2,077 research outputs found

    Recognition and reconstruction of coherent energy with application to deep seismic reflection data

    Get PDF
    Reflections in deep seismic reflection data tend to be visible on only a limited number of traces in a common midpoint gather. To prevent stack degeneration, any noncoherent reflection energy has to be removed. In this paper, a standard classification technique in remote sensing is presented to enhance data quality. It consists of a recognition technique to detect and extract coherent energy in both common shot gathers and fi- nal stacks. This technique uses the statistics of a picked seismic phase to obtain the likelihood distribution of its presence. Multiplication of this likelihood distribution with the original data results in a “cleaned up” section. Application of the technique to data from a deep seismic reflection experiment enhanced the visibility of all reflectors considerably. Because the recognition technique cannot produce an estimate of “missing” data, it is extended with a reconstruction method. Two methods are proposed: application of semblance weighted local slant stacks after recognition, and direct recognition in the linear tau-p domain. In both cases, the power of the stacking process to increase the signal-to-noise ratio is combined with the direct selection of only specific seismic phases. The joint application of recognition and reconstruction resulted in data images which showed reflectors more clearly than application of a single technique

    Segmenting characters from license plate images with little prior knowledge

    Full text link
    In this paper, to enable a fast and robust system for automatically recognizing license plates with various appearances, new and simple but efficient algorithms are developed to segment characters from extracted license plate images. Our goal is to segment characters properly from a license plate image region. Different from existing methods for segmenting degraded machine-printed characters, our algorithms are based on very weak assumptions and use no prior knowledge about the format of the plates, in order for them to be applicable to wider applications. Experimental results demonstrate promising efficiency and flexibility of the proposed scheme. © 2010 IEEE

    Text-based Image Segmentation Methodology

    Get PDF
    AbstractIn computer vision, segmentation is the process of partitioning a digital image into multiple segments (sets of pixels). Image segmentation is thus inevitable. Segmentation used for text-based images aim in retrieval of specific information from the entire image. This information can be a line or a word or even a character. This paper proposes various methodologies to segment a text based image at various levels of segmentation. This material serves as a guide and update for readers working on the text based segmentation area of Computer Vision. First, the need for segmentation is justified in the context of text based information retrieval. Then, the various factors affecting the segmentation process are discussed. Followed by the levels of text segmentation are explored. Finally, the available techniques with their superiorities and weaknesses are reviewed, along with directions for quick referral are suggested. Special attention is given to the handwriting recognition since this area requires more advanced techniques for efficient information extraction and to reach the ultimate goal of machine simulation of human reading

    Turkish handwritten text recognition: a case of agglutinative languages

    Get PDF
    We describe a system for recognizing unconstrained Turkish handwritten text. Turkish has agglutinative morphology and theoretically an infinite number of words that can be generated by adding more suffixes to the word. This makes lexicon-based recognition approaches, where the most likely word is selected among all the alternatives in a lexicon, unsuitable for Turkish. We describe our approach to the problem using a Turkish prefix recognizer. First results of the system demonstrates the promise of this approach, with top-10 word recognition rate of about 40% for a small test data of mixed handprint and cursive writing. The lexicon-based approach with a 17,000 word-lexicon (with test words added) achieves 56% top-10 word recognition rate

    LANGUAGE INDEPENDENT ROBUST SKEW DETECTION AND CORRECTION TECHNIQUE FOR DOCUMENT IMAGES

    Get PDF
    Document image processing is an increasingly important technology essential in all optical character recognition (OCR) systems and for automation of various office documents. A document originally has zero-skew (tilt), but when a page is scanned or photo copied, skew may be introduced due to various factors and is practically unavoidable. Presence even a small amount of skew (0.50) will have detrimental effects on document analysis as it has a direct effect on the reliability and efficiency of segmentation, recognition and feature extraction stages. Therefore removal of skew is of paramount importance in the field of document analysis and OCR and is the first step to be accomplished. This paper presents a novel technique for skew detection and correction which is both language and content independent. The proposed technique is based on the maximum density of the foreground pixels and their orientation in the document image. Unlike other conventional algorithms which work only for machine printed textual documents scripted in English, this technique works well for all kinds of document images (machine printed, hand written, complex, noisy and simple). The technique presented here is tested with 150 different document image samples and is found to provide results with an accuracy of 0.1

    Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Get PDF
    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications
    corecore