40 research outputs found

    Projecting Climate and Land Use Change Impacts on Actual Evapotranspiration for the Narmada River Basin in Central India in the Future

    Get PDF
    Assessment of actual evapotranspiration (ET) is essential as it controls the exchange of water and heat energy between the atmosphere and land surface. ET also influences the available water resources and assists in the crop water assessment in agricultural areas. This study involves the assessment of spatial distribution of seasonal and annual ET using Surface Energy Balance Algorithm for Land (SEBAL) and provides an estimation of future changes in ET due to land use and climate change for a portion of the Narmada river basin in Central India. Climate change effects on future ET are assessed using the ACCESS1-0 model of CMIP5. A Markov Chain model estimated future land use based on the probability of changes in the past. The ET analysis is carried out for the years 2009-2011. The results indicate variation in the seasonal ET with the changed land use. High ET is observed over forest areas and crop lands, but ET decreases over crop lands after harvest. The overall annual ET is high over water bodies and forest areas. ET is high in the premonsoon season over the water bodies and decreases in the winter. Future ET in the 2020s, 2030s, 2040s, and 2050s is shown with respect to land use and climate changes that project a gradual decrease due to the constant removal of the forest areas. The lowest ET is projected in 2050. Individual impact of land use change projects decreases in ET from 1990 to 2050, while climate change effect projects increases in ET in the future due to rises in temperature. However, the combined impacts of land use and climate changes indicate a decrease in ET in the future

    Development of understanding in hydro-climate services in India to inform food and water security

    Get PDF
    This project aims to improve understanding of hydro-climate services in India in order to inform food and water security. It involves collaboration between UCL and the Centre for Ecology and Hydrology (CEH) in the UK and the National Institute of Hydrology (NIH), Roorkee and Indian Institute of Technology (IIT), Bombay in India. This report is structured around the three main themes of the project: catchment hydrological modelling, assessment of environmental flows under climate change, and a feasibility study to assess the potential of developing guidance for India similar to that of the Flood Estimation Handbook for the UK

    Understanding future water challenges in a highly regulated Indian river basin — modelling the impact of climate change on the hydrology of the upper Narmada

    Get PDF
    The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin

    Strategic Analyses of the National River Linking Project (NRLP) of India, Series 1. India’s water future: scenarios and issues

    Get PDF
    River basinsEnvironmental flowsDevelopment projectsWater requirementsIrrigated farmingWater demandFood demandGroundwater irrigationIrrigation efficiencyWater harvestingSupplemental irrigationWater productivityWater conservationDrip irrigationSprinkler irrigationRainfed farmingAgricultural policy

    India’s water future to 2025-2050: Business-as-usual scenario and deviations

    Get PDF
    Poverty / Mapping/ Water demand / Water supply / Population growth / Crop production / Crop yield / Groundwater irrigation / Food security

    Impacts of future climate and land use change on water yield in a semi‐arid basin in Iran

    Get PDF
    Studying the interaction between hydrology, land use and climate change is necessary to support sustainable water resources management. It is unknown how land management interventions in dry climate conditions can benefit water yield in the context of climate and land use change interactions. In this study, we assessed the effects of both land use and climate change on the Mordagh Chay basin water yield using the Integrated Valuation Ecosystem Service and Tradeoffs model (InVEST). First, we modelled the current water yield, followed by developing six combined climate‐land use scenarios until 2030 based on the CCSM4 climate model for the RCP4.5 and RCP8.5 scenarios. We used three future land use scenarios simulated by the Dyna‐CLUE model. The trend scenario of land use change, which does not include any improvements in irrigation efficiency, significantly affected basin water yield under both climate scenarios. Water yield decreases by 19.8% and 31.8% for the RCP4.5 and RCP8.5, respectively. Under all land use scenarios that included improvements in irrigation efficiency the water yield responded positively. For the RCP4.5 scenario, the water yield was projected to increase between 16.6 and 18% depending on the land use scenario. The increase in water yield under the RCP8.5 climate scenario was much lower than for the RCP4.5 scenario (about one third). Overall, the results showed that by adopting appropriate irrigation efficiency, it is possible to achieve a better balance between environmental needs, regional economic and agricultural development. The results provide insight into possible sustainable development options and also provide guidance for managing the other Urmia Lake sub‐basins while the approach of integrated assessment of climate, land use change and land management options is also applicable in other conditions to help inform sustainable management

    Hydro-Climatic Changes and Corresponding Impacts on Agricultural Water Demand in the Ganges Delta of Bangladesh

    Get PDF
    The Ganges Delta in Bangladesh, a transboundary rural river basin, is an example of water-related calamities due to natural and human-induced stresses. It is an agriculture-dominated area with the presence of Sundarbans mangrove forest. Recently this area is facing unfavorable conditions due to limitations in quantity, quality, and timing of available freshwater. As a result, floods, droughts, water scarcity, stream depletion, salinity intrusion, excessive sedimentation are becoming common phenomena. These calamities are making this area unsuitable for agriculture and vulnerable to the Sundarbans’ ecosystem. This study aims to provide technical insight into issues related to water scarcity and projected agricultural water demand for 2020-2100 considering the climate change uncertainties. We addressed three critical areas to attain this purpose. As a first task, this study attempted to analyze and understand the observed hydrological changes over the past six decades to fathom the critical reasons for freshwater scarcity. Secondly, interdependency, availability, and accessibility of surface water and groundwater were analyzed to investigate the adequacy of current water demand and supply in agriculture, industrial and domestic sectors. Irrigation demand is much higher than others and occupies 93% of the total water demand. Similarly, irrigation is 96% of total water withdrawal. This high demand in the agriculture sector led to our next objective to estimate agricultural demand for this century. It helps to understand an overall agricultural water consumption scenario for the future. This study provides necessary background information, which is vital for hydro-economically feasible agricultural water management plans

    Hydrologic modelling

    Get PDF
    Advances in computational tools and modeling techniques combined with enhanced process knowledge have, in recent decades, facilitated a rapid progress in hydrologic modeling. From the use of traditional lumped models, the hydrologic science has moved to the much more complex, fully distributed models that exude an enhanced knowledge of hydrologic processes. Despite this progress, uncertainties in hydrologic predictions remain. The Indian contribution to hydrologic science literature in the recent years has been significant, covering areas of surface water, groundwater, climate change impacts and quantification of uncertainties. Future scientific efforts in hydrologic science in India are expected to involve better, more robust observation techniques and datasets, deeper process-knowledge at a range of spatio-temporal scales, understanding links between hydrologic and other natural and human systems and integrated solutions using multidisciplinary approaches
    corecore