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ABSTRACT

Correlation is a powerful relationship measure used in many fields to estimate trends and make

forecasts. When the data are complex, large, and high dimensional, correlation identification is

challenging. Several visualization methods have been proposed to solve these problems, but they all

have limitations in accuracy, speed, or scalability. In this dissertation, we propose a methodology

that provides new visual designs that show details when possible and aggregates when necessary,

along with robust interactive mechanisms that together enable quick identification and investigation

of meaningful relationships in large and high-dimensional data. We propose four techniques using

this methodology. Depending on data size and dimensionality, the most appropriate visualization

technique can be provided to optimize the analysis performance.

First, to improve correlation identification tasks between two dimensions, we propose a new

correlation task-specific visualization method called correlation coordinate plot (CCP). CCP trans-

forms data into a powerful coordinate system for estimating the direction and strength of correlations

among dimensions. Next, we propose three visualization designs to optimize correlation identifi-

cation tasks in large and multidimensional data. The first is snowflake visualization (Snowflake), a

focus+context layout for exploring all pairwise correlations. The next proposed design is a new

interactive design for representing and exploring data relationships in parallel coordinate plots

(PCPs) for large data, called data scalable parallel coordinate plots (DSPCP). Finally, we propose a

novel technique for storing and accessing the multiway dependencies through visualization (Multi-

DepViz).

We evaluate these approaches by using various use cases, compare them to prior work, and

generate user studies to demonstrate how our proposed approaches help users explore correlation

in large data efficiently. Our results confirmed that CCP/Snowflake, DSPCP, and MultiDepViz

methods outperform some current visualization techniques such as scatterplots (SCPs), PCPs, SCP

matrix, Corrgram, Angular Histogram, and UntangleMap in both accuracy and timing. Finally,

these approaches are applied in real-world applications such as a debugging tool, large-scale code

performance data, and large-scale climate data.
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CHAPTER 1

INTRODUCTION

1.1 Challenges
Correlation is a powerful metric [1] that provides a predictive relationship between variables

used in many areas of science [2], engineering, and business [3]. A correlation coefficient is a

measure of the strength and direction of such a relationship. Correlation is a powerful statistical

tool, but visual examination is critical to interpret data.

The many-to-one relationship between data and a correlation coefficient may obscure important

features of the data. In Anscombe’s quartet (see Fig. 1.1) [4], four distributions (i.e., the many

relationship) have identical correlation coefficients (i.e., the one relationship). Visual examination

can disambiguate the variations to outliers (case 1), noise (case 2), nonlinearity (case 3), and

nonrelationship (case 4).

Many visualization methods have been proposed to improve correlation identification in large

and multidimensional data. Both scatterplots (SCP) [5], as shown in Fig. 1.2, and parallel coor-

dinates plots (PCP) [6], as shown in Fig. 1.3, are capable of being used to investigate correlation.

However, one should not infer that these are the ideal tools for performing such a task. The critical

shortcoming of these methods is in their design goal—they are designed as general purpose tools for

performing a wide variety of analytic tasks. No special consideration has been made to any single

task, meaning that while they can be used to identify correlation, they are not designed optimally

for it.

Additionally, the challenge of correlation identification is exacerbated by the increasing desire

to analyze large multidimensional data. A number of multiattribute visualization techniques exist

for this analysis, with scatterplot matrices (SPLOMs) [7] and PCPs [8], [9] remaining the most

popular. SPLOMs simultaneously show all possible combinations of attribute, but the plots become

small as the number of combinations grows quadratically. For PCPs, the series of axes grow linearly.

However, the limit of pairwise comparisons requires offloading the task to interaction.

Furthermore, in large datasets with a high number of data points, parallel coordinates plots are
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commonly used for correlation identification in many analyses. Parallel coordinates plots (PCPs)

have been widely studied in visualization, yet their adoption outside the community has been

slow. The number of publications with the term “parallel coordinates” in the title has been rising

steadily from 14 in 1991 to 543 in 2011, with 5620 total publications as of December 2012 [10].

Although some in the community find PCPs to be a valuable way to analyze and interact with

their multiattribute data, the challenges faced in widespread adoption are twofold. First, PCPs can

be difficult to interpret for inexperienced users, requiring training [11]. Second, technical issues

with overdraw [12], order of axes, line tracing, nominal and ordinal data, time series, pattern

recognition [13], and uncertainty [14], make them impractical for many scenarios.

The visualization methods presented above deal with large data but not many dimensions.

Corrgrams [15] display a matrix of correlation glyphs. These glyphs scale well and give the user

quick access to summary statistics, but they may lose important data features (e.g., Anscombe’s

quartet). Finally, multivariate relationship analysis is an important task in visual analytics [16]. To

gain insight from the complex multivariate data [17], a number of analysis approaches have been

proposed, such as sampling [18], clustering [19], reducing the number of variables [20], or the

introduction of object and dimensional correlation during projection from multidimensional space

to 3D [21].

UnTangle Map [22] proposed a triangle mesh layout based on a greedy algorithm to represent

triangle meshes for sets of three variables. This method does not represent all possible relationship

triangles but chooses the most relevant ones. It works well to identify the multiway dependencies

that can break down to a set of three-way dependencies as sets of triangles. However, when users

need to understand the whole picture of all potential multiway relationships, both relevant and

irrelevant ones, they need a new layout that supports them to quickly perform this task.

When the number of dimensions is not large, providing methods that show detail to improve

correlation identification is possible. However, when the number of dimensions is high, identifying

correlations at the summary level, while showing detail is difficult. Therefore, methods that improve

correlation identification in both large and multidimensional data are challenging.

1.2 Dissertation Statement
Concentrating on interactive and data scalable design for visualizing correlation can improve its

identification in large and multidimensional data. This methodology provides new visual designs
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along with robust interactive mechanisms that show details when possible, and aggregates when

necessary, and enables quickly identifying and investigating meaningful relationships. Depending

on data size and dimensionality, the most appropriate visualization technique can be selected to

boost analysis performance.

First, with these limitations of SCP and PCP, we have developed a new, correlation task-specific

visual design called correlation coordinate plots [23], [24], or CCPs as shown in Fig. 1.4. CCPs use

design attributes, such as axis shape and a simple, yet effective, point transform to enable quick and

accurate determination of correlation direction and strength. Our user study confirmed that CCPs

help users identify correlation more accurately and at a faster speed than SCP and PCP.

Second, to overcome the challenge of correlation identification in the medium-level scope, we

have further developed a new focus+context style circular layout for CCPs, called the Snowflake

Visualization, as shown in Fig. 1.5. This visualization represents a compromise where the screen

space needed to represent additional attributes grows linearly for the focus region and quadratically

for the context region, with some reliance on interaction for full investigation. We have also

extended the visual metaphors of the CCP to support principal component analysis of data, which

provides a single visual interface for multidimensional analysis.

Third, PCP use is popular in the visualization community because users can identify trends of

the data. However, arguably the greatest technical challenge for PCPs is that of overdraw, which

occurs when large numbers of overlapping lines obscure the patterns in the data. Unfortunately,

this problem makes standard PCPs difficult to use for large, noisy, or complex data. Three im-

portant visual features are used in analysis with PCPs: the angles of line segments, the locations

of line segment crossings, and the distribution of line segments. The majority of approaches to

correct overdraw in parallel coordinates have unfortunately broken one or more of these properties.

We propose a new paradigm for representing relationships in PCPs that overcomes the overdraw

problem, while simultaneously maintaining these properties. We call this approach data scalable

parallel coordinates (DSPCP) [25], [26], as shown in Fig. 1.6. DSPCP exploits the point/line duality

property of PCPs and a local linear assumption of data to extract and to represent relationship

summarizations. DSPCP simultaneously shows relationships in the data and the consistency of

those relationships. It supports various visualization tasks including cluster analysis, mixed linear

and nonlinear pattern identification, hidden pattern detection, and outlier detection, all in large data.

We demonstrate the results on multiple synthetic and real data sets.
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Finally, we propose a method that improves the identification of correlation in large and multidi-

mensional data [27], [26]. This approach is a novel interactive context+focus visualization technique

(MultiDepViz) as shown in Fig. 1.7. Our data structure is inspired by the algebraic topology notion

of a simplicial complex, where one-, two-, and three-simplices are used to model the pairwise,

three-way, and four-way dependencies, respectively. We also inherit UnTangle Map to represent

the probability relationship between pairwise and three-way dependencies in detailed view and ex-

tended visual encodings to represent four-way dependencies. Exploration is supported by a variety

of operations placed on the complex, and interactive visualization enables flexible investigations

through overview and detailed views of the data. The overview provides a global visual exploration

interface for filtering and selecting a candidate set of relationships, and the detailed views helps

in developing inferences by providing specific information about those relationships selected. We

provide various use cases and compare them to the prior work to demonstrate how our proposed

approach helps to explore these multiway dependencies in data efficiently.

Fig. 1.8 shows a comparison between current methods (in blue) and our four new approaches (in

red) that we propose to improve correlation identification with the low and high size of dimensions

and size of data items. The circle glyph shows that the method represents individual data items,

and the box glyph shows that the method provides a summary of data items. CCP and snowflake

visualization represent individual data items, which improves correlation identification in low and

medium number of dimensions and the size of data. DSPCP represents large-scale data, and

MultiDepViz could handle both the high numbers of dimensions and the large size of the data.

Our approaches improve correlation identification in large and multidimensional datasets compared

to the conventional methods such as SCP, PCP, UntangleMap, Angular Histogram, and Corrgram as

demonstrated by user studies and case studies in the following chapters of this dissertation.
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Figure 1.1: Anscombe’s quartet (data from [4]) shows four visually different distributions that have
the same correlation coefficient of 0.816.

Figure 1.2: Scatter plots matrix.

Figure 1.3: Parallel coordinates.
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(a) Positive (b) No Correlation (c) Negative

Figure 1.4: Correlation coordinate plots (CCPs) transform data into a coordinate system more suited
to identifying correlation between two attributes. (a-c): Example CCPs show positive correlation,
no correlation, and negative (or anti-) correlation, respectively.
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Figure 1.5: The snowflake visualization is a focus+context interface that combines CCPs for one
attribute to all others in the middle (i.e., the focus) and CCPs for all other attribute pairings on the
perimeter (i.e., the context).

Figure 1.6: While large data overwhelms conventional PCPs, our approach uses flexible rela-
tionship clustering and summarization to identify large-scale trends in the data, simultaneously
highlighting adherence to the trend and showing outlier behavior. Here, trends are tracked across
multiple data attributes.
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(a) Overview.

(b) Detailed View.

(c) Reordering. (d) Filtering. (e) Selection.

Figure 1.7: Overview+detail of the marketing research dataset. Our approach for representing
multiway dependencies in multivariate data begins with (a) an overview supported by a glyph
representation of pairwise, three-way, and four-way relationships for all sets of four variables.
The overview can be (c) reordered, (d) filtered, and (e) zoomed until a relationship of interest is
identified. A selected glyph then populates the detailed view (b).
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Figure 1.8: Visualization methods for correlation identification.



CHAPTER 2

PREVIOUS WORK

2.1 Correlation
Correlation is a statistical relationship between data and can be used to model and predict

relationships [1], [3]. The ”quality of the relationship” is often measured using a correlation

coefficient [28], [29], with a positive correlation indicating two attributes are increasing together,

whereas negative or anti-correlation indicates that one attribute increases and the other decreases.

There are several correlation coefficient measures, the most common of which is the Pearson

correlation coefficient (PCC) [30], [31]. PCC, ρ(x,y), measures the linear relationship between

two attributes x and y with means x̄ and ȳ and standard deviations σx and σy [32], [33]. It is defined

as

ρ(x,y) =
cov(x,y)

σxσy
=

Σ(xi− x̄)(yi− ȳ)
σxσy

. (2.1)

When identifying correlations, finding nonlinear relationships [28] can also be important. While

linear correlation represents a line that best describes the relationship between two attributes, the

nonlinear case can take any shape that implies a relationship between the attributes.

2.2 Multivariate Dependency and the Coefficient of Determination R2

The coefficient of determination, or R2, is used to measure how well actual data values fit those

derived from a model-fitting procedure [34], [35]. Our usage of the measure is under the context of

multiple correlation, which is a measure of how well a given (dependent) variable can be predicted

using a linear combination of other (independent) variables. The value of R2 ranges between zero

and one, where a higher value indicates a better predictability of the dependent variable. A value

of one indicates that the predictions are exactly correct, and a value of zero indicates that no linear

combination of the independent variables is a better predictor than the fixed mean of the dependent

variable.
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Multiple correlation requires the selection of a set of independent variables, x1,x2, ...,xN , and a

single dependent, y. R2 can then be computed using the following equation.

R2 = cT R−1
xx c. (2.2)

where the vector c = (rx1y,rx2y, ...,rxny)
T contains the pairwise correlation rxiy between the in-

dependent variables xi and the dependent variable y. The correlation matrix Rxx represents the

intercorrelations between independent variables and takes the form

Rxx =


rx1x1 rx1x2 . . . rx1xN

rx2x1

. . .
...

...
. . .

rxNx1 . . . rxNxN

 (2.3)

If all the independent variables are uncorrelated, the matrix Rxx is the identity matrix, and R2

simply equals cT c, the sum of the squared correlations with the dependent variable. If the predictor

variables are correlated among themselves, R−1
xx will account for this.

2.3 Scatterplot
A scatterplot (SCP) [5], [36] is a simple plot of points used to investigate the linear and nonlinear

relationships between two attributes [37]. The patterns of importance in the context of correlation

are when the data points slope from lower left to upper right, suggesting a positive correlation,

whereas a pattern sloping from upper left to lower right suggests a negative correlation. The

direction of correlation (positive or negative) can be confusing to novice users. More importantly,

the strength of the correlation (high versus low correlation) can at times be difficult to interpret.

For multidimensional data, a scatterplot matrix (SPLOM) [37], [38] shows the relationships

of all pairs of attributes by organizing a grid of SCPs with each attribute occupying one row

and one column. As the number of attributes increases, the number of plots grows quadratically,

making it difficult to present all the data. This problem can be mitigated by approaches such as

Corrgrams [15], which display a matrix of correlation glyphs. These glyphs scale well and give the

user quick access to summary statistics, but they may lose important data features (e.g., Anscombe’s

Quartet). In other cases, navigation can be used to search larger spaces [39].

Navigation also can be used to help search larger spaces [39]. Another method, based on flow

field analysis and applied to scatterplots, uses sensitivity coefficients to highlight local variation of
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one variable with respect to another [16]. In other work, multivariate data are projected from their

attribute space to 2D, such that points with similar attributes are located close to each other [40].

2.4 Parallel Coordinates Plot
Parallel coordinates plots (PCPs) [6], [41], are a well-known visualization technique for explor-

ing multidimensional datasets that display n parallel axes, one for each attribute. Every data point

is mapped to a vertex on each parallel axis and connected by line segments. In general cases, the

ambiguity created by the crossing lines in PCPs associated with many noisy data makes correlation

direction and strength, in particular, difficult to interpret. In addition, previous studies have shown

that PCPs are slower and less accurate than SCPs for correlation tasks [42].

The advantage of a PCP is that it provides a continuous and comparative view across the axes,

and the screen space needed for the visualization scales linearly with the number of attributes. For

various reasons, PCPs can become ineffective as the number of data items or attributes becomes

large. For large numbers of data items, the overdraw caused by overlapping line segments may

obscure important patterns, retaining only outlier visibility [43]. Various modifications to PCPs have

been proposed by using color [10], opacity [44], [45], smooth curves [46], [47], frequency [48],

density [49], [50], or animation [51] to address overdraw. At the same time, PCPs do not show

all possible combinations of attribute pairs, requiring significant user interaction for exhaustive

exploration. A PCP matrix [52] is one method that can help overcome this limitation.

2.4.1 Parallel Coordinates Approaches

The majority of these approaches can be placed into one of three categories: geometry-based,

frequency-based, or density-based approaches [53]. Unfortunately, most of these techniques have

some form of scalability limitation in visualization tasks such as identifying clusters, noise, outliers,

etc.

• Geometry-based Approaches: Data items are most often represented as linear splines inter-

secting each of the axes at their respective coordinates. As lines overlap, they may prevent

understanding the data. Smooth and continuous curves can replace the lines for visualizing

multiple correlation, facilitating line tracing, reducing overdraw, and visualizing clusters of

data [46]. Some techniques have also used clustering algorithms to identify similar items

based on proximity of lines or line density [51].
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• Frequency-based Approach: Frequency-based approaches aggregate and filter data in a bin-

ning process [44]. Frequency-based PCPs avoid overdraw but still suffer from limitations

in identifying the principal trend in the data or interpreting mixed trends in the data. In the

angular histogram, each polyline axis intersection is considered a vector. It visualizes the

magnitude and direction of these vectors. This method helps users explore clustering, linear

relationship identification, and outlier detection in data, while avoiding the overdraw problem

of classic PCPs. However, angular histogram PCPs still have limitations in identifying nonlin-

ear relationships and finding the crossing locations of data. Furthermore, angular histograms

aggregate the frequency of the lines between pairs of axes, which means users can identify

only the principal trend of data and will have a difficult time interpreting mixed trends within

the data.

• Density-based Approach: Density-based approaches visualize a continuous density function

of underlying data instead of discrete samples [54]. Density-based approaches avoid overdraw

by replacing opaque lines with a density representation [55]. For example, distance-based

weighting constructs a multiattribute density function [49]. Anisotropic diffusion of noise

textures [56] has been employed to visualize line orientations. These approaches avoid

overdraw; however, they lack a good mechanism to map patterns found using the approaches

back to the original data items since they remove individual lines as in geometry-based PCPs.

Interaction is important to explore data efficiently in PCPs. The order of axes defines which

attributes are compared. Drag-and-drop axis swapping is commonly used to allow multiple com-

parisons. Brushing allows users to select a subset of data for highlighting, labeling, replacing, etc.

This technique was originally used in scatterplots, but it has been applied to PCPs, for example

in angular brushing [57]. Extending brushing to multiple axes can construct multidimensional

brushes [58]. Brushing an item on an axis is equivalent to the selection of a line in the Cartesian

domain. Line-based and polygon-based brushes can be employed in the spaces between axes.

Brushing can be used to select data items in PCPs based on the slopes of lines between axes. For

large data, brushing techniques have used wavelets [59] and clustering [60].

2.4.2 Point Line Duality in PCPs

A well-known but not fully exploited quality of PCPs is point/line duality—namely, the property

that a point in Cartesian coordinates maps to a line in parallel coordinates. However, less well known
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is that a line in Cartesian coordinates maps to a single point in parallel coordinates.

Given a line in Cartesian coordinates specified by a point (x0,y0) and a direction specified by

< ũ, ṽ >, a point (x1,y1) can be found as (x0+ ũ,y0+ ṽ). The points (x0,y0) and (x1,y1) can then be

transformed into lines in parallel coordinates as seen in Fig. 2.1.

The intersection point (q,r) can be found by representing the lines parametrically, where r =

x0 +(y0− x0) ·q and r = x1 +(y1− x1) ·q, and solving

q(ũ, ṽ) =
ũ

ũ− ṽ
. (2.4)

r(ũ, ṽ) = x0 +(y0− x0)
ũ

ũ− ṽ
. (2.5)

2.5 Multidependencies Visualization Methods
Many methods use correlation coefficients to calculate the relationship between variables in

data and visualize the information. Gosink [61] presents a method that increases the utility of

query-driven techniques by visually conveying statistical information about the trends that exist

between variables in a query. In this method, correlation fields, created between pairs of variables,

are used with the cumulative distribution functions of variables expressed in a user’s query. Qu [47]

used the correlation coefficient to calculate the strengths between different data attributes in weather

data analysis and visualization. Glatter [62] used two-bit correlation to study temporal patterns

in large multivariate data. Sukharev [63] proposed a method based on analyzing pairwise corre-

lation in time-varying multivariate data by using pointwise correlation coefficients and canonical

correlation analysis. Another pairwise correlation visualization approach used local anisotropic

correlation structures in the vicinity of uncertain isosurfaces and used glyphs to visualize these

dependencies [64]. Jen introduced a design for exploring correlations between two scalar fields

[65]. Some methods have used data mining techniques to gain insight. Gu and Wang presented

three hierarchical clustering methods based on quality threshold, k means, and random walks to

investigate the correlations with varying levels of detail [66].

Several approaches deal with large and complex correlation fields. The multifield graph is used

to give an overview of how multiple fields correlate and to show the strength of their correlation [67].

The approach in [67] is the computation of correlation fields, which are scalar fields containing the

local correlations of subsets of the multiple fields. Chen also introduced a sampling scheme to sum-
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marize the correlation connection in time-varying multivariate datasets [18]. This scheme consists

of three steps: selecting important samples from the volume, prioritizing distance computation for

sample pairs, and approximating volume-based correlations. This sample-based approach enables

users to obtain an approximate correlation coefficient in a cost-effective manner, making it scalable

for large datasets.

UnTangle Map [22] is an effective way to investigate the relationship between data items and

their probabilistic labels, as well as the relationships among labels as shown in Fig. 2.2. Its design

extends the traditional ternary plot into an interactive mesh of triangles in order to effectively show

item label relationships, and to enable the scattering patterns of items to aggregate into a visual

summary of the underlying labels. However, this method cannot represent all possible relationships

in multidimensional data.

When users have questions related to the whole picture of all possible multiway relationships,

they need to use some algorithm to filter the data and feed it to their triangular mesh layout.

UnTangle Map is a suitable visualization tool to identify multiway dependencies when users do

not need to see all possible multiway relationships in data. A new layout that helps users answer

this type of question and quickly implement this task is necessary to improve the capability of

addressing more information seeking.

In all cases, the designs of these techniques are not optimal for correlation identification and have

limitations in representing multiway dependencies in multivariate data. Therefore, we propose four

visualization techniques to help users identify multiway dependencies efficiently for complex and

large multivariate data: CCPs to represent detail levels of relationships, snowflake visualization, data

scalable parallel coordinates (DSPCP), and multiway dependencies visualization (MultiDepViz) for

large and multidimensional data.
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(x0,y0)

<ũ,ṽ>

x0

y0

x1
or
x0+ũ

y1 
or 
y0+ṽ

(q,r)

Figure 2.1: Demonstration of the point/line duality property of Cartesian coordinates (left) and
parallel coordinates (right).
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Figure 2.2: UnTangle Map for marketing data.



CHAPTER 3

CORRELATION VISUALIZATION

3.1 Challenges
Task generality (i.e., the support for many tasks) is both an advantage and disadvantage for

the SCP and PCP. Either method is capable of being used for correlation tasks, but they are not

necessarily the most efficient methods available. This inefficiency has led us to develop a new visual

encoding focused specifically on correlation tasks, called correlation coordinate plots (CCPs) as

shown in Fig. 3.1. The proposed method is centered on helping users quickly identify the existence,

direction, and strength of pairwise correlations. The visual design is motivated by our desire to

make the correlation task one of comparison using a position along a common baseline.

For clarity in notation, we assume a dataset X contains n attributes and m data points, with Xi

indicating a single data attribute of m values and Xi j indicating data point j of attribute i.

3.2 Coordinate System
We propose using a correlation coordinate system that differs from the Cartesian coordinate

system, so as to highlight how well points adhere to the correlation. The coordinate system can be

seen as a one-dimension parameterization of the data to an underlying model, in this case a line.

The vertical position of a data point is the parameterization of the data. The position horizontally

is more important, demonstrating the quality of the fit. Therefore, identifying correlation primarily

relies on visibility of points to the left and right of the axis.

Transforming the data from a Cartesian domain into the correlation coordinate system is a two-

step process laid out in Fig. 3.2, with the top panel showing the positive relationships and the bottom

panel demonstrating the negative relationships.

The first step is a scaling operation (Scl) that forces the data into a square region (see Fig. 3.2

panels 1 and 2). The second step is the projection (Pma jor and Pminor) operation, which measures the

location of the point relative to the positive correlation diagonal (lower left to upper right) as shown

in Fig. 3.2a or negative correlation diagonal (upper left to lower right) as shown in Fig. 3.2b. That
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measure is used to place the points in the CCP (see panels 3 and 4).

The process begins by normalizing the data to [−1,1].

Scl(Xi) =
Xi− argminXi

Xi j

argmaxXi
Xi j− argminXi

Xi j
. (3.1)

Once normalized, the location of a point i from attributes j and k can be determined. The

location on the major (vertical) axis is

Pma jor(X ji,Xki) = Xki. (3.2)

The position on the minor axis is

Pminor(X ji,Xki) =

α · (X ji−Xki) possitive or no correlation

α · (X ji +Xki) negative correlation.
(3.3)

The variable α is a scalar that affects the spread of data points when plotting. We selected a

constant value based upon the width of the CCP.

The plot orientation was initially chosen to be vertical in order to pack many plots side by side

on the display. Ultimately, the choice of a vertical plot is somewhat arbitrary and will be relaxed in

forthcoming sections. Nevertheless, we present and evaluate our approach based upon the vertical

orientation.

3.3 Coordinate Axis
We designed the coordinate axis to serves as a visual indicator of the existence and direction of

correlation. For two attributes of a dataset, Xi and X j, PCC is used to indicate a positive correlation

by ρ(Xi,X j) > ε , a negative correlation by ρ(Xi,X j) < −ε , and uncorrelated by all other values.

The major coordinate axis is laid out vertically and represented by a triangle whose base is at the

top for positive correlation (Fig. 3.1a), the bottom for negative correlation (Fig. 3.1c), and a straight

line for uncorrelated (Fig. 3.1b) data.

We have also considered mapping PCC to the width of the axis, where higher values are wider

and lower values thinner. Due to the relatively small width of the axis, we decided this mapping was

not particularly informative. Instead, to identify the strength of correlation, users should investigate

the distribution of data in the correlation coordinate system, presented in the following sections.
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3.4 Coloring Data Points
A number of figures have had their data points colored based upon their PCC value [{−1 :

blue},{0 : black},{1 : red}]. Strictly speaking, this encoding is redundant and not required. How-

ever, if colors are interpolated based upon PCC value, they do carry some additional information,

and in general, we find them more aesthetically pleasing. Because our focus is on the use of the

coordinate axis and coordinate system, our method does not rely on color, and color was not used

in the user study.

3.5 Correlation Identification
Using CCPs for correlation tasks is fairly simple. Depending upon the users’s goal, we suggest

• First, use the axis to determine if the data are, positive, negative, or uncorrelated.

• Next, use the shape of the data points to determine the basic relationship between the attributes

(i.e., linear, nonlinear, etc.).

• Finally, the distance of the points from the axis can be used to estimate the strength of

correlation, with small distances indicating high correlation, and other conditions such as

outliers, noise, etc.

For example, in Fig. 3.1c, by checking the axis, a negative correlation can be seen. By observing

the closeness of the data points to the axis, CCP shows a strong linear relationship with a small

amount of noise. On the other hand, in Fig. 3.1a, the axis indicates a positive correlation. From

the shape of the data, it is apparent that a nonlinear relationship exists with weak linear correlation

properties.

3.6 Implementation
Algorithm 1 contains pseudocode for the CCP Visualization. We have also included a sample

visualization tool1 that can be built in Processing. This is pseudocode to draw the CCP of two input

data attributes with M items as we described in the above sections.

1CCPs: https://github.com/hoa84/CCPs SnowflakeViz
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Algorithm 1: DRAW CORRELATION COORDINATE PLOT

1:

2: // Draw axis
3: if PCC(X ,Y )> ε then
4: drawAxis(upper-triangle-axis)
5: else if PCC(X ,Y )< ε then
6: drawAxis(lower-triangle-axis)
7: else
8: drawAxis(straight-line-axis)
9: end if

10:

11:

12: // Draw items

13: for i = 1 : M do
14: [xn,yn] := normalize(Xi,Yi)
15: pma jor := xn

16: if PCC(n−1, i)> ε then
17: pminor := yn−xn

2.0 f
18: else
19: pminor := yn+xn

2.0 f
20: end if
21: drawPoint(pma jor, pminor)
22: end for
23:

3.7 Evaluation
3.7.1 Performance

The software was built using C++, OpenGL with Qt and Processing, and run on a MacBook

Pro with a 2.5 GHz Intel Core i5, 4 GB RAM, and 512 MB Intel HD Graphics 4000. We used the

threshold of Pearson correlation coefficient from -0.02 to 0.02 for the low correlation for all of our

experiments. The performance comparison of our method, CCP, with SCP and PCP is provided in

the following user study. The requires precomputation of the CCP is 1.09x time greater than that of

the SCP or PCP, since the CCP computes the Pearson correlation coefficient. The rendering time

for the CCP is comparable to the rendering time of the SCP and PCP.

3.7.2 User Study Setup

To further evaluate our visualization methods, we conducted a user study comparing CCP with

SCP and PCP. In this study, we performed three experiments that asked subjects to perform typical

correlation-related tasks.

We invited 25 participants to take part in our study, 9 female and 16 male, all graduate students

from a variety of science and engineering fields. Their ages ranged from 23 to 35 years old. We

asked the subjects to self-report their level of familiarity with visualization—3 reported themselves

as experts, 9 reported themselves as familiar, and 13 reported themselves as not familiar.

In each experiment, subjects started with a short set of slides and/or video to introduce the

necessary background. Subjects were then given practice questions where, after answering, the

correct answers were provided. Finally, they performed the experimental tasks. For each test, the
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subjects’ answers and response times were recorded. Following the experiment, subjects completed

a short survey. In total, the study lasted less than one hour, including training and testing. For

all visualizations, the color gray was used for axes and labels, and black was used to present data

points, as shown in Fig. 3.3.

In this user study, we used a particle physics dataset containing 41 output attributes and 4000

data items per attribute. The data represent a parameter space search of 25 input attributes generated

by a series of tools that simulate the theoretical physical properties of subatomic particles under the

supersymmetic extension of the standard model of particle physics.

The independent and dependent variables used in each experiment can be found in Table 3.1.

We used a mixed experimental design using t-testing to calculate t-value, p-value, mean difference,

and 95% confidence interval to confirm our hypotheses. Only mean value and p-value are reported,

but other data can be provided upon request.

3.7.3 Experiment 1 - Speed and Accuracy in Pairwise Correlation

Since the CCP was designed specifically for the task of quickly and accurately identifying

pairwise correlations, our first experiment focused on this.

When looking at SCP and PCP, two challenges persist. First, it can be confusing to determine

positive versus negative correlations. Granted, for experts, this is a trivial task, but for others, it can

be confusing.

In many ways, the identification of correlation direction is easier with PCP than SCP—parallel

lines positive and crossing lines negative. Second, there is some ambiguity when trying to identify

the strength of correlation between two attributes. Ambiguity is a much larger problem for PCP.

When the relationship is noisy or nonlinear, overlapping lines quickly obscure detail.

When comparing CCP with these other methods, CCP: 1) provides simple visual cues making

identification of the direction of correlation fairly trivial; 2) and reduces (not eliminates) the am-

biguity by concentrating on correlation in the formulation of the coordinate system. Given these

factors, we developed two hypotheses as follows:

H1 |H2: Using a Correlation Coordinates Plot will enable more accurate and faster identifica-

tion in direction and strength of correlation between two attributes than a [ H1: Scatterplot | H2:

Parallel Coordinates Plot ].
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3.7.3.1 Method

The experiment is summarized in Table 3.1 (H1 & H2). For a block of trials, we showed a

participant a plot between two random attributes using either the SCP, PCP, or CCP method (see

Fig. 3.3) and asked a forced choice question. Subject accuracy and time were measured.

At the start of the experiment, participants were given an introduction to correlation; instructions

on finding correlation in SCP, PCP, and CCP; and six training questions. Participants were then

given 21 experimental questions (seven for each plot type, rotating between type).

3.7.3.2 Results and Discussion

The results of both the measured speed and accuracy of our experiments are shown in Fig. 3.4.

The results from Fig. 3.4a show that when comparing accuracy, CCP showed improvement

over SCP on average 91% compared to 69%, with statistical significance (p = 0.001). We also

looked at subjects’ performance in identifying only the direction of the correlation, where CCP

had an accuracy of 99% compared to 79% for SCP, though not quite with statistical significance

(p = 0.06). The response times (Fig. 3.4b) showed similar results with CCP responses averaging

11.71s compared to 23.4s for SCP (p = 0.001). Given that in our experiments, CCP outperformed

SCP in both speed and accuracy, we consider hypothesis H1 confirmed.

A similar analysis shows that the accuracy of CCP was 91% compared to 48% for PCP (p =

0.001). For identifying type only, CCP had an accuracy of 99% compared to 76% for PCP, though

not with statistical significance (p = 0.09). The response times (Fig. 3.4b) showed a similar result

with CCP coming in on average 11.71s compared to 24.5s for PCP (p < 0.001). Given that CCP

outperformed PCP in speed and accuracy, we consider hypothesis H2 confirmed.

Although not explicitly selected as a hypothesis, we are also able to compare the performance

of SCP and PCP. The results showed that SCP had a higher overall accuracy on average, 70%,

compared to 58% for PCP (p = 0.048). However, when looking at type accuracy only, SCP had

no statistical significance in average accuracy of 76% compared to 85% for PCP (p = 0.25). The

results showed no statistical significance in average response times of SCP and PCP of 24.54s and

25.78s (p = 0.774), respectively. This accuracy confirms prior work [42]. However, for response

time, our sample size was insufficient.

The results of experiment 1 confirmed the hypotheses H1 and H2, indicating that using CCP

subjects can identify correlation in less time and with higher accuracy compared to SCP and PCP.
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In our informal discussions with subjects after the experiment, they indicated that the shape of the

axis and the distribution of points in CCP greatly assisted their comprehension of the correlation.

Subjects complained that with both SCP and, in particular, PCP, it was more difficult to distinguish

positive and negative correlations in scenarios with low correlation. However, they found using

CCP enabled them to easily recognize both the direction and strength.

3.7.4 Experiment 2 - Differentiating Linear, Nonlinear, and Uncorrelated

Identifying nonlinear relationships between attributes can also be an important task. When

comparing CCP with other methods, CCP provides simple visual cues making identification of

correlation direction easier. Beyond that, CCP and SCP give similar visual cues, (i.e., the tasks

performed are basically the same) for the shape of the relationship, linear or nonlinear. This

motivates our next hypothesis:

H3: Using a Correlation Coordinates Plot and a Scatterplot will result in similar accuracy and

speed for identification of linear, nonlinear, and uncorrelated relationships in two attributes.

For PCP, identifying these relationships is far more challenging. The overdraw ambiguity that

plagues linear correlations becomes significantly worse as even more lines overlap each other in

nonlinear cases, which will slow and confuse users. This problem leads to our next hypothesis:

H4: Using a Correlation Coordinates Plot will result in more accurate and faster identification

of linear, nonlinear, uncorrelated relationships in two attributes than a Parallel Coordinates Plot.

3.7.4.1 Method

The experiment is summarized in Table 3.1 (H3 and H4). At the start of the experiment,

participants were given instructions on linear and nonlinear correlation. Participants were then

given three training questions followed by nine experimental questions (three for each plot type,

rotating between types). For each question, participants saw a plot from two random attributes and

were asked a forced choice question. Subject accuracy and time were measured.

3.7.4.2 Results and Discussion

The results of the measured speed and accuracy of our experiments are shown in Fig. 3.5, with

all differences showing statistical significance (p < 0.005).

The results of our experiment showed that CCP outperformed SCP. Our hypothesis H3, however,

had predicted that the performance of CCP and SCP would be identical. This result leads us to reject
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H3. In our discussions with subjects after the experiment, they indicated that the shape of the axis

and the distribution of points in SCP were more difficult to distinguish and that CCP assisted their

comprehension of these specific types of correlation.

Due to CCP substantially outperforming PCP in both speed and accuracy, we consider hypoth-

esis H4 confirmed. As anticipated, participants complained that the overdraw problems made it

difficult to differentiate linear versus nonlinear correlations in PCP.

3.8 Discussion
Selecting realistic tasks for a user study is a challenging problem when users are unfamiliar with

the data and potentially visualization altogether. We have selected a number of simple tasks, which

are building blocks for more complicated data analysis tasks that are commonly performed. The

overall outperformance of the CCP over SCP and PCP stands as evidence of its superiority, which

should translate to more complex tasks.

Correlation coordinate plots have been developed with the specific task of correlation identifica-

tion. They have distinct advantages when compared to general task visualizations such as SCP and

PCP. The advantages, as confirmed by our user study and real-world datasets, include

• Provision simple visual cues that make identification of the existence and direction of corre-

lation fairly trivial.

• Improved estimation of correlation strength by focusing the coordinate system on model fit.

• Improved identification of linear, nonlinear, and uncorrelated data by reducing ambiguity in

the visualization.

We believe that the CCP represents a complementary approach to existing techniques, replacing

existing approaches only where correlation is the major feature of focus in data.
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(a) Positive (b) No Correlation (c) Negative

Figure 3.1: correlation coordinate plots (CCPs) transform data into a coordinate system more suited
to identifying correlation between two attributes. (a-c): Example CCPs show positive correlation,
no correlation, and negative (or anti-) correlation, respectively.

Table 3.1: Variables used to test hypotheses in CCP user study.

Independent Variables Potential Values

Data [ H1 | H2 | H3 | H4 ] 2 random attributes from 41 attribute data

Plot [ H1 | H2 | H3 | H4 ] SCP/PCP/CCP

Question [ H1 | H2 ] How are the 2 attributes correlated?

Question [ H3 | H4 ] What is the type of correlation?

Dependent Variables Potential Values

Answer [ H1 | H2 ]

High Positive Correlation

Low Positive Correlation

No Correlation

Low Negative Correlation

High Negative Correlation

Answer [ H3 | H4 ]

Nonlinear Correlation

Linear Correlation

No Correlation

Response Time [ all H ] Time recorded automatically
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Figure 3.2: Conversion to correlation coordinate system.
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(a) SCP Pos (b) PCP Pos (c) CCP Pos

(d) SCP Neg (e) PCP Neg (f) CCP Neg

Figure 3.3: Three visualization techniques for comparing two attributes, used in experiment 1 and
2.
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Figure 3.4: Results of experiment 1 show CCP (green, column 3) outperforming SCP (blue, column
1) and PCP (red, column 2) in speed and accuracy. In all figures, error bars indicate standard
deviation.
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Figure 3.5: Experiment 2 results show that CCP (green, column 3) outperformed SCP (blue, column
1) and PCP (red, column 2) in speed and accuracy. In all figures, error bars indicate standard
deviation.



CHAPTER 4

CORRELATION VISUALIZATION FOR

MULTIDIMENSIONAL DATA

4.1 Parallel CCP
Thus far, our approach, CCP, can be used to investigate pairwise correlations. Our next goal was

to develop an approach for investigating multiattribute data. We began by looking at SPLOMs,

which have the advantage of showing all possible combinations of attributes at the cost of the

number of plots needed growing at a rate of O
(
n2
)
. This problem may leave little screen space

for each individual plot. On the other hand, the number of plots in PCPs grows at a rate of O(n)

resulting in more available space for each.

In the PCP spirit, we first applied CCPs to multidimensional data through a series of equally

spaced vertical parallel CCP axes as seen in Fig. 4.1. To explore additional combinations of

attributes, users can drag an axis to configure the corresponding relationship.

Much like PCP, this approach does not provide immediate access to all attribute pairs, instead of

relying on user interaction to fully explore the data. As a compromise between the plot size benefits

of PCPs and the comprehensiveness of SPLOMs, we developed a new correlation visualization

layout, the snowflake visualization.

While the number of parallel axes grows at a rate of O(n), the number of user interactions to

explore all data grows at a rate of O
(
n2
)

(i.e., moving every axis next to every other axis).

4.2 Snowflake Visualization
The snowflake visualization (Fig. 4.2a) is an interactive focus+context style circular design

containing two components. The focus region enumerates the correlations between one attribute

and all other attributes. This design enables the number of plots in this region to grow at a rate of

O(n). The outside is a context region that enumerates all other attribute pairs. The number of plots

in this region grows at a rate of O
(
n2
)
. Simple user interaction enables swapping the attributes in

and out of the focus region for deeper investigation.
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4.2.1 Focus View

The focus view (Fig. 4.3a) enables investigating the correlation of one attribute with all other

attributes. Given n attributes, there are (n− 1) pairs laid out around the center of the circle with

equal angular spacing. By default, the final attribute of data is the initial focus attribute. Attributes

are initially sorted by ID but can be reordered with other sorting methods. The inner radius (i.e., the

start of the CCP axes) is chosen such that none of the data points between CCPs will overlap. The

outer radius (i.e., the end of the CCP axes) is adjustable to give more or less space to the context

views.

4.2.2 Context View

Given the attributes covered by the focus view, we designed the context view to give complete

coverage of the remaining attribute pairs. These context views (Figs. 4.3b and 4.3c) are attached to

the branches of the focus view. The organization is based on the parity of n.

When n is odd (m = (n−1)/2), the organization, shown in Fig. 4.4, contains all pairwise corre-

lations in data. Each pair, (di,d j), where i = 0,1, ...,2m−1 and j = i+1, i+2, ...,2m, presents the

correlation between two attributes, di and d j. The red box in Fig. 4.4 contains all the attribute pairs

that are presented in focus view, pairing the last attribute d2m and all other attributes (d0, ...,d2m−1).

The context view has two groups—the upper branches and lower branches. In the upper branches,

where i = 0, ...,m−1, the ith correlation coordinate branch presents correlation between attribute

di and m other attributes that are (di+1,di+2, ...,di+m+1). There are m pairwise correlations in each

upper branch. We can see one upper branch in Fig. 4.3b that has four pairwise correlations when

the number of attributes n is nine and m is four.

In the lower branches, where i = m,m+1, ...,2m−1, the ith correlation coordinate branch

presents correlation between attribute di and other attributes as shown in the ith column in Fig. 4.4.

There are (m− 1) attribute pairs in each lower branch. Fig. 4.3c shows one lower branch that

presents three pairwise correlations when the number of attributes n = 9 and m = 4.

The organization is similar when n is even (m = n/2). The focus view presents the correlations

between last attribute d2m−1 and all other attributes in data (d0,d1, ...,d2m−2). The context view has

only a single branch type that has m−1 attributes pairs in each upper or lower branch.

Here, only a single type appears with the focus+context views that are combined to form the

final visualization. In the case where the number pairings m is large, the context branches can be
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split, such as in Fig. 4.2a.

4.2.2.1 Detail View+Interaction

Typically, a single large CCP detail view is also included with the snowflake visualization (a

similar practice to SPLOMs). A few interactions are included with the snowflake visualization,

including

• Click-to-swap: When the user clicks an attribute, it becomes the focus attribute. After

swapping, outer attributes are reordered based upon a sorting criterion (by attribute ID).

• Zooming: The outer branch of the selected attribute is zoomed out twice to see more correla-

tion of this selected attribute with other attributes on the outer branch.

• Over-to-detail: As the mouse moves over a plot, the detail view is updated to that pairing.

The user can change the attributes displayed in detail view by mousing over a CCP or by

clicking a CCP in the focus+context view.

4.3 Implementation
The following algorithms contain pseudocode for the snowflake visualization. We have also

included a sample visualization tool1 that can be built in Processing. Drawing the snowflake

visualization is presented in two parts. The focus view, based on attribute j, can be drawn using

algorithm 2 by drawing a series of CCPs plots around the center, with equal angular spacing.

Algorithm 3 presents the method to draw context view of snowflake visualization, based on the

parity of n.

Algorithm 2: DRAW FOCUS VIEW OF SNOWFLAKE

1: // Draw attributes before focus j
2: for i = 1 : j−1 do
3: setPosition(cen,rad,(i−1) · 360o

n−1 )
4: drawCCP(A j,Ai)
5: end for

6: // Draw attributes after focus j
7: for i = j+1 : N do
8: setPosition(cen,rad, i · 360o

n−1 )
9: drawCCP(A j,Ai)

10: end for

1CCPs: https://github.com/hoa84/CCPs SnowflakeViz
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Algorithm 3: DRAW CONTEXT VIEW OF SNOWFLAKE

1: // Parity bit for even vs. odd n
2: even = (n is even) ? 1 : 0
3:

4: // Draw attributes after focus j
5: m = bn/2c
6:

7: // Loop ranges
8: range0 := m− even
9: range1 := 2m−1− even

10:

11: // Angular separation for plots
12: b0 = 180o/(m−1− even)
13: b1 = 180o/(m−2)
14: for i = 0 : range0 do
15: for j = 0 to m−2 do

16: setPosition(ceni,angi +b0 ∗ j)
17: drawCCP(Ai,Ai+ j+1)
18: end for
19: end for
20: for i = range0 +1 : range1 do
21: for j=0 to i-m+1-even do
22: setPosition(ceni,angi + b1 ∗ (2m +

j− i−2))
23: drawCCP(Ai,A j)
24: end for
25: for j=i+1 to 2m-2 do
26: setPosition(ceni,angi + b1 ∗ ( j− i−

1))
27: drawCCP(Ai,A j)
28: end for
29: end for

4.4 Many-Attribute Correlations
Pairwise correlations are frequently important to understanding data. However, as the number

of attributes increases, the desire to explore relationships of multiple attributes simultaneously

increases. The snowflake visualization partially addressed the need by presenting many pairwise

relationships simultaneously. Comparing three or more attributes requires looking at an exponen-

tially increasing number of plots and mentally fusing the distributions. We can extend CCP design

for presenting certain types of multidimensional relationships.

To do this, we slightly modify visual metaphors of the CCP. First of all, we remove the pos-

itive/negative metaphor encoded via the axis because multidimensional relationships tend to not

have a directional measure, only magnitude. Now, the parameterization model can be relaxed to

any invertible function, [s, t] = g(x̄). The vertical axis still represents a 1D parameterization of the

data, s. The horizontal axis can now represent a secondary model parameterization, t. Finally, we

represent information lost in this encoding via a series of partially transparent boxes, one per data

point, that form a “haze” surrounding the data points. The size of the boxes is computed by the

residual, r = ||x̄−g−1(s, t)||.

For our experiments, we have used principal component analysis (PCA) to parameterize the

data. The PCA could be replaced with any other model that fits our functional definition. Using

PCA, we set g(x̄) equal to the magnitude of the first two principal components of the data, and
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the size of the box is set to the residual. Fig. 4.5 shows two examples. The SPLOM on the left

(Fig. 4.5a) shows all of the attributes of the dataset. Two subsets have been selected in red and

blue. The red subset are attributes that all appear pairwise linear. When we use the many-attribute

CCP (Fig. 4.5b), we can see that all of the attributes are linear with respect to one another. On the

other hand, the blue attributes appear nonlinear. When visualized with the many-dimensional CCP

(Fig. 4.5c), we can see a relatively simple nonlinear 2D pattern within the data.

4.5 Evaluation
4.5.1 Performance

The software was built using C++, OpenGL with Qt and Processing, and run on a MacBook

Pro with a 2.5 GHz Intel Core i5, 4 GB RAM, and 512 MB Intel HD Graphics 4000. We used the

threshold of Pearson correlation coefficient from -0.02 to 0.02 for the low correlation for all of our

experiments. The performance comparison of our method, snowflake visualization, with SPLOM

and PCPs is provided in the following user study. The precomputation of snowvlake visualization

is 1.12x greater than the SPLOM and PCP, since the snowflake visualization requires the Pearson

correlation coefficient. The rendering time of the snowflake visualization is comparable to the

SPLOM and PCP.

4.5.2 User Study

To further evaluate our snowflake visualization method, we conducted a user study comparing

our approach with SCP matrix and PCP. This user study was conducted in tandem with the user

study presented in section 3.7.

The snowflake visualization was designed specifically for the task of quickly and accurately

exploring pairwise correlations in multidimensional data as compared with SPLOMs and PCP.

As the number of dimensions increases, each SCP within a SPLOM becomes quite small and

the number of plots becomes overwhelming. For PCP, as the number of attributes increases, the

interaction required for many tasks puts increased pressure on the user to explore features of interest.

With these factors in mind, we developed three hypotheses:

H5: Using a snowflake visualization will enable more accurate and faster identification of cor-

relation between two attributes in multidimensional data than a scatterplot matrix or parallel

coordinates plot.

H6: Using a snowflake visualization will enable more accurate and faster identification of how
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many attributes are correlated with a chosen attribute in multidimensional data than a scatterplot

matrix or parallel coordinates plot.

H7: Using a snowflake visualization will enable more accurate and faster identification of which

attributes are correlated with a chosen attribute in multidimensional data than a scatterplot matrix

or parallel coordinates plot.

4.5.2.1 Method

The experiment is outlined in Table 4.1 (H5-H7). Each participant was given an introduction

and demo video for each visualization method and completed 12 sample questions using data

unrelated to experimental trials. Then, each performed 21 experimental questions rotating first

between visualization types, then question types.

4.5.2.2 Results and Discussion

The results of measured speed and accuracy in Fig. 4.6 (Type 1) show the snowflake visu-

alization improved accuracy and speed over SPLOMs and PCPs with statistical significance (all

p< 0.05). The average accuracy for snowflake visualization was 89% compared to 67% for SPLOM

and 64% for PCP. The response times (Fig. 4.6b) for snowflake visualization came in at an average

of 19.9s compared to 31.3s for SPLOM and 26.1s for PCP. Given that snowflake visualization

outperformed SPLOM and PCP in speed and accuracy, we consider hypothesis H5 confirmed.

Again, the results of the experiments showed that the snowflake visualization improved accuracy

and speed over SPLOMs and PCPs (see Fig. 4.6, Type 2) with statistical significance (p < 0.05).

Therefore, we consider hypothesis H6 confirmed.

The results of this final test also showed improved accuracy and speed over SPLOMs and PCPs

(see Fig. 4.6, Type 3) with statistical significance (p < 0.05), leading us to also consider hypothesis

H7 confirmed.

This user study confirmed the hypotheses H5, H6, and H7, indicating that using the snowflake

visualization, users can identify multiple correlations in multiattribute datasets in less time and

with higher accuracy than SPLOMs and PCPs. Our discussions with subjects after the experiment

indicated that snowflake visualization’s focus+context style greatly assisted their interactions and

comprehension when working through multiple pairwise correlation questions.

The participants complained that small SCPs made the SPLOM difficult to use, due to the inabil-

ity to see individual plots and difficulty tracking rows or columns of plots. Using PCP, participants
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complained that the number of dragging operations required to explore multiple correlations made

it very difficult for them.

4.5.3 Case Study

We applied three visualization methods, including the snowflake visualization, SPLOM, and

PCP, to three publicly available datasets including Boston house price data2, Pollen data3, and

Hurricane Isabel data4.

4.5.3.1 Boston House Price

Boston housing data (see Fig. 4.7) is multivariate dataset containing 506 items across 14 at-

tributes. The data contain several variables that try to explain variation in home values in the Boston

area.

When comparing this dataset in a snowflake visualization and SPLOM, a number of features are

observable in both visualizations. For example, in both visualizations, the Age/Rad pairing is fairly

clearly a case for segmentation into two data groups. In the SPLOM, it will likely take longer.

A big advantage in snowflake visualization is that it makes way for exploiting additional visual

channels. Take the Age/Ind pairing. In all visualization approaches, the coloring scheme we have

used makes it fairly easy to see that there is a strong positive correlation. However, without the

coloring, that might not be the case. If color had been used for some other purpose, classification for

example, suddenly we lose the ability in SPLOMs to quickly determine correlation, while observing

classification. Since CCPs do not rely on color to communicate correlation, we can encode other

information in the color channel without significant loss of correlation information.

4.5.3.2 Pollen Data

The pollen data (Fig. 4.8) contain 3848 items each with 6 attributes. This dataset summarizes

geometric features of pollen grains.

The nature of the data makes it difficult to use the PCP due to overdraw. Take the Ridge/Weight

and Ridge/Density. Even though we can be fairly certain that Ridge/Weight is more negatively

2http://lib.stat.cmu.edu/datasets/boston

3http://lib.stat.cmu.edu/datasets/pollen.data

4http://vis.computer.org/vis2004contest/
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correlated than Ridge/Density, any other detail is lost. We are unable to determine if this problem is

due to outliers, nonlinearity, noise, etc. Techniques such as clustering, density, and histogram PCPs

can be used to further improve the representations. However, for correlation strength tasks, these

approaches are not particularly beneficial.

For the snowflake visualization, these data prove to be little trouble. When Ridge is selected

as the focus parameter, Density and Weight can be compared in detail. The thinner spread of

Ridge/Weight indicates a stronger linear relationship compared to Ridge/Density. In addition, the

details available in the view confirm that any weakness in the correlation is due to noise.

4.5.3.3 Hurricane Data

Hurricane Isabel (Fig. 4.9) data are provided as part of the IEEE Visualization 2004 contest.

This dataset contains a variety of simulated variables related to Hurricane Isabel, a major Atlantic

storm that occurred in September 2003. The Isabel dataset consists of 48 timesteps, each containing

measurements of 11 attributes with a spatial resolution of 500×500×100. We also show only seven

of the more “interesting” attributes due to space considerations. Of the original data 25 million data

items, we use only 10 million because approximately 15 million data items contain at least one

invalid NaN field.

With 10 million data items in the Hurricane data, the overdraw in the PCP makes it hard to

understand any relationships in the data. For example, the relationship Temp/Pres shows only the

bowtie shape, losing the individual data patterns. In many ways, SCPs do a better job than PCPs.

The Temp/Press relationship is visible with the SCP. However, clear interpretation is difficult, since

as Temp increases, Press first decreases, then increases, and finally decreases.

Our approach presents these relationships more clearly. The direction and strength of relation-

ship between Temp and Pres can be identified in snowflake visualization. The lower triangle shape

of axis identifies the negative relationship. Additionally, the data points distribution, mostly being

of similar distance to the axis with a few spread out, enables identifying that this relationship is not

strongly negative and nonlinear.

4.6 Applications on Code Performance Data
Effective debugging and optimization of large scientific applications takes up half of the overall

development time and requires a detailed analysis of their behaviors. Debug logging and perfor-
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mance tracing are tools for such analysis tasks and are used in a wide range of applications and

systems. It is natively supported by tools such as HPC Toolkit [68], scientific libraries such as

SAMRAI [69], and frameworks such as the Fault Tolerance Backplane [70].

However, as these logs grow large, they overwhelm developers’ ability to find the key bits of

information among the MBs of GBs of aggregate text and numeric data, which makes it critical to

develop visualization tools that help developers understand these complex logs and their relationship

to application semantics and performance.

CCP and snowflake visualization can be applied for code performance data [71]. These visual-

izations help developers focus their attention on the key regions of their logs and identify important

relationships among different dimensions of collected data. Our visualizations were implemented

on top of the Sight application analysis framework.

4.6.1 The Complexity of Program Behaviors

The large size of application logs makes it necessary to organize and present them to developers

in a way that enables them to focus in detail on just the regions that are relevant to a given task. To

this end, we developed a hierarchical graph representation that supports zooming, expansion, and

the collapse of interactions.

4.6.2 Interactive Flow Graph

4.6.2.1 Design

The proposed graph organizes segments of the application logs that share some property (e.g.,

collected during a given function call) into separate graph nodes. Numerical and text labels on the

nodes denote the corresponding application region and arrows denote the flow of control and data

among application regions. Repetitive structural patterns of program behavior (e.g., nested loops,

recursion, or repeated communication) are shown by nesting subgraphs inside each other.

4.6.2.2 Flow Graph Algorithm

We implemented the above visualization and connected it to the logs exported by the Sight tool.

Sight logs explicitly encode hierarchical containment relationships of log regions, which makes it

easy to connect log regions to elements in our hierarchical visualization. By connecting the visual

elements to the log regions, they encode our visualization and make it possible to interactively

search through the overall structure of the log, zoom into the log regions of most interest, and
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alternate between the high-level hierarchical view and detailed view of individual log entries.

4.6.2.3 Interactions

Developers can zoom out to see an overview of the graph or zoom in for a more detailed view.

Developers can collapse or expand subgraphs to identify the informative graph regions. These

interactions enable developers to explore large logs.

4.6.3 Evaluation

We conducted a case study to apply our visualization method to different programs, including a

simple Fibonacci sequence program and the AMG2103 benchmark. Fig. 4.10 and Fig. 4.11 show

the resulting visualizations, which confirm that developers can easily use our method to explore

large program behaviors.

4.6.4 Correlation Coordinate Plots

Fig. 4.12 shows that multidimensional visualizations such as SCP, PCP, and our approach CCP

can help application developers understand relationships in multidimensional performance and be-

havior data.

SCP (Fig. 4.12b) has the advantage of identifying relationships in three dimensions, but it cannot

show all combinations of dimensions at the same time. The screen space of PCP (Fig. 4.12c) grows

O(n), however, it requires heavy user interaction for complete exploration. SCP (Fig. 4.12b) can

help identify relationships in two, three, and four dimensions, but it cannot show all combinations

of dimensions at the same time.

PCP’s screen space requirements grow as O(n), but it requires heavy user interaction for com-

plete exploration (Fig. 4.12c). These problems led us to develop a new visual encoding called

coorelation coordinate plot (CCP).

CCP is laid out on a single major axis, which represents the best linear fit through the data,

and a minor axis that indicates the distance from this line. The major coordinate axis also serves

as an indicator of the direction of correlation. Data elements are transformed into the correlation

coordinate space and displayed accordingly as in Fig. 4.12a.
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4.6.5 Snowflake Visualization

We applied snowflake visualization (Fig. 4.12d) to improve code performance tasks. The focus

region enumerates the correlations between a given dimension and all other dimensions. The outer

region enumerates all other pairs of dimensions to provide further context. User interactions such

as swapping, zooming, and selection enable shifting dimensions in and out of the focus region to

allow exploration of the entire dataset with O(n) interactions.

4.7 Discussion
4.7.1 Study Task Selection

Selecting realistic tasks for a user study is a challenging problem when users are unfamiliar with

the data and potentially visualization altogether. We have selected a number of simple tasks, which

are building blocks for more complicated data analysis tasks that are commonly performed. The

overall outperformance of the CCP over SCP and PCP stands as evidence of its superiority, which

should translate to more complex tasks.

4.7.2 Abstraction Selection

SCP and PCP have served a straw man role in our evaluation. Any number of modifications

could be applied to either technique to better inform the user about correlation. However, since

there is no single de facto standard, we did not want our evaluation to be clouded by questions of

abstraction selection in SCP or PCP. Therefore, we stuck to the basic formulations of each approach.

We hope this method spurs the community to dig deeper into this subject and generate a more

extensive evaluation of approaches, such as those of Harrison [72] and Kay [73].

4.7.3 Very High Attribute Count Data

For data with large numbers of attributes, we believe that approaches to extract the natural

dimensionality of data, such as PCA, in combination with techniques such as CCP, will be critical

in analysis. For all practical purposes, beyond 30 or 40 attributes, our approach is no longer viable.

However, this is a similar limitation to SPLOMs and PCPs. We consider higher-dimensional cases

to still be an open problem.

The snowflake visualization showed significant performance improvements over SPLOMs and

PCPs. The snowflake visualization is an efficient focus+context style layout representing a fair com-

promise between space efficient design, comprehensive visualization, and reduced user interaction
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for showing all pairwise correlations in multiattribute data.

We believe that the CCP and snowflake visualization represent complementary approaches to

existing techniques, replacing existing approaches only where correlation is the major feature of

focus in data. We believe that more of these task specific approaches are on the horizon and will

provide data analysts better, faster access to relevant information in their data.
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Figure 4.1: Parallel CCP for 10 attributes allows full exploration of the data, but, like PCP, it relies
on heavy user interaction.

(a) Snowflake visualization

Figure 4.2: The Snowflake Visualization is a focus+context interface that combines CCPs for one
attribute to all others in the middle (i.e., the focus) and CCPs for all other attribute pairings on the
perimeter (i.e., the context).



43

(a) Focus view

(b) Upper branch of context view (c) Lower branch of context view

Figure 4.3: A focus view (a) and multiple context views (b-c) for snowflake visualization.
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Figure 4.4: Branch view attribute pairing matrix for n attribute data when n is odd, and the focus
attribute is d2m. Each row and column represents 1 attribute of the data. Branch pairing for each
attribute is found by selecting the column for that attribute and pairing with highlight attributes.

Table 4.1: Variables used to test hypotheses.

Independent Variables Potential Values

Data [ H5 | H6 | H7 ] 10 or 21 attributes from 41 attribute data

Plot [ H5 | H6 | H7 ] SPLOM/PCP/snowflake

Question [ H5 ] How are the two attributes correlated?

Question [ H6 ] How many attributes are correlated to i?

Question [ H7 ] Which attributes are correlated to i?

Dependent Variables Potential Values

Answer [ H5 ]

High Positive Correlation

Low Positive Correlation

No Correlation

Low Negative Correlation

High Negative Correlation

A

nswer [ H6 ] Number of attribute

Answer [ H7 ] List of attribute

Response Time [ all H ] Time recorded automatically
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(a) SPLOM

(b) CCP of linear feature (c) CCP of nonlinear feature

Figure 4.5: CCP for multiple attributes using PCA. (b) The attributes in red are a linear feature. (c)
The nonlinear feature in blue is 2D, with the residual visible in the red haze.
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Figure 4.6: Exp. 3 results show CCP (green, col. 3) outperformed SCP (blue, col. 1) and PCP (red,
col. 2).
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(a) Snowflake visualization

(b) Scatterplot matrix

(c) Parallel Coordinates

Figure 4.7: Visualizations for Boston House data.
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(a) Snowflake visualization

(b) Scatterplot matrix

(c) Parallel Coordinates

Figure 4.8: Visualizations for pollen data.
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(a) Snowflake visualization

(b) Scatterplot matrix

(c) Parallel Coordinates

Figure 4.9: Visualization techniques for Hurricane data.
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(a) Nested Graph for Fib

(b) Tree Graph for Fib

Figure 4.10: Interactive flow graph.

Figure 4.11: Visualization for AMG program.
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(a) CCP coordinate system

(b) Scatter Plot 3D

(c) Parallel Coordinates

(d) Snowflake visualization

Figure 4.12: Multidimensional visualizations for AMG.



CHAPTER 5

CORRELATION VISUALIZATION FOR

LARGE-DIMENSIONAL DATA

5.1 Visual Design
CCP and Snowflake Visualization as in Fig. 5.1 help users to improve correlation identification

when the number of dimensions and data points is not high. We now propose a new method

that is data scalable and improves local and global relationship presentation in PCPs. This new

representation shows trends in data as well as their consistency. Firstly, we transform data in the

Cartesian domain into relationship histograms in the parallel coordinate domain. Then the new

visual design for PCPs represents the relationship histograms as histogram contours.

To improve local and global relationship presentation in PCPs, we propose a new visual design.

This new representation shows both trends in data, large and small, as well as their consistency.

5.1.1 Visual Encodings

Three important visual features are used when analyzing data with PCPs: 1) the angles of line

segments, giving clues as to positive or negative relationships; 2) the colocation of line segment

crossings, giving clues as to the strength of the relationships; and 3) the distribution or density of

line segments, which can differentiate between trends and outliers.

For example, examine the basic PCP plots in Fig. 5.2. 1) In Fig. 5.2a, the angle of the lines

relative to one another in the left example indicate a perfectly negative relationship, whereas the

parallel lines of the right example indicate a positive relationship. 2) Notice that the position of line

crossing in the Fig. 5.2b is not co-located. This spreading indicates a weak negative relationship.

3) Finally, the distribution line segments can differentiate trends and outliers. In Fig. 5.2c, the main

trend appears to be the three points on the bottom with an outlier on the top.

Instead of using conventional visual encodings of PCPs, such as lines, density-based, or frequency-

based visual encodings, we use the shape, a consistency map, and data distribution histograms in

our visual encoding to bring new insight for PCPs.
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Two important shapes come to mind when trying to understand the relationships of PCPs. Pos-

itive and negative relationships can be identified by seeing a comb and bowtie shape, respectively.

We encode this important information by representing the extremities of the data as the overall shape

by capturing the outline of the concave hull containing all PCP lines. This implied relationship is

represented by the shapes in Fig. 5.3 (right column). This relationship supports PCP semantic 1,

Fig. 5.2a.

We color plots red for positive relationships or blue for negative relationships as a secondary

encoding to the shape. Since this is a support encoding, should color be needed for another purpose,

the redundant encoding can be dropped.

The shape implies only a positive or negative relationship. Details of the trend are important as

well. We use colored histogram contours to represent the underlying features of the data. As we

will discuss in Section 5.2, these locations are calculated from the individual data and are akin to

line segment crossings of geometry-based PCPs. Organized clusters of these points indicate strong

trends, whereas scattered versions indicate noise. Similarly, the shape of the points gives clues as to

the linearity or nonlinearity of the data, supporting PCP semantic 2, Fig. 5.2b.

The distribution of data items (i.e., the histogram for each axis) is represented as a distribution

curve along the axes of the PCP. Without this information, outliers may cause users to misinterpret

certain patterns [74]. The data distribution histogram is created by calculating a histogram of the

data items and applying a Gaussian distribution to draw a smooth curve along the domain, which

can be seen in Fig. 5.3 (right column) as the purple curve near the axes. The maximum height

and thickness of these histograms are adjustable values, in case more or less emphasis is desired.

This relationship helps to support determining the density of points, supporting PCP semantic 3,

Fig. 5.2c.

Beyond the static visualization, the approach provides interactions such as locating and tracing

individual and groups of data items through brushing. In addition, users can reorder axes in a

drag-and-drop manner similar to classic PCPs. We have precomputation for the new mapping so the

performance is not changed during rendering even when interaction is performed such as reordering

axes.
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5.1.2 Plot Interpretation

We examine the capabilities of our new visualization by using four synthetically generated

datasets, each containing 50,000 data items. The first two datasets are linear relationships (y =

ax+ b+ ε), one positive (Fig. 5.3a) and one negative (Fig. 5.3b). The second two are quadratics

(y = a(x+ ε)2 + b(x+ ε)+ c), again one positive (Fig. 5.4a) and one negative (Fig. 5.4b); ε is a

noise factor.

5.1.2.1 Detecting Positive and Negative Relationships

To understand the direction of the relationship, two key visual encodings can be used, color and

shape. The red rectangle shape represents a positive relationship. The blue bowtie shape represents

a negative relationship. For the positive case, the strength of the relationship is indicated by the

distribution of points in the consistency map. Spread in the horizontal direction, such as that of

Fig. 5.4a (bottom) indicates noise in the relationship. In the negative case, both the spread in the

consistency map and the loosening of the bowtie shape indicate weaker relationships. Fig. 5.4b

(bottom) shows the effects of adding noise to the data, spreading both the contour and shape.

5.1.2.2 Detecting Linear Relationships

Quantifying linear relationships in PCPs is generally less accurate and slower than scatterplots,

and large numbers of items can cause serious problems for both [75], [44]. Fig. 5.3a (top) and 5.3b

(top) show that it is easy to identify linear relationships for large numbers of data items using our

method. For positive relationships, the standard PCP shows the dense parallel lines as a filled

square, whereas our approach shows the consistency map as a vertical bar between the axes. When

negative, the PCP lines cross at a single point. Our method shows only the boundary of these lines

and a consistency map that focuses around the intersection point.

When noise is presented, our approach can still detect global linear patterns in data. Fig. 5.3a

(bottom) and 5.3b (bottom) both show noise spreading the consistency maps. However, we are still

able to identify the overall trend, as well as the noise. For the angular histogram/opacity PCPs, the

overall trend is still visible, but the extent of the noise is rather difficult to ascertain.

5.1.2.3 Detecting Nonlinear Relationships

Identifying nonlinear patterns is not well supported by most incarnations of PCPs. Fig. 5.4a

(top) and 5.4b (top) show a quadratic relationship. Using our approach, the curved features of the
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relationship between data attributes are easy to identify. In the positive case, this feature can be seen

in the consistency map. In the negative case, this feature can again be seen in both the shape of the

relationship and the consistency map.

When noise is added to the data (Fig. 5.4a (bottom) and 5.4b (bottom)), it can be difficult to

identify the relationship in angular histogram/opacity PCPs. However, in our approach, the global

trend as well as the volume of the noise is still visible.

This result illustrates that our approach supports identification of the relationship strength through

co-located crossings (Fig. 5.2b).

5.2 Building Consistency Maps
A large and complex dataset requires a new data transformation method from the Cartesian

domain to the PCP domain that retains the important features and supports a variety of visualization

tasks [76]. The mapping of multidimensional data projections can support exploring the main fea-

tures of large data [77], [78]. We propose a consistency map as a data transformation methodology

that represents the important relationship patterns and overcomes the overdraw problem.

5.2.1 Global Trends Using Locally Linear Relationships

Given two attributes, we assume that the relationship between them is locally linear [79]. Ob-

serving this relationship with many local linear trends, we can model complex global relationships.

Given a small number of data items, principal component analysis (PCA) [80] can be used to

extract the orientation (ũ, ṽ) of the data (i.e., the eigenvector of the covariance matrix) as well as

a magnitude m1 (i.e., the square root of the eigenvalue) that can be considered a measure of the

relationship strength [81].

PCA can also extract an orthogonal direction and magnitude, m2, of the second principal com-

ponent. The ratio of two magnitudes, g = m2
m1

, can be used as a measure of the ”linearness” of a local

region. It is always true that m2 ≤ m1. However, m2 = m1 implies that there is no clear orientation

of the data points. On the other hand, when m2� m1, the data items are configured with a strong

linear trend.

5.2.2 Identifying Local Groups

We first identify local groups of data items in the Cartesian domain. For each item in the

dataset, we use the k-nearest neighbors (knn) algorithm [82] to find those groupings as shown in
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Fig. 5.5a. Our implementation is optimized by placing all items into a quadtree (see Fig. 2.1 (left))

and searching neighboring leaves. For a dataset of n items, n groups are extracted, each containing

k+1 items (the center point plus k neighbors).

For each group, the direction < ũ, ṽ > and magnitudes m1 and m2 are extracted using PCA. The

mean location of the group (xm,ym) and vector < ũ, ṽ > are then mapped to location (q,r) using

point/line duality principal of PCP’s, based upon Equations 5.1 and 5.2.

q(ũ, ṽ) =
ũ

ũ− ṽ
(5.1)

r(ũ, ṽ) = x0 +(y0− x0)
ũ

ũ− ṽ
(5.2)

Fig. 5.5 shows a schematic of the process. In this case, the many groups of similar direction map

to the same general area in the PCP domain, which is a clear indication of directional similarity.

Now, this approach works perfectly in the case of negatively related points. However, a problem

arises as we look at positively related points. Namely, they do not properly map to the PCP domain.

5.2.3 Mappability of Positive Relationships

Mappability refers to the ability to calculate a valid output location (i.e., valid q and r values)

within the drawing space for a data item. As q is currently defined, only values between 0 and 1

appear between the PCP axes. This set of q values consists exclusively of negative relationships.

Fig. 5.6c demonstrates this mapping by showing the value of q plotted against the angular direction

of (ũ, ṽ). Negative relationships all exist in the range of q ∈ [0,1], but positive relationships reveal

two challenges.

Point/line duality essentially boils down to an intersection of two lines mapped into parallel

coordinates. First, by our definition, no positive relationships will be mappable because their values

are q 6∈ [0,1]. Secondarily, with line-line intersections, numeric instabilities occur when the lines

are near parallel. For us, this occurs when ũ = ṽ, or in other words, it occurs when the direction

represents a perfectly positive relationship.

Since values for positive relationships cannot be mapped, we can make a simple choice: use the

orthogonal vector, (−ṽ, ũ), when the relationship is positive.
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q′(ũ, ṽ) =

{
q(ũ, ṽ) if 0≤ q(ũ, ṽ)≤ 1
q(−ṽ, ũ) otherwise

(5.3)

r′(ũ, ṽ) =

{
r(ũ, ṽ) if 0≤ q(ũ, ṽ)≤ 1
r(−ṽ, ũ) otherwise

(5.4)

Using the orthogonal vector now guarantees that all relationships will map to a valid location

in the output PCP. However, it is important to understand how that change impacts the location of

points.

Fig. 5.6 shows the projection location for various angles of orientation, relative to the unit circle.

The red lines represent angles of 22.5◦, 45◦, and 67.5◦, respectively, as in Fig. 5.6a. When the

red lines are transformed from Cartesian coordinates (top) to parallel coordinates (bottom), their

intersection points extend beyond the extremes of the axes. However, the orthogonal versions in

blue, as shown in Fig. 5.6b, all generate valid intersections.

The resulting q and q′ values for a set of angles in Cartesian coordinates can be seen in Fig. 5.6c.

The horizontal location of those angles in parallel coordinates can be seen in Fig. 5.6d.

Note, these relationships have orientation but no direction. Thereby, they create a consistent

mapping wrapped around the unit circle.

5.2.4 Histogram Contours

The final step of the data transformation is placing the point (q′,r′) into a histogram. We use

triangular histograms, such as those seen in Fig. 5.7a. The location (q′,r′) influences bins within

a radius of influence found using 1−g, which means that more linear groups of data have a larger

influence area.

To express the information contained within a single relationship histogram, we have chosen to

use a variation of the triangular isobanding algorithm [83] to show the adherence to the local linear

trend. Our approach defines bands along the range [β ,∞).

5.2.5 Selecting k

Our approach requires selecting a constant k used in knn. Instead of specifying a single value, we

generate multiple histograms based on powers-of-two values for k, which in effect enables finding

patterns at many different scales. Small k values will grab small-scale linear relationships, whereas

larger k values will tend to identify larger global linear relationships. In effect, we are scanning a

range of possible frequencies for the Nyquist rate of features.
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To demonstrate the behavior of multiple scales (i.e., multiple values of k), we composite isoband-

ing results. Each value of k receives a different lightness value under the same hue. Fig. 5.7b shows

individual values of k, and Fig. 5.7c (left) shows the composite.

5.3 Representing Multiple Relationships
Whereas many data are representable through a single trend, only supporting such data are

incomplete. Support for representing and differentiating multiple relationships is important in real

applications.

To accomplish representing multiple relationships, we classify data into subgroups representing

various relationships. Each subset is treated independently with the process described in section 5.1

and 5.2 (i.e., each group has its own shape and consistency map calculated). Each is rendered sepa-

rately and layered in the visualization, with the ordering of the layers controlled through clicking or

scrolling. Our approach is agnostic of the method for classifying the subgroups. We present three

approaches that we have found useful, two automatic and one user manipulated.

5.3.1 Global Clustering

We allow defining clusters globally [84]. The approach normalizes all attributes and then uses

the `2-norm for distance (i.e., the Euclidean distance). We use the k-means clustering algorithm [85]

for dividing data into subgroups. k-means clustering is an iterative approach to clustering that works

by identifying k̂ cluster centers (this k̂ is a different from that of k-nearest neighbors), adding data

items to the closest center, and repeating.

Our method iteratively searches for an appropriate number of clusters by first starting with one

cluster. It calculates the Pearson correlation coefficient, ρ(x,y), on all clusters and attributes, and

if any | ρ(x,y) |< α , the number of clusters is increased. When | ρ(x,y) |< α , two attributes have

very low correlation or no correlation. By this method, we find k̂ valuable clusters. For all figures,

we use α = 0.15.

5.3.2 Pairwise Clustering

Our second clustering technique is a pairwise approach that works in a manner somewhat similar

to that of the previous one, using k-means and the `2-norm for distance. However, it also aims at

clustering items that have similar trends, not just those with similar values.

To accomplish this, we compute a specialized vector for each data item. The first component of
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the vector is the normalized values of the attributes (x,y). The next component is the (q,r) value for

each k used to model the multiscale relationships. The final vector used to segment is constructed

as [ (x,y), (q,r)1, ..., (q,r)k ]. The result of using this vector is that data items with both similar

attribute values, as well as similar local trends, get clustered together.

Again, we iteratively search for an appropriate number of clusters by starting with 1 and using

the Pearson correlation coefficient (| ρ(x,y) |< α with α = 0.15) to determine if additional clusters

are needed.

5.3.3 Brushing

We enable two forms of brushing. First, as with conventional PCPs, we provide users the ability

to brush a region and have all crossing data items drawn individually. With this approach, the

behavior of all items across all attributes can be observed (see Fig. 5.8a). Second, we enable

brushing to select a cluster of data. Once selected a new relationship subgroup is created with the

data items that have been brushed, and that group is visualized using our visual encoding approach.

Fig. 5.8b shows in green the result of a brushing over four data attributes. As the display is brushed,

all data items crossed by the brushing action are added to a new subgroup. When the mouse is

released, the subset is recalculated and the resulting trend is displayed.

5.4 Evaluation
We demonstrate the capabilities of our method in identifying multiple trends on two datasets.

The first dataset was the synthetic data in Section 5.1.2. Next, we use a particle physics dataset

containing 41 output attributes and 4000 data items. The data represent a parameter space search

of 25 input attributes produced by tools that model subatomic particles under the supersymmetric

extension of the Standard Model. This dataset has clear linear and nonlinear relationship patterns

without much noise.

Third, we use the IEEE Visualization 2004 contest dataset1, Hurricane Isabel, consisting of 48

timesteps, each containing measurements of 11 attributes with a spatial resolution of 500× 500×

100. Of the original 25 million data items, we use only 10 million because approximately 15 million

items contain at least one invalid NaN field. This dataset is large and contains mostly low-level

noise.

1http://vis.computer.org/vis2004contest/
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Fourth, we use the HIGGS dataset2, containing 28 attributes and 11 million data items. The

dataset has been produced using Monte Carlo simulations. The first 21 features are kinematic

properties measured by the detectors in a particle accelerator. The HIGGS dataset is both large

and noisy.

Finally, we use the Planet dataset3. This dataset includes the data from ground and space-based

observations. The dataset contains 1827 items and 16 attributes such as planet mass, planet radius,

planet density, distance, optical magnitude, etc.

We use the IEEE Visualization 2004 contest dataset4, Hurricane Isabel, consisting of 48 timesteps,

each containing measurements of 11 attributes with a spatial resolution of 500×500×100. We show

seven of the more ”interesting” attributes for the first timestep. Of the original resolution data 25

million data items, we only use 10 million because approximately 15 million items contain at least

one invalid NaN field.

In the following sections, we evaluate our method in visualization tasks including cluster analy-

sis, hidden pattern detection, noise detection, and outlier detection. We compare our methods with

basic implementations of classic, opacity PCPs, angular histogram PCPs [44], and Johanson’s work

on PCP [50].

5.4.1 Performance

We built our software using C++, OpenGL, and Qt. All experiments were conducted on a PC

with Intel Core i7 CPU 2.66GHz, NVIDIA GK104 graphic card. We use histogram bins of 29 and

isoband threshold β = 26 in all of our experiments. The performance comparison of our method

and opacity PCPs is provided in Table 5.1 for all datasets. Although our precomputational cost

was always greater, the rendering performance per frame for our approach was 2.9 to 3.6 times

faster than our angular histogram and opacity PCP implementation. Our precomputational cost

consists primarily of consistency map calculations including k-nearest neighbors and clustering, but

per frame rendering requires only a few primitives. On the other hand, the many lines drawn in the

opacity PCPs make its rendering time burdensome and not scalable with additional data items. New

2http://archive.ics.uci.edu/ml/datasets/HIGGS

3http://exoplanetarchive.ipac.caltech.edu

4http://vis.computer.org/vis2004contest/
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mappings are precomputed such that performance is not impacted when interaction, such as axis

reordering, is performed.

5.4.2 Particle: Mixed Trends

As the number of data items becomes large or data become more complicated, cluster analysis

is challenging for a classic PCP, ultimately relying on user interaction techniques such as brushing.

PCPs somewhat alleviate this problem by highlighting major trends in the data. However, smaller

trends may wash out. In the angular histogram, the direction and length of bars can help users

identify curtain types of pairwise clusters, but do not make it easy to understand overlapping clusters

or any kind of global clustering. Our method naturally supports cluster differentiation tasks for both

global clusters and pairwise clusters. Fig. 5.1 highlights the usage for global clusters, and Fig. 5.9d

highlights the usage for pairs of attributes.

In Fig. 5.9, we can see the difference between the classic PCP, opacity PCP, angular histogram,

and our approach with the Particle dataset. For example, we consider the attributes ncmass4 and

ncmass5. Within the PCP, the values appear well distributed across the range of ncmass4 but focus

at a single value on ncmass5. The remaining points appear to be outliers. Both the opacity PCP

and angular histogram emphasize this same conclusion. However, using our approach, the attributes

have three clusters appear between them, one strong negative cluster and two weak positive clusters.

Observing the scatterplot for these attributes reveals that this is a better representation of nonlinear

structure. The points can be disassembled into three parts (see Fig. 5.9f): the positively associated

portion on the top left; the positively associated portion on the lower right; and the negatively

associated portion connecting them. This connection is completely missing from the other three

PCP visualizations.

Another example of this problem can be seen in the d8 and d31 attributes. With the classic PCP,

much of the complexity of the relationship is lost, though there are some clues to complexity. In

the worst case, one would be tempted to assume this to be a single negative relationship. In the

case of the angular histogram and opacity PCP, a bifurcated relationship is apparent, one negative,

terminating at the top of d31, and one positive, terminating at the bottom of d31. Using our

approach, four clusters, two strongly negative and two weakly positive clusters, are identified. In

Fig. 5.9d, the primary negative cluster is visible in front and highlighted by thicker boundary lines.

This cluster was also visible in the opacity PCP. The second negative cluster can be selected and
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brought to the front as shown in Fig. 5.9e. The data points constructing this cluster are clearly

visible in the PCP, although they are difficult to visually separate and lost in the opacity PCP, due

to their low density. Observing the scatterplot and schematic view (Fig. 5.9f), we can spot the four

clusters that make up these relationships.

5.4.3 Hurricane: Overdraw and Underdraw

An overarching challenge (and subject of numerous papers) for classic PCPs is overdraw, partic-

ularly with data containing many items. For datasets such as the Hurricane dataset, which contains

10 million data items, patterns can be hidden by the many layers of lines drawn. In Fig. 5.10b,

the major relationships between most attributes are difficult to visually identify, and those identified

should be treated with some skepticism. This problem also exists for scatterplots (also the topic

of numerous papers) as shown in Fig. 5.10a. The angular histogram and opacity PCP (Fig. 5.10c)

alleviates the problem to some extent by adapting to the density of the data, but nevertheless, remains

limited. As the number of data items and complexity of relationships increase, lesser relationships

may be lost.

Looking at the Temperature and Pressure attributes, we can immediately see an example of

overdraw in the classic PCP. Without further investigation, we would assume a single negatively

related trend. The angular histogram and opacity PCP correct this issue, making the true shape of

the trend visible. Similarly, our approach reveals three trends, two negative trends (in blue) and one

positive trend (in red). The key piece missing from the angular histogram and opacity PCP is any

indication of the noise within the data. In the angular histogram and opacity PCP, the data appear

uniform. Observing freckle pattern in our approach indicates that the relationship is noisy, which

can be confirmed via the scatterplot.

More generally speaking, simultaneous representation of global trends and outliers is hard—

most often visualization methods either only focus on global trends, or on the cost of hiding outliers,

or focus on outliers, causing ambiguity among major trends [86].

The Pressure and Cloud attributes are a good example of this. Fig. 5.10b shows a classic PCP

where the major trend and some outliers are visible. Unfortunately, the major trend is challenging

to interpret because of overdraw, but at least some of the outliers are visible. The opposite problem

occurs with the angular histogram and opacity PCP, as in Fig. 5.10c. Much of the detail of the major

trends is now visible, at the cost of losing almost all outlier information. This is an example of
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underdraw. The angular histogram can help identify outliers by tracing the small purple bars. One

strength of Johanson’s [50] and followup works is the use of such mappings to highlight specific

features such as clusters and outliers.

Fig. 5.10d shows how our approach enables finding both major trends and detecting outliers

between Pressure and Cloud. Our approach reveals two trends, one negative trend (in blue) repre-

senting the major trend and one positive trend (in red) that captures the outliers.

One concern at this point is to the ambiguity of which trend is the major trend versus the outlier

trend. The visual clue that differentiates them is the purple curve representing data item density.

The density is high at the bottom of the Cloud attribute, indicating that almost all data items fall into

that particular cluster. This is a procedure similar to that for angular histograms. Should one wish

to investigate further, item selection and brushing interactions enable a deeper dive.

5.4.4 HIGGS: Noisy Relationships

Visual detection of data relationship can be difficult with noisy data. With the 11 millions of

items in the HIGGS dataset, understanding the relationships is difficult, particularly considering the

noise.

Consider the relationship between jet1eta and jet1phi. Because of overdraw in the SCP, the

complexity of the relationship (containing both local positive and negative relationships) [23], and

because of the noise, it is difficult to identify any relationship through the SCP (Fig. 5.11a). The

Pearson correlation coefficient between jet1eta and jet1phi is −0.102, showing that they have a

weak negative relationship. However, this relationship is barely visible in the SCP.

The opacity PCP (Fig. 5.11c) helps to clarify the noisy nature of the relationship, but it does

nothing to disambiguate the issue with the relationship direction. Similarly, the angular histogram

(Fig. 5.11c) reinforces the positive relationship misconception.

Our approach, on the other hand, identifies three relationships, as shown in Fig. 5.11d. Two

are minor positive relationships, whereas the third is a large negative relationships. Furthermore,

the large size of the bowtie and freckled pattern contained within it indicate that the relationship is

noisy and weak.

Another example of this can be found between jet1phi and m wbb, where the Pearson correlation

coefficient is−0.132. The additional visual encodes provided by our approach enable identification

of this weak noisy negative relationship.
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5.4.5 User Feedback

We have conducted four interviews with users related to our approach. Each interview was one

hour and used a different dataset. One participant was an advanced visualization PhD student, and

the other three were nonvisualization users.

5.4.5.1 Planet Data

Our first interview involved a demonstration and interview with an advanced visualization PhD

student. The student’s work involved developing an analysis tool for the planet data.

To begin, we first showed him our approach with the synthetic data (presented in Section 5.1.2)

to acclimate him to using our tool to understand data relationships. After that process, we loaded

in the planet data. Fig. 5.12b shows our approach for four dimensions, vj, teff, mass, and rad.

Fig. 5.12a shows angular histogram and opacity parallel coordinates plots for the same dimensions.

With our approach, the student identified some interesting information. Among his observations,

in Fig. 5.12b, he found that stteff and stmass have weak nonlinear and positive relationships,

previously unknown. This is not clearly visible in the opacity PCP and angular histogram. He

also found the complex relationship between stteff and stmass interesting using our approach.

In the end of the interview, he shared his opinions about our method. First, he commented

that the method required remembering two mechanisms for reading the positive and negative cases.

He agreed that this is similar to the standard PCP. He commented that once he learned how to

use our approach, it was easy to understand the data relationships. Finally, he commented on our

clustering mechanism. He stated that he would prefer to see some overview of relationships before

looking through clusters and choosing the interesting ones. Our method partially supports this by

highlighting the main cluster first.

5.4.5.2 Particle Data

We interviewed a second individual with the particle physics dataset as shown in Fig. 5.9. He

thought the relationship of d32 and d33 was difficult to identify in the scatterplot, PCP, and angular

histogram PCP, but it was easily seen in our method. The scatterplot shows the points are dense

on the top left and spread out towards the lower right. However, this method does not indicate the

true relationship. The traditional PCP shows the bowtie shape but with significant overdraw. The

angular histogram PCP helped him to see the distribution of the data and guess the relationship, but

it was difficult for him to identify the direction of the relationship. By using our approach, he easily
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found the main negative relationship and could estimate its strength using the contours.

5.4.5.3 Hurricane Data

We conducted an interview with a third individual using the Hurricane dataset as shown in

Fig. 5.10. After an explanation of the approach, he was interested in the relationship between

Pressure and Velocity. Using scatterplot and PCP, he could not determine if it was positive or

negative. Then he used the angular histogram and recognized that most data point looks like a band,

making him think that the relationship between Pressure and Velocity was positive. When he used

our approach, he noted that there is one negative relationship group and two other positive groups.

The negative relationship group at the front means Pressure and Velocity primarily have a negative

relationship. He was surprised that the methods led him to two different answers. The Pearson

correlation coefficient of these two attributes is −0.13, so globally they have a weakly negative

relationship.

5.4.5.4 HIGGS Data

We interviewed a final individual over the HIGGS data as shown in Fig. 5.11. When he saw all

scatterplots and PCPs of the data, his immediate reaction was that the data are very noisy and would

be difficult to understand. We asked his opinion about the correlation between jet1eta and jet1phi.

First, looking at the scatterplot, he thought the attributes carried no relationship. Then, we showed

him the PCP visualization, and he guessed that the attributes had a positive relationship because

most of the lines seemed parallel. Seeing the angular histogram further reinforced that belief.

However, when he saw our visualization, he was surprised to see it was a negative relationship

with noise. Finally, we told him that these two dimensions had a Pearson correlation coefficient of

-0.102, confirming the information presented using our approach.

5.5 Discussion
5.5.1 Comparison with PCP Alternatives

Generally speaking, geometry-based PCPs suffer from overdraw problems. Geometry-based

PCPs can help users identify individual data items for pairwise attributes or across all data attributes.

However, there are many limitations of geometry-based PCPs when data are large, including diffi-

culty in identifying trends, outliers, and interpreting noise.

Frequency-based PCPs overcome many of the geometry-based limitations to help users explore
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clusters, linear relationships, and outliers in data, while avoiding overdraw. However, frequency-

based PCPs, such as angular histogram PCPs, are still limited in their ability to identify nonlinear

relationships. Furthermore, angular histogram PCPs aggregate the frequency of the lines between

pairs of axes, which means users can identify only the principal trend of data and will have a difficult

time interpreting mixed trends or outliers within the data.

Density-based PCPs have addressed overdraw by replacing opaque lines with a density represen-

tation. Heinrich et al. did this with continuous parallel coordinates (CPC) [49], [54]. They provide

a mathematical model of point density for counting discrete lines. CPC naturally avoids overdraw

in the continuous domain, but the continuous domain lacks an efficient mechanism to map features

back to the original data items. Furthermore, the CPC uses linear interpolation, which may produce

less accurate results for higher-order characteristics. Finally, CPC visualizes data as uninterrupted,

but discontinuities can represent structures that might be meaningful for the interpretation of some

data [87]. Adopting this idea, Lehmann introduced the curve-curve duality and circle-area duality

to highlight curves that are dominant structures [88].

Global clusters in multidimensional data can be identified in conventional PCPs and multivariate

scatterplots [78], [76]. These multivariate scatterplot methods improve correlation identification

accuracy, completeness, distortion, and interactions for less noisy data, but these methods become

difficult to use when data are noisy. On the other hand, our approach reveals noisy global relation-

ships well (assuming we select a global clustering technique), even when data are noisy.

Our approach does not suffer from overdraw, as drawing is independent of both resolution and

data size, enabling performing the visual analysis tasks we have enumerated very effectively. These

tasks include easily identifying both global and local trends, expressing nonlinear relationships,

identifying outliers, and detecting noise.

5.5.2 Crossing Points and Extracting Relationships

In conventional PCPs, finding the crossing points between data items is an important part of

understanding the relationships among attributes. For example, many lines crossing at a single

point indicates a strong negative relationship. However, this methodology does not stand up as

large numbers of data items overlap. Our approach addresses this problem by removing drawing

of individual lines and instead focuses on representing the local relationships. The beauty of our

approach is that the local relationships we extracted are, in fact, loosely correspondent to the
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crossing point that we see in a conventional PCP. Our approach naturally focuses similar behaviors

into the same area of the output plot, culls irrelevant crossing points, and removes the visual cluster

of drawing many overlapping lines.

5.5.3 Features Through Variations of k

An important contribution of our work is the use of multiple values of k for modeling locally

linear relationships (k in k-nearest neighbors algorithms). Variations in k enable extracting features

on multiple scales. If the value of k is too small relative to a feature, then it may appear as noise, or

when the value of k is large, our method will measure only the global relationship of data. However,

the variation of k enables capturing all scales of relationship from local to global, giving us access

to the right structure of the data.

5.5.4 Selecting the Number of Clusters

Selecting the correct number of clusters is, in general, an important problem. If incorrect,

features may be mixed or split. Although we used k-means clustering, substituting another method

such as k-means++ may be helpful in improving clustering results. However, the best choices for

clustering (both algorithm and k) remain outside the scope of this particular work.

5.5.5 Distribution Curves

When compared with an angular histogram, the distribution curve in our method is also a his-

togram of data items that does not show the direction of those data. In our case, understanding data

directions can be accomplished by inspecting the shape and consistency maps and using interaction.

Nevertheless, an angular histogram could easily be substituted for our distribution curves, if desired.

5.5.6 Information Lost Through Abstraction

Overall, our abstractions loses very little information relative to overdrawn PCPs. The only

significant downside we have identified is that it lends itself to false equivalency bias between trends

of different importance. For example, take an imaginary dataset with two trends. Trend 1 contains

95% of the data points, whereas trend 2 contains 5%. These two trends may appear equivalent

within our abstraction scheme. The differentiation could be made through the distribution curves

on the axis and histogram visual encodings, although they remain a subtle feature.

We have proposed a data scalable approach for identifying relationships in the parallel coordi-
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nates. In this approach, a new model is used for mapping data from its attribute domain into the

parallel coordinates domain, which has two major advantages. First, our approach scales well with

increases in the size of data and avoids the overdraw problem. Second, using thoughtful encodings,

data clustering, and interactions helps users identify relationships previously difficult to find in

other types of PCP. Our approach supports identification of linear patterns, nonlinear patterns,

mixed patterns, and noise patterns, and enables finding outliers. The results of our experiments

for simulated and real-world data demonstrate that our method is practical for high-performance

analysis of large and complex data.

We expect that extremely large datasets will be those that most benefit from using our approach.

There are also a number of possible works on user analysis using the approaches of Rados et al. [89]

or Harrison et al. [90], which would help to understand the qualities of our approach in the context

of many popular techniques.
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Figure 5.1: Whereas large data overwhelm conventional parallel coordinates plots, our approach
uses flexible relationship clustering and summarization to identify large-scale trends in the data,
simultaneously highlighting adherence to the trend and showing outlier behavior. Here, trends are
tracked across multiple data attributes.

(a) Angle of line segments (b) Location of crossings (c) Density of segments

Figure 5.2: Examples of semantic features of PCPs.

Table 5.1: Precomputation (Precomp) and rendering time per frame (Render) in milliseconds (ms)
for our method and angular histogram and opacity PCPs.

Synthetic Particle Hurricane HIGGS Planet

(5K items) (4K items) (10M items) (11M items) (1.8K items)

Precomp Render Precomp Render Precomp Render Precomp Render Precomp Render

Opacity PCP 3 ms 11 ms 2.5 ms 9.5 ms 30 ms 84 ms 38 ms 95 ms 1.1 ms 3.8 ms

Our Approach 8 ms 3 ms 6.2 ms 2.7 ms 104 ms 29 ms 129 ms 32 ms 2.6 ms 1.2 ms

Speedup/(Slowdown) (2.6x) 3.6x (2.5x) 3.5x (3.5x) 2.9x (3.4x) 2.96x (2.4x) 3.2x

Brushing (Our Approach) 3.2 ms 1.2 ms 1.9 ms 1.1 ms 30.3 ms 11.4 ms 33.6 ms 10.7 ms 1.04 ms 0.47 ms
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Scatterplot Angular Hist./Opacity PCP Our approach
(a) Positive linear relationship with (bottom) and without (top) noise.

Scatterplot Angular Hist./Opacity PCP Our approach
(b) Negative linear relationship with (bottom) and without (top) noise.

Figure 5.3: Positive and negative linear relationships.
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Scatterplot Angular Hist./Opacity PCP Our approach
(a) Positive quadratic relationship with (bottom), without (top) noise.

Scatterplot Angular Hist./Opacity PCP Our approach
(b) Negative quadratic relationship with (bottom), without (top) noise.

Figure 5.4: Positive and negative quadratic relationships.
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(a) Finding the subsets of k-nearest neighbors (knn) (b) PCA in PCP domain

Figure 5.5: Diagram of the transformation from Cartesian domain to PCP domain by: (a) finding
the subsets (using knn algorithm) and using PCA to find vectors of subsets; and then (b) mapping
those subsets to points in the PCP domain.
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(a) Examples of positive relationships with Cartesian coordinates (top)
and PCPs (bottom)

(b) Examples of negative relationships with Cartesian coordi-
nates (top) and PCPs (bottom)

(c) Mapping of lines into PCPs (d) Transformation

Figure 5.6: Transformation from Cartesian domain to PCP domain. (a) Mapping positive relations
(red) from Cartesian coordinates to PCP does not result in a valid intersection (i.e., the intersection
is outside of the PCP domain). (b) Mapping negative relationships (blue) from Cartesian coordinates
to PCP results in valid intersection locations. (c) By rotating positive relationships 90◦, the lines
will now cross at valid locations, resulting in q′ (orthogonal version of q) for those relationships
around the unit circle. (d) The solid vertical lines represent the axes of the PCP, while the dotted
lines show the horizontal projection location (q on top and q′ on bottom) for a variety of angles.
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(a) Histogram for positive (left) and negative (right) relationships.

(b) k = 4,16,64,256 from left to right.

(c) Multiple k for positive (left) and negative (right) relationships.

Figure 5.7: Histogram contours calculated for consistency map.
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(a) Locating data items

(b) Brushing new clusters

Figure 5.8: Brushing interactions for the particle dataset.
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(a) Scatterplot

d32d8ncmass4 higgsd33d31ncmass5

(b) PCP

d32d8ncmass4 higgsd33d31ncmass5

(c) Angular histogram and opacity PCP (α = 0.003)

d32d8ncmass4 higgsd33d31ncmass5

(d) Our approach

d32d8ncmass4 higgsd33d31ncmass5

(e) Our approach (select the 2nd negative cluster between d8 and d31)

(f) Schematic view of clusters for ncmass4/ncmass5
and d8/d31.

Figure 5.9: Classic PCP, angular histogram, opacity PCP, and our approach for the particle dataset.
Our approach captures and enables simple investigation of these clusters.
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(a) Scatterplot

PressCloudTemperature wVelocityPrecipPressure

(b) PCP

PressCloudTemperature wVelocityPrecipPressure

(c) Angular histogram and opacity PCP (α = 0.003)

PressCloudTemperature wVelocityPrecipPressure

(d) Our approach

Figure 5.10: Classic PCP, angular histogram, opacity PCP, and our approach for the Hurricane
dataset containing 10 millions items. Important data patterns can be hidden by the many layers of
points in scatterplots or lines in PCPs. On the other hand, details can be lost in the summarizations
provided by the angular histogram and opacity PCPs. Our approach balances the need for both
overview and details.
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(a) Scatterplot

(b) PCP

(c) Angular histogram and opacity PCP (α = 0.003)

(d) Our approach

Figure 5.11: SCP, angular histogram, opacity PCP, and our approach for the HIGGS dataset
containing 11 millions data items. Our approach can improve relationship identifying within noise
detection. For example, jet1eta and jet1phi with their−0.107 Pearson correlation coefficient appear
almost positive in the conventional PCP, opacity PCP, and angular histogram. However, the weak,
noisy negative relationship can be easily spotted using our approach.
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(a) Angular histogram and opacity PCP

(b) Our approach

Figure 5.12: Angular histogram and opacity PCP, and our approach for the planet dataset containing
1827 data items and 16 dimensions.



CHAPTER 6

CORRELATION VISUALIZATION FOR LARGE

AND MULTIDIMENSIONAL DATA

6.1 Challenges
CCP, snowflake, DSPCP, and other existing techniques are not the best layout for multidimen-

sional data when the number of potential relationships is high. Therefore, we developed a multiscale

context+focus design (MultiDepViz) that visualizes all possible relationships and highlights the

most relevant relationship information from the variables and scalable interactions for large-scale

filtering and identification of low-level details as shown in Fig. 6.1.

Visualization of dependencies for multivariate data is a challenge due to the number of potential

relationships. For a given dataset of n variables, the number of dependency relationships is
(n

2

)
,

3 ∗
(n

3

)
, and 4 ∗

(n
4

)
for pairwise, three-way, and four-way relationships, respectively. For a dataset

of 20 variables, this is 190 pairwise, 3420 three-way, and 19,380 four-way relationships. A detailed

static display showing all potential variable relationships for such multiway dependencies may be

overwhelming, confusing, and overly complex. Therefore, we developed a multiscale context+focus

design that visualizes all possible relationships and highlights the most relevant relationship infor-

mation from the variables and scalable interactions for large-scale filtering and identification of

low-level details.

6.2 Context View Design
6.2.1 Multiway Dependency Glyph

The first visual encoding mechanism represents the number of potential dependencies for a

group of variables using the geometry of an equal numbers of vertices. We first consider the case of

two-variable dependency. For these two-variables, the dependency is symmetric (i.e., either variable

may be the dependent variable). As such, we represent the relationship with a simple circular glyph

as seen in the top left of Fig. 6.2. We next consider the case of three-way dependency. For three

variables, there are three potential dependencies because any individual variable may be dependent
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upon the other two. Therefore, we represent this relationship as a triangle, such as in the middle

left of Fig. 6.2. Finally, when considering a four-way relationship, any of the four variables may

be dependent upon the other three. Thus, we represent these as squares, such as the bottom left of

Fig. 6.2. We propose these simple visual encodings because they need to be simple so it is easy

to be embedded in the context (overview) and also can carry some useful relationship information

such as the strength of the relationships.

To help users quickly understand more about the range of interest, we enable users to threshold

which R2 values are important to them. We provide two mechanisms for this. The first method

modifies the color of the glyph based upon the average R2 score of the dependencies. A solid

color represents R2 = 1 and white represents R2 = 0. This mode is useful when glyphs are small

on the screen. The second mode places actual probability data points in a rectangle for four-way

dependency and in a triangle for two- or three-way dependencies in each glyph. Some interactive

mechanisms provide ordering, filtering, and selection to help users quickly and efficiently perform

multiple statistics tasks.

We next consider a collection of four variables. To represent all potential relationships among

these variables, we can composite the three glyphs from Fig. 6.2 (left) into the glyph now seen in

Fig. 6.2 (right). We provide a detailed view of the selected dimension as in Section 6.3 that enables

further analysis into the exact nature of the relationships.

6.2.2 Overview of Multiway Dependencies

6.2.2.1 Dependency Glyphs

Our composite glyph-based visual encoding effectively summarizes 22 potential relationships

among four variables. However, most interesting multivariate datasets have many more than four

variables. To handle larger numbers of variables, we now represent every combination of the four

variables with its own glyph. Each glyph is then placed in a 2D layout based upon a flexible set of

ordering mechanisms. Users also have the option to select between showing the composite glyph,

such as in Fig. 6.3a, or the individual relationship glyphs, such as in Fig. 6.3b. To maintain visual

context, this splitting and merging operation is handled through animation, as are all other cases of

glyph movement.
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6.2.2.2 Ordering

The glyphs are laid out such that both the x- and y-axis are controlled independently. For each

axis, the user may select metrics including dimension sorting, R2
min, R2

max, R2
avg and time (for time

series data). The dimension sorting places the glyphs via ordered permutations. R2
min, R2

max, and

R2
avg are all calculated by performing the associated operation for all the dependencies represented

by the glyph.

6.2.2.3 Filtering

We provide an upper and lower threshold filtering mechanism for R2 of glyphs, such that users

can reduce the volume of data visualized and find meaningful relationship glyphs. When users want

to identify dependency glyphs that have many stronger dependencies, they raise the lower threshold.

Similarly, when users want to identify independent variables, they decrease the upper threshold.

6.2.2.4 Navigation

Users can zoom and translate the projection space to navigate and explore variable dependen-

cies. The size of the glyphs changes based upon the number of glyphs visible. When more than

1,000,000 glyphs are on the screen, each appears as a point. When more than 100 glyphs are

visible, they appear as the basic composite glyph. Finally, when fewer than 100 glyphs are visible,

the systems show the qualitative glyphs.

6.2.2.5 Selection

We provide three selection mechanisms. The first allows users to create a selection box around a

region of interest, and the associated zoom and translate are updated. The second mechanism allows

users to select the interested variable and all related variables with that selected variable. The final

mechanism selects an individual glyph. Once selected, that set of relationship is highlighted in the

detailed view, discussed in the next section.

6.3 Focus View Design
6.3.1 Visual Encoding Design

UnTangle Map represents two- and three-way dependencies with easily understood relationship

information. Therefore, we use UnTangle Map to represent two- and three-way dependencies and

extend this version for four-way dependencies. UnTangle Map is based on a ternary plot as shown
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in Fig. 6.4a. This is a barycentric plot of three dimensions in which each vertex is one dimension.

The three variables sum to one, and any given point on the triangle indicates the probability ratios

of three variables.

For examples, three dimensions D0, D1, and D2 (Fig. 6.4a) are vertices of the triangle. The

item i (blue point) is associated with D0, D1, and D2 with probabilities 0.25, 0.5, and 0.25. This

probability data item is strongly associated with dimension D1 because its probability is greater

than the others. This feature is presented as a point on the perpendicular direction of edge D0, D2

and it is close to D1. This plot makes the position of the probability data items presented as the

relative probability with the three dimensions.

We extend this idea to represent the relationship of the four dimensions as shown in Fig. 6.4b.

The blue square represents the four-way dependencies with the names of the four dependent vari-

ables at the corners of the square. Four lines in the square have different colors, and four points

have the same colors with these four lines representing the relationship between two points in each

line. For example, the probability of a data point i has a probability for D0, D1, D2, and D3 of 0.7,

0.1, 0.1, 0.1, respectively.

Lines (D0, D1), (D1, D2), (D2, D3), and (D3, D0) are red, blue, green, and purple, respectively.

The position of a red point will be defined by triangle mapping coordinates between three points

D0, D1, and A. A is the middle point of the opposite line with (D0, D1) (line (D2, D3)). The red

point is near D0 and far from D1 as the mapping shown in Fig. 6.4b. In this case, D0 is dominant in

the relationship with the other three dimensions.

6.3.2 Visual Patterns

The new visual encoding designs bring insight to help users perform multiple statistical tasks

efficiently. Some meaningful visual patterns can be seen in the four examples in Fig. 6.5.

Firstly, when the dimensions are nondominant, the probability data points are in the center of all

four triangles as shown in Fig. 6.5a and they also are in the center of a square. The square of the four-

way dependencies can more easily point out the nondominant feature than a set of four triangles. In

Fig. 6.5b, dimension S0 is more dominant than other dimensions because the probability points are

focused on the vertex S0. Additionally, in bidominant relationship, the probability points are the

focus of the middle between two vertices as in Fig. 6.5c. These can be seen in both the triangle mesh

and relationship square. Finally, the balance relationship between the four dimensions is shown in
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Fig. 6.5d.

6.4 Evaluation
To evaluate our approach, we apply our method to four datasets: a product marketing dataset

with 47 variables, a particle physics dataset with 66 variables, the National Health and Aging Trends

Study (NHATS) dataset with 60 variables, and the Hurricane Isabel dataset with 13 variables over

48 timesteps.

6.4.1 Performance

We build our software using Processing. We have run our experiments on a variety of desktop

and laptop systems running Linux, MAC OSX, and Windows.

The visualization rendering itself is interactive. Assume that the dataset has n variables and

each variable has k data points. For the overview, our visualization represents
(n

2

)
+3∗

(n
3

)
+4∗

(n
4

)
multiway dependencies through

(n
4

)
glyphs. We have tested our approach up to n = 624, and the

system has maintained its interactivity. Rendering the detailed view is dependent upon the number

of data points. Each point needs to be rendered eight times: four times for the three-way UnTangle

map and four times for our four-way UnTangle map extension. Therefore, the total number of points

rendered is 8k.

The main computational challenge is the precomputation needed for determining dependencies,

in particular, the pairwise correlation coefficients. Computing Pearson correlation coefficients and

Spearman Rank correlation coefficients takes O
(
n2k
)

and O
(
n2klog(k)

)
, respectively. Computing

the Coefficient of Determination for Multiple Correlation, R2 for 2-, 3-, and 4-way dependency takes

O
(
n2
)
, O
(
n3
)
, and O

(
n4
)
, respectively. Therefore, this approach has an aggregate computing time

of O
(
n2k+n4

)
or O

(
n2klogk+n4

)
. In general, k� n, leading to the pairwise computation being

the bottleneck. Fortunately, much of the computation is embarrassingly parallel, and is parallelized

in our implementation.

The precomputation of the Hurricane data (624 dimensions and 10 millions data items of each

dimension) was 5 hours on a single workstation. This precomputation only needs to be done once,

as interactions only require updating the drawing. Our method requires greater precomputation time

than UnTangle Map, but it is parallelizable to reduce the total wall-time. The rendering time of our

approach is less than that of UnTangle Map in the overview and is a similar rendering time in the
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detailed view.

6.4.2 Marketing Research Case Study

Marketing research data, often collected via surveys, is used to identify groups of individu-

als who might best be served by a particular product design. In this case, we use the Pacific

Brands/Berlei Bras case study data, which is commonly used in business school marketing courses.

Marketing researchers divide their questions into two types. First, segmentation variables, such

as age, sex, income, etc., are used to differentiate groups of people (i.e., independent variables).

Second are discriminant (i.e., dependent) variables, which are qualitative, such as feelings about

color, texture, etc.

This dataset contains 21 segmentation variables and 26 discrimination variables, that is, a total

of 47 variables with 1,081 2-way dependencies, 48,645 3-way dependencies, and 713,460 4-way

dependencies. This requires 178,365 glyphs to represent all multiway dependencies.

First, after loading the data into the system, the overview is shown (Fig. 6.1) with the Pear-

son correlation coefficient. Optionally, the Spearman Rank correlation coefficient can be selected

(Fig. 6.6a) when a nonparametric view of dependency is more appropriate. To understand two- and

three- and four-way dependencies separately, these options are selected and animations are used to

highlight their transitions into new positions (Fig. 6.6b). The order of points can be modified along

the x-axis (Fig. 6.6c), y-axis (Fig. 6.6d), or both (Fig. 6.1c). In these cases, the x-axis is switched

to R2
max and the y-axis is switched to R2

avg, with animation connecting the transitions. It is clear

from many of these views that most dependencies are weak. A filter on R2 ∈ [0.6,1.0] significantly

reduces the number of relationships to explore (Fig. 6.1d).

After some navigation and exploration, a smaller number of glyphs occupy the screen to high-

light their corresponding relationships (Fig. 6.1e), which helps to quickly identify the strengths and

directions among the relationships.

In the detailed view in Fig. 6.6f, the selected glyph contains variables S0,D9,D10, and D11:

• S0: I am very conscious of bras as fashion objects.

• D9: I like to shop in the same lingerie stores as my friends.

• D10: I use other people as a source of information for purchase decisions.

• D11: I use magazines or newspapers as a source of information for purchase decisions.
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Fig. 6.6f shows that some data points move toward S0 but most of the data points are in the

middle. There is no point towards D10, which indicates that S0 is weakly dominant in the four-way

relationship. Fig. 6.6f also shows that there are no points around D10 in three-way and four-way

dependencies. D10 is less dependent upon other variables (S0, D9, D11). This shows that to design

bras as fashion objects, information of friends’ shopping destination, and magazines or newspapers

are a good source of information, since S0, D9, D11 are highly correlated. This previously unknown

combination of opinions helps to quickly identify groups of individuals who are best served by

a particular product design. The result might lead marketers to choose a particular design or

advertising campaign.

6.4.3 Particle Physics Case Study

The physics dataset represents a parameter space search in simulations that model subatomic

particles under the supersymmetric extension of the Standard Model. The data has 25 input and 41

output variables with 4,000 items for each variable, which leads to 2.8M 4-way dependencies, 137k

3-way dependencies, and 2,145 pairwise dependencies, for a total of 3M dependencies. We require

720k glyphs to represent all these relationships.

Determining dependency can be valuable in reducing the size of a parameter search space by

linking input and output variables together. Many glyphs visible near the top of the overview

coordinates in Fig. 6.7a show that the variables of the physics data have strong dependencies. Users

can confirm that this is a combination of two- and three- and four-way dependencies by separating

the glyphs in Fig. 6.7b. The overview of composite glyphs and 2-, 3-, and 4-way separated glyphs

help us understand that these data have many dominant and strong relationships, since many glyphs

are on the top of the plot.

These variables are input and output variables of the simulation. The expert would like to

understand which inputs are correlated with which outputs. The expert is also interested in which

inputs most strongly reflect linear correlation with a given output. With our tool, the expert can

easily interact with various dependencies and perform the analysis tasks efficiently.

The expert can quickly select an interesting input/output variable, and the layout will automat-

ically show variables that are correlated to the selected variable. For example, the detailed view of

the selected glyph in Fig. 6.7c enables the expert to quickly identify the dependencies from selected

variables (including input I5, I6, I7, and output O12). This shows that variable O12 is highly
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correlated with others, and it is dominant.

Using UnTangle Map alone to answer the above questions would have required adding many

dimensions to the layout and exploring one by one which inputs and outputs are correlated. How-

ever, by using our proposed visualization approach, the expert can quickly select the interesting

input/output in the data, filter the layout, and show only correlated dimensions.

6.4.4 National Health and Aging Trends Study (NHATS)

The National Health and Aging Trends Study (NHATS) includes data collection research being

conducted by Johns Hopkins Bloomberg School of Public Health. The goal is to “foster research that

will guide efforts to reduce disability, maximize health and independent functioning, and enhance

quality of life at older ages”. NHATS collects detailed information on activities and quality of life

for a sample of Medicare beneficiaries over 65.

We explore a subset of the NHATS data that has 60 variables with 38k items. These data have

2M 4-way dependencies, 100k 3-way dependencies, and 1,770 pairwise dependencies, for a total

of 2.15M dependencies. We require 487k glyphs to represent these relationships.

Fig. 6.8 shows an example analysis of the NHATS data. Fig. 6.8a and 6.8b show the overview

with composite and split glyphs for the data. It is immediately apparent that many relationships

have low R2 values, while a few have high max R2. Using the lasso tool (Fig. 6.8c) filters data down

to a subset (Fig. 6.8d).

After exploration, a specific relationship is investigated. Fig. 6.8e shows the detailed view of

variables d45, d46, d47, and d48, the four possible cases of the question “Is [Caretaker Name] paid

by you (d45), your/his/her family, by a government program (d46), or by your/his/her insurance

(d47) or other (d48)?”. The centrality of these points in the square shows that these four variables

have a nondominant (uncorrelated) relationship. This makes sense, as the four options should be

mutually exclusive cases of payment.

6.4.5 Hurricane Data Case Study

Finally, we explore the IEEE Visualization 2004 Hurricane Isabel contest dataset. It consists of

48 timesteps, measuring 13 variables with a spatial resolution of 500×500×100 (25M points per

timestep). Combining all variables over all timesteps leads to an exploration of 624 total variables

(i.e., 13 variables x 48 timesteps). These data have 25B four-way dependencies, 250M three-way

dependencies, and 194k 2-way dependencies, requiring 6B glyphs.
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Figure 6.9 shows an example analysis. Figure 6.9a shows an overview of all dependency features

of the 624 variables. The many points at the bottom of the chart show weak dependencies, yet

patterns of strong dependencies are still visible. For example, a repeated pattern between QRAIN

and QSNOW variables is seen in the middle of chart. To investigate further, the view is filtered by

selecting the QRAIN/QSNOW variables (Figure 6.9b). Further zooming onto QRAIN/QSNOW in

Figure 6.9c shows more detailed glyphs that can be individually inspected.

The relationships can also be sorted by time horizontally, by variable name vertically, and

filtered by R2 (Figure 6.9d). Figure 6.9e shows the relationships sorted by time horizontally and R2

average vertically. Noticing inconsistency in the CLOUD variable in Figure 6.9d warrants further

investigation. Using a selection box, the CLOUD glyphs are isolated in Figure 6.9f. In this view,

a number of conclusions can be drawn. For example, this confirms that the relationship between

CLOUD and Pressure (P) is not consistent over time. Similarly, the relationship between CLOUD

with QGRAUP is not consistent from timesteps 10 to 20.

With over 25B two- and three- and four-way dependencies, the Hurricane Isabel data are large

and impractical to explore completely. Our approach enables quickly reducing the variables of

interest. Without our approach, the relationship between CLOUD and Pressure might not be isolated

for analysis, but it is clear through our visualization that they are not consistent over time.

6.5 Applications on Large-Scale Code Performance Data
As high performance computing (HPC) codes and systems grow more complex, optimizing the

performance of large-scale parallel programs becomes increasingly challenging. Many factors can

contribute to less-than-optimal scaling in HPC codes, though one common root cause is imbalance,

such as when a small percentage of MPI ranks require more time to complete than the rest.

We propose a new visual data exploration approach that enables rapid identification of imbalance

in large-scale HPC code performance data. Our approach centers around the use of combinations of

multivariate and multidimensional statistical projections to overcome the challenge of large volumes

of performance data. We present a case study that shows the use of these methods to find the

imbalance in performance data generated by a complex combustion modeling code, Low Mach

number Combustion (LMC).
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6.5.1 Statistics Projection Methodology

Within the context of displaying performance data, we are focusing on the idea of projections

to reduce the amount of data being displayed to the user. By projection, we mean that we are

“collapsing” or “consolidating” data from one or more dimensions to reduce the amount of data

being displayed. The idea is to visually present several of these high-level projections to a user to

provide perspective using multiple views of the data. This approach reflects design principles that

have guided efforts like HPCToolkit [68], which advocate for hierarchical, top-down aggregation of

performance information.

Since the performance problem we are focusing on is discovering imbalance, then variation

in data, as opposed to absolute data value, is of more importance. In that regard, the statistical

projection methods that can preserve the meaningful variation feature in data are standard deviation,

(σ ), Coefficient of Variation (or Cv).

The standard deviation is a measure that indicates how tightly samples are clustered around the

mean (x̄) in a collection of data. Intuitively, a small σ means the data are clustered tightly around

the mean, whereas when large, the data are more dispersed away from the mean.

The Coefficient of Variation (Eq. 6.2) represents the ratio of the standard deviation (Eq. 6.1) to

the mean; it is effectively a normalized measure of variation. As such, it is useful for comparing the

degree of variation from one data series to another, even if the means and data ranges are drastically

different from each other.

σ =

√
∑(x− x̄)2

n−1
(6.1)

Cv =
σ

x̄
(6.2)

When doing aggregation, or in other words, creating a reduced resolution version of data,

which is a form of projection, use of x̄ as the projection operator can have the undesirable side

effect of ”washing out” the signal we are interested in, namely variation. Instead, Cv is a much

better projection operator for preserving the underlying variational signal in the data. Whereas

this dissertation focuses on working with code performance data, this variation preserving property

applies in a general way to diverse data, such as when looking at long-term changes in precipitation

patterns in climate modeling data and in performing data aggregation (coarsening) operations [91].
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Let’s consider a simple example where we have two independent variables: MPI ranks along

one axis and “timesteps” along the other, and the dependent variable is runtime. Most performance

visualization tools would consider this type of dataset as a two-dimensional array of values, and then

provide visualization techniques so a user can explore this potentially very large array of data, such

as using timelines (see Borgo et al. 2014 [92] or a heat map for a discussion of such techniques).

An alternative approach would be to project these data in two ways: one projection collapses

time, the other collapses MPI rank. When time is collapsed, we have remaining a single value for

each MPI rank that reflects some F(runtime) across all timesteps for each MPI rank. When MPI

ranks are collapsed, we have remaining a single value at each timestep that reflects some F(runtime)

across all MPI ranks at that timestep.

The primary challenge with this type of approach is the potential for loss of meaningful infor-

mation during the projection process. Our approach to this fundamental challenge is twofold. The

first is to rely on the property of Cv as a projection operator to preserve variational signal when doing

data aggregation. Use of an alternate unary function, like maximum, would produce different results

than averaging, but would fail to represent the signal of variation inherent in the data. Similarly,

boolean range queries, such as those forming the basis of query-driven visualization methods [93]

would be ineffective in finding variation in data, as they focus on finding data that matches a given

set of (compound) boolean criteria. The signal presented by variation is something that must be

computed: it is not directly identifiable through unary operators or compound range queries.

The second element of our strategy is to present the user with multiple projection views. In other

words, building on the example above, where one axis is MPI rank and another is time, if we add a

third axis, “function call”, then we have the ability to more accurately resolve in high-dimensional

performance data those areas where imbalance occurs. The addition of projections from more data

dimensions will aid in more finely resolving the source of imbalance.

6.5.2 Design of Performance Data Projections Visualization

For this study, our framework for conducting experiments consists of several discrete processing

stages that are as follows and illustrated in Fig. 6.10

• Data source: generate performance data, either from a sample code that produces data having

known characteristics or from an actual solver code.

• Data subset selection, summarization, statistics: use a parallel tool to ingest performance data
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and perform projections/summaries.

• Data visualization: perform visual display, exploration, of both the summarization and de-

tailed performance data.

Of these, the data source and data subset selection operations are applications built on top of

BoxLib [94, 95], Both sets of applications, data source and data subset selection, are written in

C++ and are capable of running in distributed memory parallel fashion using MPI. For our work

here, we are leveraging BoxLib’s ability to perform performance data collection and applied this

methodology to a Low Mach number Combustion (LMC) code data source as shown in Fig. 6.11.

Our data display component is written in JavaScript and runs in a web browser. It ingests data

products produced by APP, and presents a GUI to the user for the purpose of interacting with these

data products. The data products produced by APP that are consumed by our display component

are stored in JSON format.

The GUI, shown in Fig. 6.12, consists of four primary display areas.

6.5.2.1 Menu Control View

The user has the ability to selectively enable the display of four different performance metrics

(running time, barrier wait time, reduction wait time, number of sent/received messages) and to

select from one of several different projections for each performance metric: mean, std, coefVar,

and skew. Other performance metrics and projections are possible, though they must be computed

by APP, stored in the resulting JSON file, and then will be detected by the viewer and presented to

the user.

6.5.2.2 Context+Focus View

The second major element of the GUI, appearing in the center and the bottom of Fig. 6.12, is

the context+focus view. The center of the figure is the focus view, and it contains the charts for the

user-selected data created from user-selected parameters.

We provide four different graphing/charting techniques (visual encodings): area graph (Fig. 6.13a),

line graph (Fig. 6.13b), stream graph (Fig. 6.13c), and bar graph (Fig. 6.12).

The stream graph, as described by Byron and Wattenberg, 2008 [96], is a generalization of

stacked area graphs where the baseline is not fixed. By shifting the baseline, it is possible to
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minimize the change in slope (or wiggle) in individual series, thereby making it easier to perceive

the thickness of any given layer across the data.

In the bottom of that figure, we see a compact version of the data display (context view). This

GUI element allows a user to perform subset selection (zooming technique) from the dataset, and

have the subset displayed in the focus display area.

6.5.2.3 Communication View

This view located on the top-right side of Fig. 6.12 shows a heatmap style display to indicate

the number of sent/received messages across processors (MPI ranks) and regions.

6.5.2.4 Call Graph View

The Call Graph view is located on the bottom-right side of Fig. 6.12. The call graph shows

the nested view of regions and provides contextual insight for the data display that appears in

the context+focus view. Specifically, this view helps a user to understand the nested, hierarchical

relationships of code regions and performance data.

This study focuses on a methodology and its use for finding imbalance in a large-scale HPC

code having nonuniform behavior. The methodology combines statistical methods for multivariate

and multidimensional projection with interaction and multiple views of data. Among its strengths

is the ability to preserve variational signal in data, across projections and when doing data aggrega-

tion/coarsening. As such, this methodology appears promising in terms of scalability to even larger

and more complex data. We believe these principles will be of use to other researchers and software

applications that focus on studying large-scale HPC code performance data.

6.5.3 Case Study Results

These results are a case study where we show application of a visual data exploration methodol-

ogy that uses multidimensional and multivariate projections to identify the source(s) of imbalance

in a nontrivial code. To be successful, the methods need to lead the developer to the point in

the code where imbalance occurs, and to provide some idea of why the imbalance is occurring.

Such information is required in order to know where in the code to focus attention, and to know

what in the code needs attention and give insight into how to fix it. For example, it could be a

communication bottleneck, a computation imbalance, or other factors. This case study will unfold

in a way that shows the process of investigation to find the source and nature of imbalance by using
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our approach.

The code in this case study, LMC, is nontrivial because it is an AMR-based code that focuses

calculations in areas where there is interesting physics happening. In the case of an evolving

flame front, what may start out as a small, compact flame and relatively uniform computation

will quickly become quite complex as the flame expands and the refined computations move about

in the domain. This dynamic behavior will be reflected in terms of varying computational load,

and varying communication load and patterns. The result of this nonuniform computation and

communication leads to poor balancing characteristics.

For this case study, we are working with a collection of LMC code performance data that is about

1 TB in size, collected from a 1200-way run. The performance data contains a wealth of information

at varying levels of granularity, including both function level and at the level of user-defined code

regions, as well as information about the 138 million reductions, 26 thousand barriers, and 2.3

billions of data sends between ranks during the run. Identifying imbalance in this large performance

data is challenging, but our approach will help a developer quickly go through these data and find

the imbalance efficiently.

The purpose of the methodology we present here is to aid the developer in understanding how to

make the code more efficient and balanced, which could include grid size, placement, and different

grid movement strategies.

6.5.3.1 Context View: Code Performance Data

A developer typically starts with an overview of code performance data. Fig. 6.14b shows a

typical overview, where the horizontal axis is time, and the vertical axis is MPI rank. Cells in this

chart are colored in a way that indicates which MPI function is executing at some point in time,

along with an indication of non-MPI code execution.

In Fig. 6.14b, what a developer wants to see is that all MPI ranks are executing the same thing

at about the same time. That condition would appear as uniformity along the vertical axis for some

point in time. Instead, this image shows a good deal of vertical heterogeneity. That image, which

was produced by BoxLib’s amrvis tool, reflects a subsampling strategy that displays data from every

N’th MPI rank as way to generate a coarse resolution view. This view is a subset in time, as there

are many more samples in time than can be displayed at full temporal resolution on a monitor.
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6.5.3.2 Context View: Code Region Projection

Using our visual exploration approach to find imbalance in the code, the developer will begin

with multiple context views that convey imbalance, then formulate a hypothesis about the source

and nature of the imbalance. These context views provide the multiple views design that helps

developers quickly see and explore vast amounts of information, and facilitate deeper drill down

into finer resolution views of performance data.

We begin with an image that conveys information about the code to aid in situational awareness.

The nested nature of the regions is shown in call graph form (tree view and nested view) in Fig. 6.15.

This figure shows the nested relationship between the code regions, along with some indication of

elapsed time consumed by each code region.

One might be tempted to simply look at a function call projection that shows per function

runtime across all MPI ranks and across all timesteps. Fig. 6.14a shows such a chart. There,

functions are arranged alphabetically along the horizontal axis, and the vertical axis is x̄ execution

time for each of these functions, where x̄ is the projection operator across all dimensions. From

this image, one might inclined to focus on the function CollectData Alltoall since it has the highest

average execution time.

However, x̄ as a projection and data reduction operator by itself is somewhat misleading in

terms of identifying balance. Fig. 6.14b shows a function call projection that uses Cv, which shows

variation in runtime for each function across all MPI ranks and timesteps. Contrast the three longest

executing functions in Fig. 6.14a with those showing the most variation in runtime in Fig. 6.14b. We

see that the function with the highest average runtime, CollectData Alltoall, has very low variation.

Therefore, this function is likely not the source of imbalance.

Further complicating matters is the fact that functions may be invoked from multiple places in

the code. For example, a reduce operator may be invoked from multiple locations. When invoked

from some code regions, it may exhibit reasonable balance, while when invoked from others, it may

be acutely out of balance. The reason for this variation is likely problem specific. While a function

projection, such as Fig. 6.14 is informative, it is insufficient by itself to provide the developer with

sufficient information to optimize the code.
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6.5.3.3 Context View: Rank Projections

An alternative way to do a high-level view of “all” the code’s performance data is to perform

rank projections. In a rank projection, we present information about each MPI rank’s performance

across all code regions, all timesteps, and so forth. The intention here is to determine, at a glance, the

degree to which there is imbalance across MPI ranks. Figs. 6.16 and 6.17 show per rank projections

using the x̄ and Cv operators, respectively, of execution time (red), reduction wait time (blue), and

barrier wait time (green). There are three primary points to consider about these figures.

The point is what these images convey in terms of understanding about the code’s performance.

Clearly, both Figs. 6.16 and 6.17 show imbalance in performance, but they each provide a different

view about the imbalance. Fig. 6.16, particularly Fig. 6.16b, shows MPI rank average execution

time to range between about 70 and 120. In contrast, Fig. 6.17, particularly Fig. 6.17b, shows what

appears to be an even higher degree of variation. Arguably, Fig. 6.17 presents a more pronounced

view of the imbalance in the code.

The second point concerns the use of x̄ and Cv as alternative projection operators. The difference

between Figs. 6.16b and 6.17b called out in the previous paragraph reflects this point. Use of x̄ as a

projection operator can hide variation, as low and high values are averaged. In contrast, Cv reflects

this variation in a direct way.

The third point concerns effective presentation of large amounts of data. To create Fig. 6.16b,

which is a coarse resolution view of the data in Fig. 6.16a, we combine 25 MPI ranks’ worth of

data into one data value using averaging, effectively creating a collapsed or coarsened view. In

contrast, we create Fig. 6.17b by collapsing 25 MPI ranks’ worth of data using the Cv operator to

create Fig. 6.17b. As in the previous paragraph, coarsening large data using x̄ can hide variation,

whereas coarsening using Cv preserves the variation. This characteristic is consistent with results

from applying this operator to other types of data [91].

If we are looking for a particular MPI rank as being the source of trouble, we would look for a

correlation between high execution time and high variation. However, in these images, we see no

such correlation. In Fig. 6.16, we see a few ranks that have execution time higher than the others,

but a different set of MPI ranks shows up in Fig. 6.17 as exhibiting high variation in running time.

While useful as an overview, this projection doesn’t seem to yield a positive result in our search

for imbalance in this code. However, this rank projection is a valuable view to have early in an

investigation, and could prove useful in other circumstances.
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6.5.3.4 Context View: Region Projections

Next, we do a per-region projection, shown in Fig. 6.18, which shows per-region performance—

running time (red), reduction time (blue), and time spent waiting in barriers (green) — across

all MPI ranks and all timesteps. Figs. 6.18a and Fig. 6.18b use x̄ and Cv projection operators,

respectively. As in the case of Fig. 6.14, we are interested in understanding the relationship between

high average runtime and variation.

Fig. 6.18a shows that TS0, TS1, and Aladv take longer to execute than other regions. Fig. 6.18b

shows the variation of running time of those regions. A developer would look back to the call graph

in Fig. 6.15 to understand the nested region relationships. Because TS0 and TS1 contain Aladv,

and all have high x̄ and Cv, the developer will focus their attention on Aladv. The next question is

what is the source of imbalance in that particular region.

Next, we look more closely at the performance variable waiting time (barrier waiting time and

reduction time). Since LMC has 138 million reductions, but has only 26 thousand barriers, reduction

time will be considered. Fig. 6.19 shows a per-region projection, across all MPI ranks, of reduction

time using x̄ (Fig. 6.19a) and Cv (Fig. 6.19b) as the projection operators, respectively. This figure

confirms that the code region Aladv has high reduction time in terms of both x̄ and Cv, and provides

a clue as to the source and location of imbalance in this code.

Interestingly, we also see in Fig. 6.19 that the region Lsync has both high x̄ and Cv barrier wait

time. Referring back to Fig. 6.15, we see that Lsync is not part of Aladv. However, per Fig. 6.18,

Lsync has relatively low runtime x̄ and Cv, so it is likely of less interest as a major source of

imbalance.

6.5.3.5 Detailed View: Function Projection in the Region

At this point, we are focusing our attention on the Aladv region as the most likely source of

imbalance. Our next step is to do a function projection, but only within that region. By focusing

on one region, we are excluding things we’re not interested in, for example initialization, file I/O,

etc. And, more importantly, we are limiting the scope of view of performance data, particularly

per-function information, only to the region of interest, since it may be possible that a single function

that exhibits imbalanced performance in one place exhibits balanced behavior elsewhere.

Fig. 6.20 is a function projection showing x̄ execution time (Fig. 6.20a) and variation in ex-

ecution time (Fig. 6.20b) for all function calls within the Aladv region. We see that functions
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DoNodalProjection() and MLsyncProject() have higher x̄ and Cv execution time than

others. The hypothesis here is one of these two functions is the source of imbalance.

In Fig. 6.21b, we see more imbalance in terms of the reduction waiting time (taller blue bars),

compared to the execution time. Looking at Fig. 6.22b, we see greater variation in execution time

(red) than in waiting time (blue and green), which indicates the computation is out of balance in that

function.

The next step is to examine the performance of each of those two functions in more detail.

Fig. 6.21 shows per-rank execution time of MLsyncProject() in terms of x̄ (Fig. 6.21a) and Cv

(Fig. 6.21b), while Fig. 6.22 shows the same information but for DoNodalProjection(). The

developer would probably begin to focus attention on DoNodalProjection(), since it has both

high x̄ execution time as well as a high degree of variation. DoNodalProjection() average

runtime is about 8× that of MLsyncProject().

6.6 Applications on Large-Scale Climate Data
This case study focuses on exploring how the Cv can reveal features and characteristics that

would otherwise not be visible using only x̄ or σ in large-scale, complex climate model output. The

case study consists of two parts, one focusing on precipitation (§6.6.1) and one focusing on winds

(§6.6.2).

We use precipitation and wind speed data generated by the CAM5.1 global atmospheric climate

model [97] run at approximately 1◦ × 1◦ longitude-latitude resolution under observed boundary

conditions from the period 1959-2014 [98]. Output from this run consists of multivariate, four-

dimensional data: latitude, longitude, time, ensemble member. The size of precipitation data over

50 runs is 7.4 GBytes and the size of wind speed data is 122 GBytes.

The model was run 50 times with different initial states, thus producing an ensemble of 50

realizations of how the weather might have evolved. While the large number of simulations is

unusual, the generation of multiple simulations in this manner is a standard approach for character-

izing uncertainty in the climate system. Here we examine monthly mean precipitation output on the

model’s longitude-latitude grid.

For both precipitation and wind studies, we are using the same general approach: produce

different types of projections (spatial, temporal) using different projection operators (x̄, σ , Cv),

and make observations about the differences in science that emerge from each type of projection.
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In both cases, it turns out that Cv is able to reveal specific scientific features that are not present

in the other two types of images, suggesting that Cv is quite useful in helping facilitate scientific

knowledge discovery.

6.6.1 Precipitation

Precipitation is one of the more visible and influential aspects of the climate system for society

and ecological systems, and thus is a frequent topic of analysis. It represents one branch of the

planet’s hydrological cycle, wherein moisture evaporates over the ocean, is transported over ocean

and land, precipitates out of the air, and then (if over land) returns to the ocean through rivers and

groundwater.

Because precipitation amounts vary strongly across space (e.g., deserts versus rainforests) and,

in some places, across seasons, comparisons often require some form of normalization. A common

way of doing this is by dividing by the mean, usually multiplying by 100 to get a percentage

deviation from the historical mean. For instance, when generating gridded observational products of

precipitation variations, point measurements at weather stations are converted to fractional anoma-

lies, which are then interpolated; after the interpolation, the fractional anomalies are multiplied with

a spatially interpolated field of mean precipitation [99]. The Cv is closely related to the calculation

of these fractional values.

This case study focusing on precipitation has two lines of exploration: space and time. The key

idea in both investigations is that Cv reveals information that is not apparent using either x̄ or σ .

6.6.1.1 Spatial Projections

To begin, we compare spatial projections of x̄, σ , and Cv, shown in Fig. 6.23. Here, we are

projecting climate data from a 4D space (latitude, longitude, time, ensemble member) to a 2D space

(latitude, longitude). For each lat/lon point, we compute the projected value as p = f (T,E) across

all times T and ensemble members E, where f ∈ [x̄,σ ,Cv].

The images of x̄ and σ precipitation (Figs 6.23a and 6.23b) show the band of rainfall that strad-

dles the equator, known as the Intertropical Convergence Zone (ITCZ), along with the mid-latitude

storm tracks that branch off from the ITCZ from the western sides of the major ocean basins; much

less precipitation falls in higher latitude areas where the air is too cold to hold much water. The σ

simply shows that areas with large precipitation amounts have freedom for large variability.

The image of Cv (Fig. 6.23c) looks rather different. Generally it is highlighting the deserts in
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the subtropical areas to the north and south of the ITCZ. The air that has dried through precipitation

while rising in the ITCZ moves poleward and descends here, leading to hot and dry conditions. The

low mean precipitation means that the denominator of Cv is small, and the infrequent but substantial

storms lead to a comparatively high numerator. The exception to this subtropical focus is the area

of higher Cv over the eastern tropical Pacific (i.e., against South America). Because the trade winds

blowing from the east pull up cool water from the deep ocean here, the water at the surface is usually

quite cool, does not evaporate much, and thus does not provide much moisture for subsequent

rainfall. However, during El Niño years, the winds reverse and temperature rises markedly, driving

major thunderstorms.

6.6.1.2 Temporal Projections

The primary focus of this part of the case study is to facilitate visual comparison of the variability

in climate model precipitation calculations with an observed measure of climate variability, the

Oceanic Niño Index (ONI). The ONI is a metric of the shift between El Niño (warm) and La Niña

(cool) events in the tropical Pacific [100]. This phenomenon is a well-documented driver of year-

to-year variability in climate worldwide, representing a major shift of winds around the globe and

providing the primary basis for forecasting on seasonal time scales.

There were major El Niño events during the years 1983 and 1998. Those major weather events

resulted in substantial increases in precipitation in parts of the world, and are represented through

exceptionally high ONI values during those years. We use this information in the examples that

follow to look for visual correlation between precipitation variability as represented in different

types of temporal projections and known major weather events.

We begin with temporal projections from a 4D space (latitude, longitude, time, ensemble) to a

1D space (time), shown in Fig 6.24. For each time value T , we compute p = f (Slat ,Slon,E) across

all spatial locations (Slat ,Slon) and ensemble members E, where f ∈ [x̄,σ ,Cv]. Since the data are

computed and stored at monthly temporal resolution, our computations produce a yearly value from

monthly values.

In the plot of x̄ (blue bars in Fig. 6.24a), there is relatively little variation visible in the mean

from year-to-year, with the main feature being a gradual long-term trend of increasing precipitation

levels. Comparing these mean yearly values with the ONI and the the major El Niño events of 1983

and 1998, which are reflected with exceptionally high ONI values during those years, there is no
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visible correlation between yearly x̄ and those high ONI values. Similar to the x̄ plot, the σ plot

(purple bars Fig. 6.24b) shows the little variation in the σ from year-to-year, and there is nothing

remarkable about the σ during the major events of 1983 and 1998.

In contrast, looking at the Cv projection in Fig. 6.24c, these two major events correspond to the

two years with the highest Cv values. The correspondence does not seem to hold for more moderate

El Niño events, however (e.g., 1972).

For the sake of completeness, we present a boxplot presentation of yearly precipitation values

in Fig. 6.24d, along with annotation showing the major El Niño events of 1983 and 1998. Here, the

box attributes are computed as yearly mean, min, max, and quartiles from the monthly precipitation

model data, across all ensemble members. From this image, there is no visible evidence of anything

remarkable happening in terms of precipitation variability associated with the major events of 1983

and 1998. The conclusion here is that visualization method, i.e., bar chart vs. boxplot, is not the key

issue. The key issue is that Cv reflects data characteristics in a way not possible with either x̄ or σ .

The properties of the Cv map in Fig. 6.23c help to explain the behavior of the yearly bar plots of

Cv in Fig. 6.24c. In essence, Cv is acting as a combined index of the occurrence of El Niño events

and of anomalous rainfall over subtropical regions. If data were only retained over the ocean, the Cv

projection onto time would likely improve as an index of El Niño variability. On the other hand, if

data were only retained over land (to mask out the El Niño aspect), then it would provide a metric of

variations in subtropical deserts, without any parametric definition of what constitutes a subtropical

desert. In contrast, the yearly bar plots of the mean and standard deviation are mostly reflecting

activity in the ITCZ.

6.6.2 Winds

We now explore these projections for wind speed data from the climate model simulations. The

data are the monthly average wind speed on the 500 hPa surface, the pressure surface that is about

half the pressure at sea level and which lies approximately 5.5 km above sea level. The images in

Fig. 6.25 are spatial projections, from a four-dimensional space—two spatial dimensions, time, and

ensemble members—down to a two-dimensional latitude/longitude projection.

The most prominent features in the map of the mean winds are the mid-latitude jet streams.

These winds are strongest over the ocean, flow from west to east in the 40◦–50◦ latitude range, and

extend down to the surface (hence named the “Roaring 40s” in the Southern Hemisphere). These
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appear as horizontally oriented regions of red in Fig. 6.25a, the projection of mean wind speed, x̄.

The map of σ (Fig. 6.25b) appears to show that the jets over the North Pacific and North Atlantic

are variable, while the southern jet is instead quite steady except in the South Pacific. However, the

Cv map (Fig. 6.25c) indicates that the spatial alignment of features is not perfect. In fact, the jet

cores over the North Pacific, North Atlantic, and Antarctic Oceans are all very steady. The variation

instead comes from a tendency of the winds to expand toward the equator: there is little or no power

on the poleward side of the jets.

It is well known that the jets vary in their north-south position, with those variations so promi-

nent that they form the leading Principal Components of extratropical variability, often termed the

“Southern Annual Mode” (Antarctic), the “Pacific/North America Pattern” (North Pacific), and the

“North Atlantic Oscillation” (North Atlantic); the northern two PCs are sometimes merged into

the “Northern Annular Mode” [101, 102]. However, the point that these variations are manifest

through an equatorward expansion of the winds, and not through a poleward expansion or through

north-south shifts of the jet core, is not something that is readily apparent in the patterns associated

with the PCs, which are themselves ignorant of the context of the mean base flow.

Comparison of the σ and x̄ maps can reveal the equatorward tendency, but it requires careful

scrutiny. On the other hand, by stressing the differences between the x̄ and σ maps, the high-value

regions in the Cv map are more clearly displaced from those in x̄ map, meaning that the asymmetry

in the north-south movement of the jets is apparent even in just a casual comparison.

6.7 Discussion
We have proposed a method that visualizes multiway dependencies from multivariate data.

Previous work has focused on two-way or three-way correlations. UnTangle Map can represent

only two-way or three-way dependencies. We propose a new glyph-based visualization for high-

dimensional data that includes an extension to UnTangle for four-way dependencies. The combi-

nation of these designs and filtering/selection interactions provides a powerful visual exploration

mechanism that is intuitive and effective.

Our approach is scalable to both the number of variables and the size of data, as demonstrated

by the Hurricane Isabel dataset, which contains hundreds of variables and millions of points. Few

other approaches have attempted to analyze this number of variable dependencies. The upper limit

for the number of dimensions tested was 624 for the Hurricane data.



102

We chose to limit our approach to four-way dependencies for a number of reasons. First,

the number of 5-way relationships is huge, e.g.,
(624

5

)
= 775 billion. Second, as the number of

independent variables grows, there is a naturally increasing coefficient of determination (i.e., more

input variables are more likely to explain an output variable). Nevertheless, most of our visual

encodings could be extended to 5-way dependencies.

Finally, our approach uses the R2 coefficient of determination for multiple correlation with the

Pearson correlation coefficient and Spearman Rank correlation coefficient. Many other statistical

models could be used in place of the coefficient of determination, depending on the requirements of

the analysis.
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(a) Overview. (b) Detailed View.

(c) Reordering. (d) Filtering.

(e) Selection.

Figure 6.1: Overview+detail of the marketing research dataset. Our approach for representing
multiway dependencies in multivariate data begins with (a) an overview supported by a glyph
representation of pairwise, three-way, and four-way relationships for all sets of four variables.
The overview can be (c) reordered, (d) filtered, and (e) zoomed until a relationship of interest is
identified. A selected glyph then populates the detailed view (b).
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Figure 6.2: Visual encodings for multiway dependencies in overview
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(a) Composite glyph overview.

(b) Individual circles, triangles, and square glyph overview.

Figure 6.3: Example overviews for multiway dependencies.
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(a) two- and three-way mapping (b) four-way mapping

Figure 6.4: Mapping for two- and three-, and four-way dependencies.

(a) nondominant (b) unidominant (c) bidominant (d) balance

Figure 6.5: Visual patterns for (a) nondominant, (b) unidominant, (c) bidominant, and (d) balance
relationship.
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(a) Spearman Rank Correlation (b) two- and three- and four-way dependency

(c) Switching x-axis ordering

(d) Switching y-axis ordering

(e) Overview after filtering (f) Selection View

Figure 6.6: A variety of overviews and one detailed view of the marketing research dataset.
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(a) Composite glyph overview

(b) two- and three- and four-way glyphs overview

(c) detailed view

Figure 6.7: Two overviews and one detailed view of the physics data.
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(a) Composite glyph overview (b) two- and three- and four-way separated

(c) Lasso selection (d) After lasso filter

(e) detailed view of data

Figure 6.8: A variety of overviews and a single detailed view of the NHATS data.
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(a) Overview of all variables (b) Selected QRAIN and QSNOW

(c) Zoomed QRAIN and QSNOW (d) Overview sorted by time

(e) Overview sorted by time & R2 (f) Selection of CLOUD

Figure 6.9: Hurricane Isabel data by variable series (a-c) and timeline series (d-f).
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Figure 6.10: This illustration shows the work flow, where a parallel BoxLib-based simulation code
produces simulation results and performance data, which is then postprocessed by a parallel tool
that extracts performance data subsets and computes performance data projections. Finally, a serial
visualization process displays the projection information. Future work will focus on directly linking
the visualization process back to the projection process to better enable interactive coupling between
these two processes.

Figure 6.11: Low Mach number Combustion (LMC).



112

Figure 6.12: When viewing performance data projections, a user has the ability to select between
different performance metrics (runtime, barrier wait time, etc.) and projections (mean, skew, etc.)
using different charting methods. Interactions with a widget along the bottom, which shows a
context data view, perform subset selection of the projection dataset. The data focus view, which is
the main data display, and the call graph on the right, reflect the subset selection performed in the
context view.
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(a) Area Graph

(b) Line Graph (c) Stream Graph

Figure 6.13: Visual encodings: area(a), line(b), stream(c) and bar graph(Fig. 6.12).
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(a) x̄ runtime for all function calls

(b) Cv runtime for all function calls

Figure 6.14: Function call projection: average and Coefficient of Variation of each function across
all MPI ranks, all regions, and all timesteps.



115

(a) Tree View

(b) Nested View

Figure 6.15: Code regions graph.
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(a) Full resolution: x̄ execution time for all MPI ranks

(b) Coarse resolution (25:1): x̄ execution time for all MPI ranks

Figure 6.16: Rank projection: average execution time (red), barrier wait time (green), and reduction
wait time (blue) for each MPI ranks across all timesteps.
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(a) Full resolution: Cv for all MPI ranks

(b) Coarse resolution (25:1): Cv for all MPI ranks)

Figure 6.17: Rank projection: variation (Cv) in execution time (red), barrier wait time (green), and
reduction wait time (blue) for each MPI ranks across all timesteps.
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(a) x̄ of regions

(b) Cv of regions

Figure 6.18: Region projection of runtime (red), reduction wait time (blue), and barrier wait time
(green) across all MPI ranks. The image shows that the Aladv region has higher x̄ and Cv levels
than the others: it takes longer to run, and exhibits higher variation than the others.
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(a) x̄ waiting time of different regions over all MPI ranks

(b) Cv waiting time of different regions over all MPI ranks

Figure 6.19: Per-region projection of waiting time. This figure shows that Aladv region has higher
x̄ and Cv waiting time than others, providing a clue as to why there is imbalance in the code, and
where.
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(a) x̄ of functions in Aladv region across MPI ranks

(b) Cv of functions in Aladv region across MPI ranks

Figure 6.20: Function projection of execution time within the Aladv region. level. We notice that
functions DoNodalProjection() and MLsyncProject() have higher average execution
time, and higher variation in execution time than the others. The hypothesis is that one of these two
is the source of imbalance in the code.
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(a) MLsyncProject(), x̄

(b) MLsyncProject(), Cv

Figure 6.21: Function projection: MLsyncProject() performance across all MPI ranks within
the Aladv code region. Execution time (red), barrier wait time (green), reduction wait time (blue).
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(a) DoNodalProjection(), x̄

(b) DoNodalProjection(), Cv

Figure 6.22: Function projection: DoNodalProjection() performance across all MPI ranks
within the Aladv code region. Execution time (red), barrier wait time (green), reduction wait time
(blue).
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(a) x̄, lat/lon projection through all ensemble members across all years.

(b) σ , lat/lon projection through all ensemble members across all years.

(c) Cv, lat/lon projection through all ensemble members across all years.

Figure 6.23: Comparison of x̄, σ , and Cv as the basis of a spatial projection of climate model output,
where we go from 4D to 2D. The Cv projection shows specific features not visible in either the x̄ or
σ projections, which are both similar in appearance.
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(a) x̄.

(b) σ .

(c) Cv.

(d) Box plots for precipitation from year 1980 to 1994

Figure 6.24: Comparison of x̄, σ , and Cv as the basis for temporal projection operators, where we
project from all spatial locations and ensemble members to yearly values. We show these temporal
projections in comparison with the ONI. Of these projections, the Cv projection shows the strongest
correlation with ONI, which is a known measure of climate variability.
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(a) x̄

(b) σ

(c) Cv

Figure 6.25: 2D spatial projections of 500 hPa wind speed from a 4D space. Comparison of the
Cv map against the x̄ map reveals that the strong mid-latitude winds have a tendency to expand
equatorward but not poleward, some thing that is harder to distinguish in the σ map.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Contribution
In this dissertation, we proposed four techniques of a new methodology that provides new visual

designs to show details when possible and aggregates when necessary, along with robust interactive

mechanisms. These techniques enable users to quickly identify and investigate meaningful relation-

ships in large and multidimensional data. Depending on the data size and the number of dimensions,

the most appropriate technique can be chosen to optimize the correlation identification performance.

First, correlation coordinate plots (CCPs) have been developed for the task-specific visualiza-

tion. They have distinct advantages when compared to general task visualizations such as SCP and

PCP. The advantages, as confirmed by our user study, are providing simple visual cues, improving

the estimation of correlation strength by focusing the coordinate system on model fit, and improving

correlation identification performance by reducing ambiguity in the visualization.

The second correlation visualization technique, the snowflake visualization, showed signifi-

cant performance improvements over SPLOMs and PCPs. The snowflake visualization is an ef-

ficient focus+context style layout representing a fair compromise among space-efficient design,

comprehensive visualization, and reduced user interaction for showing all pairwise correlations in

multidimensional data. In addition, the snowflake visualization showed significant performance

improvements over SPLOMs and PCPs. We believe that the CCP and snowflake visualization

represent complementary approaches to existing techniques, replacing existing approaches only

where correlation is the major feature of focus in data. We believe that more of these task-specific

approaches are on the horizon and will provide data analysts better, faster access to relevant infor-

mation in their data.

Our third proposed technique is data scalable parallel coordinates (DSPCP). In DSPCP, we

propose a new model for mapping data from the attribute domain into the parallel coordinates

domain. DSPCP has two major advantages. First, our approach scales well with increases in the size

of data (up to 10 millions data points) and avoids the overdraw problem. Second, using thoughtful
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encodings, data clustering, and interactions helps to identify relationships previously difficult to

find in PCPs. Our approach supports identification of linear patterns, nonlinear patterns, clusters,

and hidden patterns, and even enables detecting some outliers. The results of our experiments for

simulated and real-world data demonstrate that DSPCP is practical for high-performance analysis

of large and complex data. Finally, we compared and evaluated our method with the conventional

PCPs through different tasks to emphasize the benefits of our approach.

Finally, we proposed a visualization technique to explore multiway dependencies in multivariate

data, and we demonstrated the effectiveness of our approach through exploration of large simulation

and real-world datasets. Our main contributions are in the new approach to represent these data and a

set of visual encodings and interactions for exploring multiway dependencies with a large number of

variables (up to 624). Although the number of potential dependencies is large, our visual encoding

design helps to reduce a significant number of glyphs required to represent the information, and our

detailed view helps clarify the exact nature of such relationships. Our approach is scalable to both

the number of variables and the size of data, as demonstrated by the large and multidimensional

real-world datasets.

We compared and evaluated these methods with conventional methods through different vi-

sualization tasks in real-world, large, and multidimensional data to emphasize the benefits of our

methodology.

7.2 Future Work
In the future, we anticipate our methods will continued to be applied to the larger and higher-

dimensional real-world datasets that further demonstrate that our approaches are practical for high-

performance analysis in large and multidimensional data.

Confirming this to be true will require future user studies that measure how easily our methods

enable performing multiple visualization tasks. These user studies would ideally be formal evalua-

tions of our methods compared with some existing visualization methods in terms of learning time

and visualization tasks performance such as accuracy and speed. The user studies we conducted for

our first and second approaches showed that our method outperforms SCP and PCP. Conducting user

studies for our third and fourth approaches (DSPCP and MultiDepViz) will make their evaluations

even stronger.

Our methods do not naturally support many data types, such as categorical, text data, etc. Sup-
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port for these data types will require improvements and modifications to our designs. Beyond our

current designs, new designs should also be investigated to better optimize correlation identification

for the specific users and correlation tasks.

Improving design is just one half of optimizing performance. Some of these approaches may

not be naturally intuitive to many users. First, understanding the learning curves for both non-

visualization and visualization familiar users learning our methodology will be valuable. Following

that, additional research into the best methods for training users on the use of these approaches

would further benefit their utility.

Finally, we believed that our methodology can be applied to additional statistical methods be-

yond just Pearson Correlation Coefficient, Rank Correlation Coefficient, and Multiway Dependency.

Other statistical methods, such as t-tests, ANOVA, or nonlinear regressions may benefit as well.



REFERENCES

[1] X. Hong, C.-X. Wang, J. S. Thompson, B. Allen, W. Q. Malik, and X. Ge, “On Space-
Frequency Correlation of UWB MIMO Channels,” IEEE Transactions on Vehicular Technol-
ogy, vol. 59, no. 9, pp. 4201–4213, sep 2010.

[2] R. K. Sharma and J. W. Wallace, “Correlation-Based Sensing for Cognitive Radio Networks:
Bounds and Experimental Assessment,” IEEE Sensors Journal, vol. 11, no. 3, pp. 657–666,
sep 2011.

[3] S. Yu, W. Zhou, W. Jia, S. Guo, Y. Xiang, and F. Tang, “Discriminating DDoS Attacks
from Flash Crowds Using Flow Correlation Coefficient,” IEEE Transactions on Parallel
Distribution System, vol. 23, no. 6, pp. 1073–1080, jun 2012.

[4] F. J. Anscombe, “Graphs in Statistical Analysis,” in The American Statistician, vol. 27, no. 1.
London, UK: Springer Berlin Heidelberg, Feb 1973, pp. 17–21.

[5] S. B. Jarrell, Basic Statistics. Pennsylvania Plaza, New York, US: McGraw-Hill Education,
Nov 1994, vol. 23, no. 1.

[6] A. Inselberg, “The Plane with Parallel Coordinates,” The Visual Computer, vol. 1, no. 2, pp.
69–91, aug 1985.

[7] A. Aris and B. Shneiderman, “Designing Semantic Substrates for Visual Network Explo-
ration,” in Information Visualization 2007, vol. 6, no. 4. New York, NY, USA: Palgrave
Macmillan, Dec 2007, pp. 281–300.

[8] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.-D. Fekete, “GraphDice: A
System for Exploring Multivariate Social Networks,” Computer Graphics Forum, vol. 29,
no. 3, pp. 863–872, dec 2010.

[9] M. Wattenberg, “Visual Exploration of Multivariate Graphs,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’06, vol. 12, no. 1. New
York, NY, USA: ACM, sep 2006, pp. 811–819.

[10] J. Heinrich and D. Weiskopf, “State of the Art of Parallel Coordinates,” in Eurographics 2013
- State of the Art Reports, vol. 2, no. 1. Germany: The Eurographics Association, sep 2013,
pp. 95–116.

[11] H. N. R. M. K. Tiago Etiene and C. T. Silva, “’Flow Visualization’ Juxtaposed with ’Vi-
sualization of Flow’: Synergistic Opportunities between Two Communities,” in 51st AIAA
Aerospace Meeting, vol. 3, no. 5. New York, NY, USA: AIAA, dec 2013, pp. 51–59.

[12] D. Lehmann, F. Kemmler, T. Zhyhalava, M. Kirschke, and H. Theisel, “Visualnostics: Vi-
sual Guidance Pictograms for Analyzing Projections of High-dimensional Data,” Computer
Graphics Forum, vol. 34, no. 3, pp. 291–300, jun 2015.



130

[13] A. Dasgupta, M. Chen, and R. Kosara, “Conceptualizing Visual Uncertainty in Parallel
Coordinates,” Computer Graphics Forum, vol. 31, no. 3, pp. 1015–1024, jun 2012.
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