1 | a. P2 | a. P3)

νa (P1 | P2 | a. P3)

νa (a. P1 | P2 | P3)
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The depicted transitions highlight that each of the processes at the left-hand and the
right-hand sides can communicate witha. P2. The evolution of the system depends
upon the temporal order of the interaction. Since no assumption can be made on
this, both transitions are reported in the graph, which is interpreted as a model of
all the possible evolutions.

Process calculi are typically very simple, yet contain all the ingredients for the
description of concurrent systems in terms ofwhat they can dorather than ofwhat
they are.

Two main properties of process calculi are worth mentioning. First, the mean-
ing (behavior) of a complex system is expressed in terms of the meaning of its
components. A model can be designed following a bottom-up approach: one de-
fines the basic operations that a system can perform, then thewhole behavior is
obtained by composition of these basic building blocks. This property is called
compositionality. Second, the mathematical rules defining the operational seman-
tics of process calculi allow both the automatic generationof the transition system
of a given process by parsing the syntactic structure of the process itself and the
simulation of a run of the system. So process calculi are specification languages
that can be directly implemented and executed.

3 A few biological notions

Each of the languages that will be dealt with in the rest of this survey was adapted
or developed to study a particular aspect, i.e. abstracts a specific set of features, of
a biological system. In this section, we describe some biological notions in terms
of a set of abstract ‘biological primitives’ that allow the relative comparison of the
considered calculi.

3.1 Biochemical interactions

Living entities are constantly crossed by a flow of matter andenergy. In this con-
tinuous random flow reactions take place whenever there is a sufficient quantity of
kinetic energy [73]. For instance, a reaction between molecules A and B in Fig-

A
B

0 ≤ d ≤ D

A

B

Figure 1: Molecular interaction

ure 1 may occur if A and B are close enough and correctly oriented. Normally the
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frequency of reactions is quite low. By need, enzymes [12] may orient molecules
in the right way favoring and speeding up the reaction.

Referring to the example in Figure 1, we observe that two molecules can bind
if they possess complementary zones, calleddomains, and they have the right ori-
entation (or, alternatively, the complementary domains are visible or available to
each other).

The above conditions, however, are not enough. A domain of a molecule can
be eitheractiveor inactive. An inactive domain can never bind, not even when a
complementary domain with the right orientation is close toit. In order to acti-
vate a domain, a molecule needs to be involved in some reaction, for example in
a phosphorylation (binding of a phosphate group to the protein). Active domains
may further be free or bound. So domains are classified depending on three pos-
sible states: active bound, active free, and inactive. Figure 2 shows a schematic

A

B

1 2 3

i j

A
1 2 3

A
1 2 3

i j

C
C

i j

Active bound

Active free

Inactive

Figure 2: Interfaces, sites, and states

representation. Biological entities (namedA, B, andC in the picture) possess an
interface(the rounded box with colored hooks). Each interface hasn > 0 sites (the
hooks sticking out the rounded box), and each of them can be inone out of three
states (the color of the hook) as said above. A site is an indivisible structure that
can only join to a complementary site. In the scenario drawn in Figure 2,A cannot
bind toB. In fact, sites2 andi are complementary, just as3 andj, but 2 and 3 are
both inactive. On the contrary,A andC can bind together: sitesi and2, andj and
3 are pairwise complementary, and all of them are active free.

An interesting point is relative to the possibility of dynamically changing the
number of sites available on a given interface or their states. In general, might be
necessary to be able to add sites (see the running example in Sect. 5).

Finally, an important aspect of biological entities is their shape. Indeed two
molecules can interact if they can get in touch accommodating their shapes. Con-
sider for instance Figure 3(a) where entitiesA andB can interact through sites 1
and 2. The interaction can change the involved electrostatic forces. It can modify
the shape of the new complex, and eventually make site 3 available for interaction
(Figure 3(b)).

Concluding, an interaction site can be inactive either because a chemical re-
action is needed to activate it, or because it is hidden by thethree-dimensional
structure (shape) of the hosting component.
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B
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A
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3

(a) (b)

Figure 3: Shapes

3.2 Compartments

The same biochemical reaction in a different spatial context may have different
outcomes. For instance, the bacterium Escherichia coli (E.coli) lives in the lower
intestines of mammals performing useful functions involving the digestion of its
host. If E.coli escapes the intestinal gap through a perforation (e.g. a hole from
an ulcer), and enters the abdomen, it can cause an infection called ‘peritonitis’,
fatal without immediate treatment. This example shows thatit is important for
a modeling language to allow the modeler to easily deal with compartments and
with their possible modifications. These latest phenomena can be classified as
endocytosis, exocytosis, break and merge.

• Endocytosis and exocytosis.Endocytosis consists in absorbing substances
from the external environment. Endocytosis can be further distinguished
in pinocytosis(assumption of liquids: no particle is absorbed except those
contained in the liquid),phagocytosis(absorption of another component of
comparable size), andgeneralized endocytosis(absorption of an arbitrary
number of smaller components). Exocytosis is the opposite of endocytosis,
i.e. the expulsion of sub-components.

• Break and merge.Break is used to model phenomena that imply a change in
the boundary of a component. We considerlysis, mitosisandmeiosis. Lysis
is the disintegration of a cell following a damage of its plasma membrane.
It makes free the biological material inside the membrane. Mitosis, typical
of viruses, consists in the exact duplication of the cell. Meiosis, typical of
reproductive cells, is the separation of the cell and of the contained genetic
material and yields two new cells. The phenomenon opposite to break is
calledmerge.

Figure 4 summarizes the four primitives which we define following the inspiration
gained by the above observations. We call those primitives EXO, ENDO, BREAK
and MERGE, respectively.

Finally, when dealing with the interaction of molecules within cells, the com-
partments might be thought of as the cellular compartments or the molecules. For
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EXO

ENDO

MERGE

BREAK

Figure 4: Compartment primitives

example, one important event that occurs within cells is themovement of small
molecules across compartment membranes. Hence, we also consider the opera-
tions representinguniport (the movement of one molecule across a membrane),
symport(the simultaneous movement of two molecules across a membrane in the
same direction) andantiport (the simultaneous movement of two molecules across
a membrane in opposite directions).

3.3 Further aspects

We now briefly sketch a set of interesting features of biomolecular processes which
are independent on the concept of biochemical interactionsand compartment and
hence have not been presented yet. More details about the representability of these
features in process calculi will be given later, when commenting on the various
approaches used to face, respectively: reversibility; handling of quantitative infor-
mation; and equivalence relations.

Reversibility

In nature many reactions are reversible. Reversibility is primarily governed by
the kind of bonds that one wants to destroy and the available energy. Consider for
instance the case when two proteins A and B are competing to bind to C (Figure 5).
The system may evolve in three distinct ways. The case when both A and B bind to
C gives raise to an unstable complex: sooner or later A or B will leave it. If A and
B are, respectively, the activator and the inhibitor of C, and the global system is a
molecular switch, then it is fundamental to be able to reverse the unstable complex.

Reversibility is a basic regulation mechanism that, for example, prevents dead-
locks. It can be specified in process calculi either in an explicit way, by means of
ad hocbehaviors, or implicitly, by means of backtracking mechanisms.
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Figure 5: Reversible complexation

Quantitative information

The ability of reasoning about quantitative information plays a crucial role in
biomolecular processes. For example, in order to correctlydescribe a reaction
it is necessary to know the exact quantity of reactants involved, the affinity of the
sites available for bonds, and the amount of energy which canbe used. Represent-
ing and handling quantitative parameters typically results in both a formal and an
implementation overhead. Nonetheless, this is a crucial point for building useful
models of biological systems.

Equivalence

Two programs are usually considered equivalent in computerscience if they exhibit
the same behavior w.r.t. some chosen notion of observation.Different definitions
of observation lead to distinct equivalence relations. Thedesired property is then
that two equivalent components can be safely exchanged within a system without
altering its overall behavior (if this property holds the equivalence turns out to be
a congruence). An analogous situation is found in biology. Up to a certain equiv-
alence relation, eukaryote cells and prokaryote cells might be seen as belonging
to the same class of organisms. In order to relate distinct kinds of lymphocytes it
would be surely necessary a finer grained notion of equivalence.

As far as systems described by terms of process calculi are concerned, equiv-
alence relations are fundamental tools for both analysis and verification. It could
well be the case that the techniques developed in concurrency theory may help in
the formalization and the understanding of biomolecular relations. Further investi-
gation is needed to relate the biological notions of relations (e.g., homology) and
the computer science behavioral equivalences.
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4 Process calculi abstraction principle

Abstractionis the mechanism of withdrawing information content from a knowl-
edge domain in order to focus on the facts that seem most relevant for a particular
purpose. Computer science deeply leans upon abstraction. For instance, comput-
ers work by simply checking presence or absence of electronic signals at physical
level. With a similar capability it becomes even difficult todo simple operations
like

var := var + 3 (1 )

that increments the value of a variablevar . Hence suitable abstractions are needed
to make it easy give instructions to computers ans abstractions can be arranged hi-
erarchically (firmware, assembler, operating systems, high-level programming lan-
guages, etc.). For instance, the low level steps required for (1 ) are quite complex:
load the value ofvar into a registry, convert3 to binary representation, decompose
calculation into assembly instructions and so on. Moreover, the resulting program
heavily depends on the underlying hardware architecture. High level languages
(e.g. C++, Java ) allow to forget (i.e. abstract away) implementation details and to
focus on the programming activity. This approach boosted computer science over
the last 40 year. The idea is to exploit the same principle in systems biology.

Biology Process calculi

Entity Process
Interaction capability Channel

Interaction Communication
Modification/evolution State change

Table 1: Process calculi abstraction for systems biology

Assume to know the basic mechanisms that ‘drive’ life. If we are able to design
a low level language that embeds the above mechanisms, we canexplore biolog-
ical hierarchies through compilation and then use living matter as our hardware
infrastructure. In a similar vision, language theory is a conceptual formal tool
that enables biologists to reassemble fragmented knowledge into a whole biolog-
ical system via computational thinking. Process calculi play the role of low level
languages, because their theory coincides at some extent with an abstraction of
molecular interactions. Table 1 gives a concise picture of the map between biol-
ogy and process calculi. A biological entity (e.g., a protein) is seen as a compu-
tation unit, a process, with interaction capabilities abstracted as channel names.
Entities interact/react through complementary capabilities as processes communi-
cate/synchronize on complementary actions. The change of astate after a commu-
nication represents the modification/evolution of molecules after a reaction.

The abstraction in Table 1 has four main properties [65]: (i) it captures an
essential part of the phenomenon; (ii ) it is computable, or better, it is executable,
allowing computer aided analysis; (iii ) it offers a formal framework to reason;
(iv) it can be extended. In the rest of the paper we will show the main process
calculi proposed for representing biological systems, andwe will show how each
one focuses on a particular extension of the abstraction principles in Table 1.
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Figure 6: Lymphocyte T helper activation

5 Running Example

This section introduces the running example that will be used to present and com-
pare the considered calculi in the biology applicative domain. The example comes
from the biology of the immune system, and it is relative to the activation of the
lymphocyte T helper.

The example has been chosen taking in mind two essential factors: (i) the
example has to be sufficiently complex to be an interesting case study for represen-
tation issues; (ii) it must be abstract enough to allow independence from irrelevant
biological details. These features ensure that a short description of the phenomenon
can make it easily accessible to readers without any specificbackground in biology.

Lymphocytes T are eukaryote cells belonging to our immune system. There are
three different sorts of lymphocytes T: lymphocytes T helper, lymphocytes T sup-
pressor, and lymphocytes T cytotoxic. The lymphocytes of the first two classes are
the main controllers of the immune system. Lymphocytes T cytotoxic work against
foreign eukaryote cells and against cells of the body which have been infected by
a virus.

Lymphocytes are normally inactive, and start their activity only after being
triggered by special events. Each class of lymphocytes may be activated in many
ways. We will focus on the activation of lymphocytes T helperperformed by
macrophages.

Macrophages are cells belonging to our immune system. They can engulf a
virus by endocytosis, and, when this happens, the virus is degraded into fragments
and a molecule (antigen) is displayed on the surface of the macrophage. The anti-

12



gen may be recognized by a lymphocyte T helper, and this activates the mecha-
nisms of the immune reply, like, e.g., the duplication of thelymphocyte. Notice
that the phenomenon includes the following relevant ingredients:

• pattern recognition, that allows the macrophage to distinguish malicious
antigens and to activate the appropriate T cell;

• membrane interactions, that allow the macrophage to engulfviruses and to
express antigens;

• internal pathways, that lead to the digestion of the engulfed viruses.

Figure 6 gives an abstract representation of the phenomenondescribed above.
Viruses are modeled as entities with inactive sites which represent the viral anti-
gens, i.e., the molecules characterizing the viruses. The process starts with the
phagocytosis (ENDO) of the virus by the macrophage. The virus is then decom-
posed (BREAK), and eventually viral antigens are moved to the surface of the
macrophage. So the macrophage acquires some active sites from the virus, and
can wait for a lymphocyte with a complementary site. When theappropriate lym-
phocyte T helper binds to the macrophage, it becomes active and starts playing its
role in the immune reply. Observe that lymphocytes have active sites even before
binding to a macrophage. Indeed, even if in this state lymphocytes are inactive, as
all in the immune reply, no binding would be possible withoutactive sites.

6 Calculi for biology

In this section we survey the main calculi for biology which have been proposed
in the literature. For each calculus, we first consider the representation of the com-
partments, and then we refine the model at the biochemical level. We will exploit
short portions of code for the activation of lymphocytes T helper. Finally, for each
calculus we will comment on the expressivity w.r.t. the biological requirements
proposed in Sect. 3, and on the availability of software.

6.1 Biochemical stochastic π-calculus

The biochemical stochasticπ-calculus [66, 62] represents biochemical systems
of interacting molecules as mobile communicating processes of the π-calculus
[48, 69]. Public channel names and co-names represent complementary sites and
cellular compartments are rendered by the appropriate use of restrictions on chan-
nels. Molecular interaction is modeled as communication, and the stochastic ex-
tension of theπ-calculus [60] is adopted to provide quantitative descriptions of
systems.

6.1.1 Syntax and Semantics

Theπ-calculus is a name-passing process calculus where names are synonyms of
both data and channels. Its biochemical stochastic extension represents molecules
as computational processes. A molecular complex is a systemof processes sharing
a private name which is unknown outside the complex. In this way, a molecule
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which is external to the complex can by no means have access tothe complex. The
scope of the private name represents the boundary of the complex. Movements be-
tween complexes and formations of new complexes are represented by transmitting
private names (the so-called name extrusions).

The biochemical stochasticπ-calculus represents interfaces by means of com-
munication channels. Components interact by communicating on complementary
sites, and interfaces may be possibly modified as a result of the communication.

6.1.2 Example

System specification

SYS::= MACROPHAGE | VIRUS | TCELL1 | TCELL2

MACROPHAGE::=(νMemM)(Tlr〈MemM〉. MemM(a). ! a〈str〉)

VIRUS::=(νMemV)(Tlr(y).y〈Ant1〉)

System evolution

MACROPHAGE | VIRUS →

(νMemM) ( MemM(a).! a〈str〉 | (νMemV)(MemM〈Ant1〉))→

(νMemM)( ! Ant1〈str〉)

Figure 7: Phagocytosis-Digestion-Presentation inπ-calculus

Compartments. Figure 7 reports the a code fragment that encodes the anti-
gen presentation phase. The global systemSYS is given by the parallel com-
position of four processes:VIRUS, MACROPHAGE, TCELL1, andTCELL2.
Figure 7 only presents the specifications of the first two elements. Here we just
sketch the intuition of the behavior of the sub-system givenby MACROPHAGE |
VIRUS. The restriction on top of each component stands for its enclosing mem-
brane. The macrophage phagocytes the virus by means of a communication on the
public channelTlr. Operationally, this communication involves the output action
Tlr〈MemM〉 and its complementary input actionTlr(y), and its effect is twofold:
(i) the restricted nameMemM undergoes a scope extrusion and becomes a pri-
vate resource of bothMACROPHAGE and VIRUS (thus modeling the engulf-
ment of the virus);(ii) the namey in VIRUS is renamed intoMemM (modeling
the adaption of the internal machinery of the macrophage to start the lysis). The
subsequent communication over the channelMemM is such that the datumAnt1
is transmitted toMACROPHAGE, which can make it available to lymphocytes
T (TCELL1, TCELL2) by means of the latest action! Ant1〈str〉. The operator
bang, !, allows to model infinite behaviors. In particular,! Ant1〈str〉 behaves as
Ant1〈str〉. (! Ant1〈str〉), and thereforeMACROPHAGE can activate many TCells
expressingAnt1.

Biochemical interactions. Figure 8 shows the implementation of the activation
of the appropriate lymphocyte T helper. Assume that the antigen presentation phase
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already occurred, and hence that the macrophage is ready to communicate on chan-
nel Ant1 with whichever lymphocyte can execute a complementary action on the
same channel. In the evolution drawn in Figure 8 this lymphocyte is TCELL1
which, after the synchronization onAnt1, can start its activities. Notice that the
active form of the macrophage,MACROPHAGE’, can activate another TCell be-
cause of the bang operator.

System specification

SYS::=MACROPHAGE’ | TCELL1 | TCELL2

MACROPHAGE’::=(νMemM) (! Ant1〈str〉)

TCELL1::=(νMemT1)(Ant1(x).ACTIVITIES)

TCELL2::=(νMemT2)(Ant2(x).ACTIVITIES)

System evolution

SYS →

MACROPHAGE’ | (νMemT1)(ACTIVITIES) | (νMemT2)(Ant2(x).ACTIVITIES)

Figure 8:TCELL activation inπ-calculus

6.1.3 Comments

The biochemical stochasticπ-calculus represents biochemical interactions as com-
munications, yielding models of biological pathways whichare both detailed and
concise. In the biochemical stochasticπ-calculus there is no explicit concept
of compartments. To represent the operations on compartments (EXO, ENDO,
BREAK and MERGE), the non-intuitive concepts of restriction and name passing
must be used.

There exist implementations of the biochemical stochasticπ-calculus that make
real in silico experiments possible. Two examples of simulation tools for biochem-
ical stochasticπ-calculus are BioSpi [72] and SPiM [57], both based on the Gille-
spie’s algorithm [25]. Several complex models of real biochemical systems have
been implemented and simulated by using these tools. Notably, the simulation
of extra-vasation in multiple sclerosis reported in [45] showed to have a sort of
predictive flavor: an unexpected behavior of leukocytes hasbeen guessed by the
results of in silico simulations, and proved a posteriori inlab experiments. Also,
a whole virtual cell (VICE), with a basic prokaryote-like genome (about 180 dif-
ferent genes) is developed with interesting results: for instance, the distribution of
metabolites along the glycolytic pathway of VICE significantly matches with those
of real organisms [14].

To overcome the intrinsic difficult inπ-calculus, due to its minimal sintax,
some eorts are devoted to design higher-level languages that provides direct support
for the concepts needed in modeling biological systems, as e.g. [21] that leads to a
complex model of gene regulation [44].
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6.2 BioAmbients

BioAmbients[64] focuses on compartments: the location of molecules within spe-
cific compartments is considered a key issue for regulatory mechanisms in biolog-
ical systems. Biomolecular systems are organized in a hierarchical and modular
way: a molecule can perform its task if and only if it is in the right compartment.

6.2.1 Syntax and Semantics

Ambients are the boundaries of a set of processes which can communicate with
each other. Ambients can be nested and hence they are organized hierarchically.

As for theπ-calculus, we do not provide a full description of the calculus. We
rather focus on a few main features which are useful for our presentation. The
reader is referred to [64] for full details.

Depending on the relative locations of the interacting processes, three kinds of
communication are defined in BioAmbients:

• local, namely between two processes in the same ambient,

• s2s, namely between two processes located in sibling ambients,

• p2c / c2p, namely between processes located in ambients with a parent-child
relation.

As far as the interpretation of movements is concerned, three pairs of primitives
are defined as process actions:

• enter n / accept n, for entering an ambient and accepting the entrance,
respectively,

• exit n / expel n, for exiting from a containing ambient and expelling a con-
tained ambient, respectively,

• merge+ n / merge- n, for merging two ambients together.

6.2.2 Example

Compartments. Figure 9 shows a possible specification of the digestion of the
virus by the macrophage. The two processesInfect andDigest abstract the infec-
tion capability of the virus and the digestion capability ofthe macrophage, respec-
tively. Virus and macrophage synchronize on channeltlr, and the virus enters the
macrophage by anenter / accept pair. Then the virus sends its antigen on channel
tlr, and eventually the macrophage makes the antigen availableto lymphocytes T
helper.

Biochemical interactions. BioAmbients uses communication channels to imple-
ment ‘interfaces’ of biological entities (as the biochemical stochasticπ-calculus).
The BioAmbients implementation of the activation of the lymphocyte T helper by a
macrophage is reported in Figure 10. Each lymphocyte reactsto a specific antigen
and begins its task by means of a communication on a dedicatedchannel. After
the right lymphocyte has been activated, the macrophage canactivate other TCells,
because of the bang operator!.
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Figure 9: Phagocytosis-Digestion-Presentation in BioAmbients
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6.2.3 Comments

BioAmbients models biochemical interactions as communications on channels.
It extends biochemical stochasticπ-calculus communications with three kind of
communications: interactions can occur between entities in the same compartment
(local communication), between actions lying in ambients within the same ambi-
ent (s2scommunication), and between father-child ambients (c2p/p2ccommuni-
cation). BioAmbients is the first process calculus for modeling biological systems
in which an explicit and intuitive notion of compartments isconsidered. It is easy
to model in BioAmbients operations as EXO, ENDO and MERGE. BioAmbients
has no primitive to represent the splitting of environments(BREAK), and it is not
straightforward to model, e.g., mitosis. Other operationsthat can be easily mod-
eled are complex formation and transport of small moleculesacross compartments.
Hence, BioAmbients may represent, in this respect, an improvement compared to
biochemical stochasticπ-calculus: many biological phenomena are represented
much more easily in BioAmbients than inπ-calculus.

A stochastic extension of the language has been defined, and asimulator is im-
plemented as part of the BioSpi project [72] based on Gillespie’s algorithm [25].
Control Flow Analysis, a static analysis technique that allows to analyze the de-
scription of the system to discover dynamic properties, is adapted to BioAmbi-
ents [50].

6.3 Brane Calculus and Projective Brane Calculus

Brane calculus[9, 10] is centered on membranes, and it is based on the observation
that membranes are not just containers, but also active entities that take care of
coordinating specific activities. Membranes can be highly dynamic: for example,
they can shift or merge. Molecules can communicate using their membranes, and
indeed large proteins are embedded in membranes which act like channels.

The main feature of Brane calculus is that membranes are considered active el-
ements and hence the whole computation happenson membranes. In Brane calcu-
lus membranes can move, merge, split, enter into and exit from other membranes.
Some constraints need to be satisfied when applying these operations. The most
important one is that transformations need to be continuous(e.g. a membrane,
except the case it represents a small molecule, cannot simply pass across another
membrane). Another constraint is that the orientation of membranes need to be
preserved, so merging of membranes cannot occur arbitrarily (e.g. membranes
with a different orientation cannot merge).

6.3.1 Syntax and Semantics

A system is represented in Brane calculus as a set of nested membranes, and a
membrane as a set of actions; actions carry out the mentionedmembrane trans-
formations. The Brane calculus primitives are inspired to membrane properties.
Because of the constraints on membrane operations, Brane calculus primitives
are more restrictive than those we presented in Sect. 3.2. The primitives related
to movement to and from membranes are classified in two main groups, one for
cytosis-like and the other for mitosis-like phenomena.
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• Endocytosis, corresponding to the ENDO operation, is considered an un-
controllable process. Interesting interactions are usually more controllable,
therefore two finer primitives are defined: phagocytosis (phago), for en-
gulfing one external membrane, and pinocytosis (pino), for engulfing zero
external membranes. Exocytosis (exo), which corresponds to the EXO op-
eration, represents the expulsion of an internal membrane.

• Mitosis, corresponding to the BREAK operation, is also considered an un-
controllable process, because it can split a membrane at an arbitrary place.
Hence, two finer primitives are defined: budding (bud), for splitting off one
internal membrane, and dripping (drip), for splitting off zero internal mem-
branes. Mating (mate), which corresponds to the MERGE operation, repre-
sents the controlled merging of two membranes.

For each action, a corresponding co-action is defined. Hence, as in BioAmbients,
coordination between interacting components is always required. Communication
can beon-membraneor cross-membrane, and they are associated with distinct pairs
of primitives.

• On-Membrane. The primitivesp2pn / p2p⊥
n are for on-membrane commu-

nications only.

• Cross-Membrane. The primitivess2sn / s2s⊥n , p2cn / p2c⊥n , andc2pn /
c2p⊥

n are for communications between processes in distinct membranes and
follow a BioAmbients-like style.

Projective brane calculus. This calculus, which has been introduced in [18],
is a refinement of Brane calculus. Its authors observe that inreal life biological
membrane actions are directed; therefore they refine brane calculus by replacing
actions with directed actions, so that interaction capabilities are specified as facing
inwards or outwards. This refinement results in an abstraction which is closer to
biological settings than the original language.

6.3.2 Example

Compartments. Figure 11 reports a specification of the running example in Brane
calculus. The operator◦ stands for parallel composition. The rounded parenthe-
ses(| |) enclose the genetic content of the membrane, which is represented by a
sequence of actions to the left of the symbol(|.

During the synchronization overphago, the virus communicates its antigen to
the macrophage on the channeltrl . Then the macrophage presents the antigen to
the environment. As mentioned in Sect. 6.2, in real life a virus does not actually
send its antigen to a macrophage.

Biochemical interactions. Figure 12 shows the Brane calculus code for the ac-
tivation of the appropriate lymphocyte.
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System specification

SYS::= VIRUS◦ MACRO ◦ TCELL1 ◦ TCELL2

VIRUS::= phagotrl. c2pn(ant1).INFECT(|CAPSID|)

MACRO::= phago⊥trl(DIGEST).c2p⊥n (a).s2sa(str) (|CYTOSOL|)

DIGEST::=c2p⊥n (a).c2pn(a).DIGEST

System evolution

MACRO ◦ VIRUS →

c2p⊥n (a).s2sa(str) (|DIGEST(|c2pn(ant1).INFECT(|CAPSID|)|) ◦ CYTOSOL|) →

c2p⊥n (a).s2sa(str) (|c2pn(ant1).DIGEST(|INFECT (|CAPSID|)|) ◦ CYTOSOL|) →

s2sant1(str) (|DIGEST(|INFECT (|CAPSID|) |) ◦ CYTOSOL|)

Figure 11: Phagocytosis-Digestion-Presentation in Branecalculus

System specification

SYS := MACRO◦ TCELL1 ◦ TCELL2

MACRO::= s2sant1(str).PHAGO(|CYTOSOL|)

TCELL1::= s2s⊥ant1(x).ACTIVITIES1(|CYTOSOL|)

TCELL2::= s2s⊥ant2(x).ACTIVITIES1(|CYTOSOL|)

System evolution

SYS→ PHAGO(|CYTOSOL|) ◦ ACTIVITIES1(|CYTOSOL|) ◦ TCELL2

Figure 12:TCELL activation in Brane calculus

6.3.3 Comments

In Brane calculus everything is interpreted as a membrane, which means that membrane-
bound cellular compartments (e.g. cells and organelles) and molecular compart-
ments (e.g. proteins) are modeled in the same way. The language does not take
the internal structure of membrane-bound compartments into account, therefore it
is not easy to describe biochemical events that are not directly related to cellular
membranes, such as protein activation, phosphorylation, etc.

Brane calculus is inspired by BioAmbients, but it gives membranes an active
role. The notion of membrane as an active entity and not just asimple container is
surely relevant. In addition, Brane calculus primitives are realistic and provide
a simple and intuitive way to model the most important membrane operations.
Being Brane calculus primarily concerned on membrane interactions, it is possible
(and also relatively easy) to model all kinds of operations involving compartments
(EXO, ENDO, MERGE, BREAK) and also movements of small molecules across
membranes. No software tool is available for this calculus.
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6.4 CCS-R

CCS-R [15] explicitly deals with the issue of reversibility: most biochemical re-
actions are, indeed, reversible. Based on this observation, CCS-R is a CCS-like
process algebra [47] with the peculiarity that reversibility is embedded in the syn-
tax. No handling of energy and types of bonds is considered, although they are the
driving forces of biomolecular reversibility.

6.4.1 Syntax and Semantics

CCS-R is a ‘decoration’ of CCS with the concept of reversibility. This feature
of the language is relevant when considering biochemical scenarios. Regarding
the description of compartments, instead, CCS-R may be considered the same as
CCS: a process algebra that describes the interactions between processes in terms
of binary synchronized communications and does not use either value or name-
passing. In CCS-R it is not possible either to send a name on a channel or to
dynamically change the scope of a restricted name. For this reason, compartments
and information flows between processes cannot be represented.

CCS-R generalizes CCS duality between names and co-names toa binary com-
plementation relationC between binding sites: the two sitesx andx′ can connect
together only ifxCx′. Moreover, based on the observation that some protein inter-
actions require a concurrent connection to different sites, the standard CCS syntax
is extended to allow processes likeC= (l’1 | l’2 | l’3).0 to represent the fact that the
sites of C must be activated simultaneously. Apart from these differences, CCS-
R is the same as CCS. In particular, for what concerns our example, the system
specifications in the two languages are identical.

6.4.2 Example

System specification

SYS::=(νTlr)(νAnt1)(νAnt2)(VIRUS | MACROPHAGE | TCELL1 | TCELL2)

VIRUS::=Tlr.Ant1.INACT

MACROPHAGE::= Tlr.DIGEST

System evolution

SYS → (νTlr)(νAnt1)(νAnt2)(Ant1.INACT | DIGEST | TCELL1 | TCELL2)

Figure 13: Phagocytosis-Digestion-Presentation in CCS-R

Compartments. As previously mentioned, compartments cannot be represented
in CCS-R, and the information flow from the virus to the macrophage cannot be
faithfully rendered. It is still possible, though, to specify the antigen presentation
phase as a pathway activation. This kind of coding is used in the specification
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of the running example in CCS-R, shown in Figure 13. Notice that, in order to
overcome the fact that the position of restrictions cannot change at run-time, the
relevant resources have to be declared as private channels of the top-level process
SYS.

System specification

SYS::=(νTlr)(νAnt1)(νAnt2)(VIRUS | MACROPHAGE | TCELL1 | TCELL2)

MACROPHAGE::= DIGEST

VIRUS::=Ant1.INACT

TCELL1::=Ant1.ACTIVITIES1

TCELL2::=Ant2.ACTIVITIES2

System evolution

SYS →

(νTlr)(νAnt1)(νAnt2) (INACT | DIGEST | ACTIVITIES1 | Ant2.ACTIVITIES2)

Figure 14:TCELL activation in CCS-R

Biochemical interactions. CCS-R is particularly suitable to represent biochem-
ical interactions. However, since it does not use a name-passing discipline, it is
impossible to directly render the information flow between processes and its sub-
sequent changing of the possible evolution of the communicating partners. With
respect to the previous code fragments, let us consider the antigen passing from the
virus to the macrophage and, finally, to the rightTCELL: in the CCS-R specifica-
tion for lymphocyte activation (Figure 14), the virus (rather than the macrophage)
is responsible for activating the rightTCELL.

6.4.3 Comments

CCS-R, being based on CCS, allows to represent biochemical pathways as a cas-
cade of synchronized interactions. CCS-R does not allow name passing or a di-
rect representation of biological bounds, therefore modeling compartment is not
directly supported.

CCS-R has primarily been developed to implement reversibility in a process
calculus for biology. The authors of CCS-R think of reversibility as the ability to
backtrack from a reaction and claim that this is a common phenomenon in nature.
This is true, however, only if the energy of the system is not considered. Indeed
the second principle of thermodynamics states that going back exactly to the orig-
inal system is not possible. This principle could become crucial if reversibility
was investigated together with a quantitative analysis of the global energy of the
biological system. No software tool is available for this calculus.
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6.5 PEPA

Performance Evaluation Process Algebra(PEPA) [31] is a formal language for de-
scribing Markov processes. PEPA was introduced as a tool forperformance analy-
sis of large computer and communication systems to study in the same framework
quantitative properties as throughput, utilization and response time and qualita-
tive properties as deadlock freedom. With the advent of the systems biology era,
the abstraction facilities of PEPA was exploited in biochemical signaling pathways
analysis and simulation [8].

6.5.1 Syntax and Semantics

PEPA differs from the previous calculi because it adopts multiway synchronization
on shared name in the style of the Communicating Sequential Processes (CSP) [33]
rather than complementarity (as CCS andπ-calculus). The cooperation operator
BC
L

requires the “co-operands” to join for activities specifiedin the cooperation
setL. Consider a simple biochemical reactionr1 where two proteinProt1 and
Prot2 interact with a ratek1 and form a proteinProt3 . The system is specified by
the following:

Prot1H ::= (r1, k1).Prot1 L

Prot2H ::= (r1, k1).Prot2 L

Prot3L ::= (r1,>).Prot3 H

Sys ::=Prot1H BC
{r1}

Prot2H BC
{r1}

Prot3L

The subscriptH andL stay for high and low level of protein. The three protein
can synchronize on activityr1 enabling the transition:

Sys
(r1,k1)
−−−−→ Prot1L BC

{r1}
Prot2L BC

{r1}
Prot3H

where low levels ofProt1 andProt2 are present and an high level ofProt3 is
reached. The multi-way synchronization underlying PEPA allows the three pro-
cesses to advance in one step. This is the main difference of PEPA w.r.t. CCS/π-
calculus style of interaction.

6.5.2 Example

Compartments. PEPA cannot represent directly compartments or inderectlyby
means of scope extrusion. The information flow from the virusto the macrophage
on Trl cannot be faithfully represented, but, by specifying the antigen presenta-
tion phase as a biochemical interaction, it is still possible . The approach is the
same used in CCS-R, and Figure 15 shows the related PEPA code.Macrophage
MACROP synchronize withVIRUS on activity Tlr enablingAnt1 presentation
with a ratek.

Biochemical interactions. PEPA represent biochemical interactions as cooper-
ation, meaning that processes jointly perform actions of the same type. However,
PEPA has not name-passing features, and therefore PEPA doesnot allow to directly
represent information flow and subsequent changing of the interaction capabilities.
Figure 16 sketches PEPA code for TCell activation. The virus(rather than the
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System specification

SYS::=VIRUS BC
{T lr}

MACROP

VIRUS::= (Tlr,k) . (Ant1,kA1) . INACT

MACROP::= (Tlr,k) . DIGEST

System evolution

SYS
(Tlr,k)
−−−−→ (Ant1,kA1) . INACT BC

{T lr}
DIGEST

Figure 15: Phagocytosis-Digestion-Presentation in PEPA

System specification

SYS::= VIRUS’ BC
{Ant1,Ant2}

MACROP’ BC
{Ant1,Ant2}

TCELL1 BC
{Ant1,Ant2}

TCELL2

MACROP’::= DIGEST

VIRUS’::=(Ant1,kA1) . INACT

TCELL1::=(Ant1, kA1) . ACTIVITIES1

TCELL2::=(Ant2, kA2) . ACTIVITIES2

System evolution

SYS
(Ant1,kA1)
−−−−−−→

INACT BC
{Ant1,Ant2}

MACROP’ BC
{Ant1,Ant2}

ACTIVITIES1 BC
{Ant1,Ant2}

TCELL2

Figure 16:TCELL activation in PEPA

macrophage) synchronize with the TCell with the right antigene. Notice thatAnt2

is in the cooperation set{Ant1 ,Ant2} because otherwiseTCELL2 can proceed
without recognizing the right antigene.

6.5.3 Comments

PEPA was introduced as a tool for performance analysis. Its application to systems
biology allows toquantitativelymodel and analyze large pathway systems (e.g.,
[7]). However, PEPA lacks in expressivity of compartment primitives.

PEPA has two main characteristics that makes it very interesting, also for biol-
ogy: (i) a large community supporting it [35] with a reach availability of software
tools. For instance, the PEPA Workbench [26] allows to exploit Markov process
analysis on PEPA specification. Moreover, external tools support PEPA. For in-
stance, the PRISM model checker [32] accepts model descriptions in the PEPA
formalism. (ii) PEPA is a language for describing Markov processes, and there-
fore PEPA is developed with a strong mathematical background. This enables the
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comparison and convergence of process calculi models and classical ODE mod-
elling [5, 6].

6.6 Beta-binders

Beta-binders[61] is a bio-inspired process calculus that interprets biological enti-
ties as an internal “process unit” and an “interface” exposed to the external environ-
ment. By introducing the concept ofaffinity, the interaction approach extends the
CCS notion of complementarity between action and coation. Beta-binders com-
munication models is inspired by enzyme theory [43], where interactions between
not perfectly matching components are allowed.

6.6.1 Syntax and Semantics

In Beta-binders,π-calculus processes are encapsulated intoboxeswith interaction
capabilities. Theπ-calculus syntax is enriched by operations for manipulating in-
teraction capabilities, that are represented by specialized binders. Any biological
entity E is represent as a boxBE

PE

x1 : ∆1 . . . xn : ∆n

Types∆i express the interaction capabilities of the box. The parallel composition
of boxes, calledbio-process, models a system of interaction biological entities.
Two boxes can interact if they have complementary types up toa certainuser-
definednotion (see [59] for an example). Here we adopt the original interpretation,
where types are sets of names and two types∆1 and∆2 are affine if∆1 ∩∆2 6= ∅.
The dynamic behavior of entity boxBE is specified through the internal pi-process
PE . A pi-process is aπ-calculus process, extended for manipulating the interface
of a box. For instance,hide andunhideactions make respectively invisible and
visible an interaction site, allowing the direct representation of dephosphorilation
and phosphorilation. Finally, two boxes can bring together(join) and one box in
two can divide in two (split).

6.6.2 Example

Compartments. Figure 17 reports the Beta-binders fragment that encodes the
antigen presentation phase. The global systemSYS is given by the parallel compo-
sition of four boxes representing theVIRUS, theMACROPHAGE, theTCELL1,
and theTCELL2, respectively. Figure 17 only presents the specifications of the
first two elements and we just sketch an explanation of the behavior of the sub-
system given by theMACROPHAGE and theVIRUS. The macrophage phago-
cytes the virus by means of a join operation. This results in abox whose inter-
action capabilities are inherited fromMACROPHAGE, and whose body is essen-
tially given by the parallel composition of the internal bodies of the original boxes
PMACRO andPVIRUS . After that, virus and macrophage are in the same box, so
they can communicate, and the nameAnt1 is transmitted toMACROPHAGE,
which can make it available to lymphocytes T (TCELL1, TCELL2) by means of
the latest output actionAnt1〈str〉.
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System specification

SYS::= PMACRO

x : {v1, v2, ...}

PVIRUS

y : {v1}

PTCELL1

x : {Ant1}

PTCELL2

x : {Ant2}

PMACRO ::= x(w). expose(z, {w}) . (!z〈str〉 | PDIGEST )

PV IRUS ::= y〈Ant1〉. PINFECT

System evolution

PMACRO

x : {v1, v2, ...}

PVIRUS

y : {v1}

→

PMACRO | PVIRUS

x : {v1, v2, ...}

→→

!z〈str〉 | PDIGEST | PINFECT

x : {v1, v2, ...} z : {Ant1}

Figure 17: Phagocytosis-Digestion-Presentation in Beta-binders

Biochemical interactions. Figure 18 shows the implementation of the activation
of the appropriate lymphocyte T helper. We imagine that the antigen presentation
phase already occurred, and hence the macrophage is ready toexecute an inter-
communication on channel with type isAnt1 with whichever lymphocyte can ex-
ecute a complementary action on a channel with a compatible type. In the system
of Figure 18 this lymphocyte isTCELL1 which, after the interaction, can start its
activities.

6.6.3 Comments

Beta-binders was specifically designed to model biologicalinteractions. The main
peculiarity of Beta-binders is the concept of affinity, which allows not perfectly
matching components to interact. This is often the case in biology, where the in-
teraction sites of proteins can be compatible even if not exactly complementary.
Biochemical events that are not directly related to cellular membranes (e.g. pro-
tein activations, phosphorylations, etc.) can be easily modeled by Beta-binders
communications and operations on box interfaces.

Another interesting feature of Beta-binders is that operations such as fusion of
membranes and splitting of one membrane into two submembranes, can be easily
modeled by means of the appropriate join and split primitives. However, when
dealing with compartments one main drawback of Beta-binders arises: nesting of
boxes is not allowed, so it is not intuitive to model hierarchies of entities. In [28] an
extension of Beta-binders with an explicit notion of compartments is introduced.
This extension permits to represent static hierarchical structures and the movement
of components across compartments.
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System specification

SYS::= PA MACRO

x : {v1, v2, ...}z : {Ant1}

PTCELL1

a : {Ant1}

PTCELL2

a : {Ant2}

PA MACRO ::=! a〈str〉 | PDIGEST

PTCELL1 ::= a(y).PACTIVITIES1

PTCELL2 ::= a(y).PACTIVITIES2

System evolution

SYS →

PA MACRO

x : {v1, v2, ...}z : {Ant1}

PACTIVITIES1

a : {Ant1}

PTCELL2

a : {Ant2}

Figure 18:TCELL activation in Beta-binders

Finally, Beta-binders is equipped with a stochastic semantics [19] and the asso-
ciated simulation environment [68] for the in-silico studyof biochemical pathways.

6.7 κ-calculus

κ-calculus [16, 17] is a formal calculus of proteins interaction. It was conceived
to represent complexation and decomplexation of proteins.Theκ-calculus comes
equipped with a very clear visual notation, and uses the concept of shared names
to represents bonds.

6.7.1 Syntax and Semantics

The units ofκ-calculus are proteins, and operators are meant to represent creation
and division of protein complexes. Proteins are drawn as boxes with sites on their
boundaries. A site can be either visible, hidden or bound. For instance

M2M1 s2 s3 s4s1

represents two bounded moleculesM1 andM2 on sitess2 ands3, respectively.
Moreover, the sites1 of M1 is hidden and the sites4 is visible.

Besides the graphical representation, theκ-calculus provides a language in the
style of process algebras. Expressions and boxes are given semantics by a set of
basic reactions. Once the initial system has been specified and the basic reductions
have been fixed, the behavior of the system is obtained by rewriting it after the
reduction rules. This kind of reduction resembles pathway activation.

6.7.2 Example
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V V

M
ph

in in
a1a1

ph

M

(a)

System specification

r1: M(ph),V(in,a1) →(x)(M(phx),V(inx,a1))

System evolution

M(ph),V(in,a1) → r1

(x)(M(phx),V(inx,a1))

(b)

Figure 19: Phagocytosis-Digestion-Presentation inκ-calculus

Compartments. The calculus does not offer a natural support for the compart-
ment layer. It is possible to represent the Phagocytosis-Digestion-Presentation ex-
ample (see Figure 19(a)) as an activation pathway. The virusis rendered by the
box V, which has a visible sitein, used to enter a cell, and a hidden sitea1, which
represents the antigen. The macrophage is represented by the boxM, which has a
visible siteph, used to phagocytes a molecule.

Figure 19(b) shows the single reaction relevant to our running example. In this
reaction rule, the superscriptx in phx and inx means that the sitesin andph are
linked by the channel namedx. This mechanism may resemble a possible handling
of affinity between channels, although no quantitative measure is considered.

Biochemical interactions. Figure 20(a) shows theκ-calculus graphical repre-
sentation of the activation of a lymphocyte T helper. After phagocytosis, the virus
has a visible sitea1, which represents its antigen: only the lymphocyte with the
right site can bind it.

ph

V

ph

M

in
a1

a2 T2

T1a1 V
in

a1

M a2 T2

T1a1

(a) Graphical representation

System specification

r2: M(phx),V(inx,a1),T1(a1) → M(phx),V(inx,a1y),T1(a1y)

r3: M(phx),V(inx,a2),T2(a2) → M(phx),V(inx,a2y),T2(a2y)

System evolution

(x)(M(phx),V(inx,a1),T1(a1)) → r2

(xy)(M(phx),V(inx,a1y),T1(a1y))

(b) Language representation

Figure 20:TCELL activation inκ-calculus
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The graphical notation does not clearly represent the selection of the right lym-
phocyte. This gap is filled by the formal model via the definition of the basic reac-
tions. In particular, the system described in Figure 19(b) may be extended with the
rules defined in Figure 20(b). By these rules, it is possible to infer the reduction
shown in Figure 20(b).

6.7.3 Comments

The κ-calculus was designed to represent complexation and decomplexation of
proteins, and therefore it does not allow to represent compartment primitives. We
want to point out that the main goal of the authors ofκ-calculus, i.e. to “provide
a formalism that could be a suitable modeling language allowing direct descrip-
tions of molecular events” [16], has been achieved in an effective way: the visual
language is intuitive, and the formal one rather simple to use. Moreover, despite
its simplicity, in [13], κ-calculus was shown to be expressive to translate Kohn
Interaction Map [41], a diagrammatic formalism to represent networks containing
multi-protein complexes, protein modifications, and enzymes.

7 Concluding remarks

The languages mentioned in this survey are quite different,and have been con-
ceived for specifying entities at different levels of abstractions. As expected, none
of them is ‘the perfect language’, which allows to model in aneasy and correct way
all kinds of biological operations. Each language, however, has some distinguish-
ing features that make it particularly suitable for modeling certain kinds of systems
or operations.

We can classify the various calculi depending on whether they are adaptations
or extensions of calculi introduced to specify distributedsystems, or rather they
have been directly defined to model biological systems. For convenience, we refer
to the languages of the first family as to bottom-up calculi, and to the others as
top-down languages.

Biochemical stochasticπ-calculus, BioAmbients, PEPA and CCS-R are bottom-
up calculi. They are based on languages used to describe distributed systems. The
main advantages of bottom-up languages are that they can rely on well-assessed
mathematical basis and they are well-known in the communityof distributed sys-
tems. The main drawback is that, since they were not meant to describe biological
systems, they are often too abstract and not much intuitive.

Brane calculus, Beta-binders, andκ-calculus are top-down languages. Their
authors made the opposite effort: they tried to identify thefundamental biological
primitives and to represent them by the techniques and toolsof concurrency theory.
The advantages and drawbacks of top-down languages are opposite to those of
bottom-up ones: these languages are usually more intuitiveand more biologically
correct but, since they are very recent, they lack theoretical works and few tools
exist to allow them to be of practical use for validation/simulation purposes.

Some of the languages we have described permit an explicit representation
of biological compartments: Brane calculus, BioAmbients and the Beta-binders
extension with compartments. Therefore they can be more suitable to model phe-
nomena at compartment level. Brane calculus is very interesting when the focus
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is on membrane interactions and their evolution; BioAmbients also provides an in-
tuitive representation of compartments, and the main difference between the two
languages is the place where the computation occurs: on membranes in the former,
and inside membranes in the latter. Therefore, BioAmbientsseems to be more ap-
propriate when the internal structure of compartments is relevant. The Beta-binders
extension with compartments is somehow more similar to BioAmbients because
the focus is primarily on interactions between internal objects: Beta-binders over-
comes some of the known problems of BioAmbients, but it is notmeant to model
operations involving fusion of membranes, therefore it is not applicable in model-
ing systems in which such kind of operations is important.
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