6 research outputs found

    A Review and Characterization of Progressive Visual Analytics

    Get PDF
    Progressive Visual Analytics (PVA) has gained increasing attention over the past years. It brings the user into the loop during otherwise long-running and non-transparent computations by producing intermediate partial results. These partial results can be shown to the user for early and continuous interaction with the emerging end result even while it is still being computed. Yet as clear-cut as this fundamental idea seems, the existing body of literature puts forth various interpretations and instantiations that have created a research domain of competing terms, various definitions, as well as long lists of practical requirements and design guidelines spread across different scientific communities. This makes it more and more difficult to get a succinct understanding of PVA’s principal concepts, let alone an overview of this increasingly diverging field. The review and discussion of PVA presented in this paper address these issues and provide (1) a literature collection on this topic, (2) a conceptual characterization of PVA, as well as (3) a consolidated set of practical recommendations for implementing and using PVA-based visual analytics solutions

    Doctor of Philosophy

    Get PDF
    dissertationCorrelation is a powerful relationship measure used in many fields to estimate trends and make forecasts. When the data are complex, large, and high dimensional, correlation identification is challenging. Several visualization methods have been proposed to solve these problems, but they all have limitations in accuracy, speed, or scalability. In this dissertation, we propose a methodology that provides new visual designs that show details when possible and aggregates when necessary, along with robust interactive mechanisms that together enable quick identification and investigation of meaningful relationships in large and high-dimensional data. We propose four techniques using this methodology. Depending on data size and dimensionality, the most appropriate visualization technique can be provided to optimize the analysis performance. First, to improve correlation identification tasks between two dimensions, we propose a new correlation task-specific visualization method called correlation coordinate plot (CCP). CCP transforms data into a powerful coordinate system for estimating the direction and strength of correlations among dimensions. Next, we propose three visualization designs to optimize correlation identification tasks in large and multidimensional data. The first is snowflake visualization (Snowflake), a focus+context layout for exploring all pairwise correlations. The next proposed design is a new interactive design for representing and exploring data relationships in parallel coordinate plots (PCPs) for large data, called data scalable parallel coordinate plots (DSPCP). Finally, we propose a novel technique for storing and accessing the multiway dependencies through visualization (MultiDepViz). We evaluate these approaches by using various use cases, compare them to prior work, and generate user studies to demonstrate how our proposed approaches help users explore correlation in large data efficiently. Our results confirmed that CCP/Snowflake, DSPCP, and MultiDepViz methods outperform some current visualization techniques such as scatterplots (SCPs), PCPs, SCP matrix, Corrgram, Angular Histogram, and UntangleMap in both accuracy and timing. Finally, these approaches are applied in real-world applications such as a debugging tool, large-scale code performance data, and large-scale climate data

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten
    corecore