10 research outputs found

    Spatio-Temporal Learnable Proposals for End-to-End Video Object Detection

    Full text link
    This paper presents the novel idea of generating object proposals by leveraging temporal information for video object detection. The feature aggregation in modern region-based video object detectors heavily relies on learned proposals generated from a single-frame RPN. This imminently introduces additional components like NMS and produces unreliable proposals on low-quality frames. To tackle these restrictions, we present SparseVOD, a novel video object detection pipeline that employs Sparse R-CNN to exploit temporal information. In particular, we introduce two modules in the dynamic head of Sparse R-CNN. First, the Temporal Feature Extraction module based on the Temporal RoI Align operation is added to extract the RoI proposal features. Second, motivated by sequence-level semantic aggregation, we incorporate the attention-guided Semantic Proposal Feature Aggregation module to enhance object feature representation before detection. The proposed SparseVOD effectively alleviates the overhead of complicated post-processing methods and makes the overall pipeline end-to-end trainable. Extensive experiments show that our method significantly improves the single-frame Sparse RCNN by 8%-9% in mAP. Furthermore, besides achieving state-of-the-art 80.3% mAP on the ImageNet VID dataset with ResNet-50 backbone, our SparseVOD outperforms existing proposal-based methods by a significant margin on increasing IoU thresholds (IoU > 0.5).Comment: BMVC 202

    Learning to Incorporate Texture Saliency Adaptive Attention to Image Cartoonization

    Full text link
    Image cartoonization is recently dominated by generative adversarial networks (GANs) from the perspective of unsupervised image-to-image translation, in which an inherent challenge is to precisely capture and sufficiently transfer characteristic cartoon styles (e.g., clear edges, smooth color shading, abstract fine structures, etc.). Existing advanced models try to enhance cartoonization effect by learning to promote edges adversarially, introducing style transfer loss, or learning to align style from multiple representation space. This paper demonstrates that more distinct and vivid cartoonization effect could be easily achieved with only basic adversarial loss. Observing that cartoon style is more evident in cartoon-texture-salient local image regions, we build a region-level adversarial learning branch in parallel with the normal image-level one, which constrains adversarial learning on cartoon-texture-salient local patches for better perceiving and transferring cartoon texture features. To this end, a novel cartoon-texture-saliency-sampler (CTSS) module is proposed to dynamically sample cartoon-texture-salient patches from training data. With extensive experiments, we demonstrate that texture saliency adaptive attention in adversarial learning, as a missing ingredient of related methods in image cartoonization, is of significant importance in facilitating and enhancing image cartoon stylization, especially for high-resolution input pictures.Comment: Proceedings of the 39th International Conference on Machine Learning, PMLR 162:7183-7207, 202

    TransVOD: End-to-End Video Object Detection with Spatial-Temporal Transformers

    Get PDF
    Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (3%-4% mAP) on the ImageNet VID dataset. Then, we present two improved versions of TransVOD including TransVOD++ and TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0% mAP. Our proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7% mAP while running at around 30 FPS on a single V100 GPU device.Comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI), extended version of arXiv:2105.1092

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p
    corecore