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Abstract—Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed
components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their
performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end
video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the
pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model,
relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing
methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the
feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object
queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the
strong baseline deformable DETR by a significant margin (3 %-4 % mAP) on the ImageNet VID dataset. TransVOD yields comparable
performances on the benchmark of ImageNet VID. Then, we present two improved versions of TransVOD including TransVOD++ and
TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire
video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In
particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0 % mAP. Our
proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7 % mAP while running at around 30 FPS on a
single V100 GPU device. Code and models will be available for further research.

Index Terms—Video Object Detection, Vision Transformers, Scene Understanding, Video Understanding.
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1 INTRODUCTION

O BJECT detection is a fundamental task in computer vision
and achieves a huge progress with deep convolution neural

networks [1], [2], [3], [4], [5], [6], [7], [8], [9]. It enables various
applications in the real world, e.g., autonomous driving. Recently,
DETR like detectors [10], [11] remove complex components such
as NMS which makes the object detection a sparse set prediction
problem and achieve competitive results. However, all these still-
image detectors cannot be directly applied to video data, due to the
appearance deterioration and changes of video frames, e.g., motion
blur, part occlusion, and rare poses. Thus, video object detection
(VOD) aims to detect all objects given a video clip. Previous video
object detection approaches mainly leverage temporal information
in two different manners. The first one relies on post-processing
of temporal information to make the object detection results
more coherent and stable [12], [13], [14], [15]. These methods
usually apply a still-image detector to obtain detection results, then
associate the results. Another line of approaches [16], [17], [18],
[19], [20], [21], [22], [23], [24] exploits the feature aggregation of
temporal information. Specifically, they mainly improve features
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Fig. 1: Speed and Accuracy trade-off of video object detection (VOD)
results in ImageNet VID. The blue points plot the state-of-the-art
(SOTA) VOD methods, and the red ones are our proposed method
TransVOD Lite, achieving the best trade-off between the speed and
accuracy with different backbones. SwinB, SwinS and SwinT mean
Swin Base, Small and Tiny respectively.

of the current frame by aggregating that of adjacent frames
or entire clips to boost the detection performance via specific
operator design. In this way, the problems such as motion blur,
part occlusion, and fast appearance change can be well solved. In
particular, most of these methods [22], [23], [24], [25] use two-
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stage detector Faster-RCNN [1] or R-FCN [4] as the still-image
baseline.

Despite the gratifying success of these approaches, most of the
two-stage pipelines for video object detection are over sophisti-
cated, requiring many hand-crafted components, e.g., optical flow
model [26], [27], [28], [29], [30], recurrent neural network [23],
[25], [31], deformable convolution fusion [21], [32], [33], relation
networks [23], [34], [35]. In addition, most of them need compli-
cated post-processing methods by linking the same object across
the video to form tubelets and aggregating classification scores in
the tubelets to achieve the state-of-the-art performance [12], [13],
[14], [15]. Meanwhile, there are also several related studies [16],
[17], [33], [36], [37], [38] focusing on real-time video object
detection. However, these works still need sophisticated designs.
Thus, it is in desperate need to build a simple yet effective VOD
framework in a fully end-to-end manner.

Transformers [10], [11], [39], [40], [41] have shown promising
potential in computer vision. Especially, DETR [10], [11] sim-
plifies the detection pipeline by modeling the object queries and
achieving comparative performance with highly optimized CNN-
based detectors. However, given a video clip, such static detectors
cannot handle motion blur, part occlusion, video defocus, or rare
poses well due to the lack of temporal information, which will be
shown in the experiment part. Thus, how to model the temporal
information in a long-range video clip is a very critical problem.

In this paper, our goal is to extend the DETR-like object
detection into the video object detection domain. Our insights are
four aspects. Firstly, we observe that the video clip contains rich
inherent temporal information, e.g., rich visual cues of motion
patterns. Thus, it is natural to view video object detection as
a sequence-to-sequence task with the advantages of Transform-
ers [42]. The whole video clip is like a sentence, and each frame
contributes similarly to each word in natural language processing.
Transformers can not only be used in inner each frame to model
the interaction of each object but also be used to link objects
along the temporal dimension. Secondly, object query is one key
component design in DETR [10] which encodes instance-aware
information. The learning process of DETR can be seen as the
grouping process: grouping each object into an object query. Thus,
these query embeddings can represent the instances of each frame
and it is natural to link these sparse query embeddings via another
temporal transformer. Thirdly, the output memory from the DETR
transformer encoder contains rich spatial information which can
also be modeled jointly with query embeddings along the temporal
dimension. Fourthly, adopting clip-level inputs of Transformers
can speed up the detection process in a video which is needed in
many real application cases.

Motivated by these facts, we propose TransVOD, a new end-
to-end video object detection framework based on a spatial-
temporal Transformer architecture. Our TransVOD views video
object detection as an end-to-end sequence decoding/prediction
problem. For the current frame, as shown in Fig. (2)(a), it takes
multiple frames as inputs and directly outputs the current frame
detection results via a Transformer-like architecture. In particular,
we design a novel temporal Transformer to link each object query
and memory encoding outputs simultaneously. Our proposed tem-
poral Transformer mainly contains three components: Temporal
Deformable Transformer Encoder (TDTE) to encode the multiple
frame spatial details, Temporal Query Encoder (TQE) to fuse
object query in one video clip, and Temporal Deformable Trans-
former Decoder (TDTD) to obtain the final detection results of

the current frame. TDTE efficiently aggregates spatial information
via Temporal Deformable Attention and avoids background noise.
TQE first adopts a coarse-to-fine strategy to select relevant object
queries in one clip and fuse such selected queries via several
self-attention layers [42]. TDTD is another decoder that takes the
outputs of TDTE and TQE, and outputs the final detection results.
These modules are shared for each frame and can be trained
in an end-to-end manner. We carry out extensive experiments
on ImageNet VID dataset [43]. Compared with the single-frame
baseline [11], our TransVOD achieves significant improvements
(2%-4% mAP).

Based on the TransVOD framework, which is published in
ACM MM 2021 [44], we present two improved versions including
TransVOD++ and TransVOD Lite. For TransVOD++, regarding
that there exists large redundancy in both the number of object
queries and the targets, we present a hard query mining (HQM)
strategy to sample the hardest queries during the training in-
spired from the hard pixels mining in image object detection and
segmentation [5], [45], [46], as shown in Fig. 2(b). Moreover,
we present a novel query and RoI fusion (QRF) module via
dynamic convolutions. In this way, the object-level appearance
information is injected into each query and TDTE can be avoided
since the spatial fusion can be replaced with QRF. Compared
with previous TransVOD, we find both improvements lead to
better results with faster speed. Moreover, when deploying the
Vision Transformer backbone [47], we present a simply-aligned
fusion to fuse multi-scale features for TDTD. After adopting Swin
base as the backbone, our TransVOD++ achieves 90% mAP on
the ImageNet VID dataset and suppress previous works by a
significant margin (5-6%) with a simpler pipeline. Our method
is the first to achieve 90% mAP on ImageNet VID dataset.

Inherited from TranVOD, we present TransVOD Lite, aiming
at real-time VOD and modeling the VOD task as a sequence-to-
sequence prediction problem which is adopted in machine trans-
lation [42]. The pipeline is shown in Fig. 2(c). In particular, given
a window size T (T can be chosen in 8, 16), we take multiple
frames as inputs and obtain multiple frame results simultaneously.
Then, one video clip results can be obtained in a temporal window
manner. In this way, we can fully use the memory of GPU to speed
up inference time. Our TransVOD Lite can boost the single image
baseline by 2-3% mAP but with a faster speed (4x-6x). After
adopting the Swin Transformer, as shown in Fig. 1, our methods
achieve the best speed and accuracy trade-off. Our methods lead
to a significant margin (3%-4%mAP, 5-15 FPS) compared with
previous VOD methods in both speed and accuracy. Our best
model can achieve 83.7 % mAP while running at around 30
FPS. In summary, following the TransVOD framework, we present
TransVOD++ and TransVOD Lite. Both models set new state-
of-the-art results on the challenging ImageNet VID dataset in
two different settings: accuracy for non-real-time models and best
speed-accuracy trade-off on real-time models.

2 RELATED WORK

Video Object Detection. VOD task requires detecting objects in
each frame and linking the same objects across frames. State-
of-the-art methods typically develop sophisticated pipelines to
tackle it. In general, VOD task can be divided into two directions:
improving detection accuracy via temporal fusing and performing
real-time video object detection while keeping the accuracy.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, X 3

Current Frame Spatial Transformer Feature Memory Share WeightReference Frame

(a). TransVOD (b). TransVOD ++ (c). TransVOD Lite

Ft-4 Ft-2 Ft Ft+2 Ft+4

F F ST Object Query

Result

ST ST ST ST ST

Ft-4 Ft-2 Ft Ft+2 Ft+4

ST ST ST ST ST

Query and RoI Fusion

Result

Hard Query Mining
Temporal Transformer

ST

Video Clip

Result

Sequential Hard Query Mining

Temporal Transformer
ResultResult ResultResult

Temporal Transformer

Ft Ft+1 Ft+2 Ft+3 Ft+4

Fig. 2: Illustration of our proposed TransVOD series. (a) Original TransVOD: our network is based on spatial Transformer which outputs
spatial object query and feature memory of each frame. We propose a temporal Transformer to link both the spatial object queries and feature
memories in a temporal dimension to obtain the results of the current frame. The final detection results are obtained via a shared feed-forward
network (FFN). (b) Based on TransVOD, our TransVOD++ add two improvements including Hard Query Mining (HQM) and Query and RoI
Fusion module (QRF). (c) Inherited from TransVOD, our TransVOD Lite models the VOD task as a sequence-to-sequence prediction problem,
and directly outputs all the detection results of the entire sequence in the window via Sequential Hard Query Mining (SeqHQM).

For the first aspect, most previous works [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [27], [28], [29] to amend this
problem is feature aggregation that enhances per-frame features
by aggregating the features of nearby frames. Earlier works adopt
flow-based warping to achieve feature aggregation. Specifically,
FGFA [27] and THP [29] both utilize the optic flow from
FlowNet [48] to model the motion relation via different tem-
poral feature aggregation strategies. To calibrate the pixel-level
features with inaccurate flow estimation, MANet [28] dynamically
combines pixel-level and instance-level calibration according to
the motion. Nevertheless, these flow-warping-based methods have
several disadvantages: 1) Training a model for flow extraction
requires large amounts of flow data, which may be difficult and
costly to obtain. 2) integrating a flow network and a detection
network into a single model may be challenging due to multi-
task learning. Another line of attention-based approaches [21],
[23], [31], [32], [33], [49] utilize self-attention [50] and non-
local [51] to capture long-range dependencies of temporal con-
texts. SELSA [49] treats video as a bag of unordered frames
and proposes to aggregate features in the full-sequence level.
STSN [32] and TCENet [21] propose to utilize deformable con-
volution to aggregate the temporal contexts within a complicated
framework with so many heuristic designs. RDN [34] introduces a
new design to capture the interactions across the objects in spatial-
temporal context. LWDN [33] adopts a memory mechanism to
propagate and update the memory feature from key frames to
key frames. OGEMN [31] present to use object-guided external
memory to store the pixel and instance-level features for further
global aggregation. MEGA [23] considers aggregating both the
global information and local information from the video and
presents a long-range memory. Despite the great success of these
approaches, most of the pipelines for video object detection are too
sophisticated, requiring many hand-crafted components, e.g., extra
optic flow model, memory mechanism, or recurrent neural net-
work. In addition, most of them need complicated post-processing
methods such as Seq-NMS [12], Tubelet rescoring [13], Seq-
Bbox Matching [14] or REPP [15] by linking the same object
across the video to form tubelets and aggregating classification

scores in the tubelets to achieve the state-of-the-art. Instead, our
previous work TransVOD builds a simple and end-to-end trainable
VOD framework without these designs. Beyond that, our improved
version TransVOD++ incorporates more appearance information
into query design and simplifies the pipeline by removing the
temporal encoder (TDTE) of origin TransVOD. It achieves better
results than TransVOD and state-of-the-art performances on the
ImageNet VID dataset.

For the second aspect, starting from DFF [26], several
works [16], [17], [33], [36], [37], [38], [52], [53] focus on real-
time video object detection while keeping accuracy unchanged
or even improved. In general, most of these works also perform
specific architecture design with many hand-crafted components
and human prior such as object-level tracker in [16], patchwork
cell with attention in [54] and Convolutional LSTMs in [37]. Our
proposed TransVOD Lite models the entire VOD pipeline as a
sequence to sequence problem, as Transformer did in machine
translation [42]. It achieves significant improvements over the
strong image baseline along with a faster speed.

Vision Transformers. Recently, Vision Transformers [10], [11],
[40], [41], [47], [55] make a great progress the computer vision.
It can be mainly divided into two directions: replacing CNN
backbone with Transformer-Like architecture [40], [47], [56], [57]
and using object query to represent instance for scene under-
standing [10], [11], [58], [59], [60]. Our work is related to the
second part. DETR [10] builds a fully end-to-end object detection
system based on Transformers, which largely simplifies the tra-
ditional detection pipeline. It also achieves on par performances
compared with highly-optimized CNN-based detectors [1]. How-
ever, it suffers from slow convergence and limited feature spatial
resolution, Deformable DETR [11] improves DETR by designing
a deformable attention module, which attends to a small set of
sampling locations as a pre-filter for prominent key elements out of
all the feature map pixels. Our work is inspired by DETR [10] and
Deformable DETR [11]. The above works show the effectiveness
of Transformers in image object detection tasks. There are several
con-current works that applied Transformer into video understand-
ing, e.g., Video Instance Segmentation (VIS) [61], multi-object
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tracking (MOT). TransTrack [41] introduces a query-key mecha-
nism into the multi-object tracking model, while Trackformer [55]
directly adds track query for MOT. However, both only leverage
limited temporal information, i.e., just the previous frame. We
suppose that this way can not fully use enough temporal contexts
from a video clip. VisTR [39] views the VIS task as a direct
end-to-end parallel sequence prediction problem. The targets of
a clip are disrupted in such an instance sequence, and directly
performing target assignment is not optimal. Instead, we aim to
link the outputs of the spatial Transformer, i.e., object query,
through a temporal Transformer, which acts in a completely
different way from VisTR [39]. To our knowledge, there are
no prior applications of Transformers to video object detection
(VOD) tasks so far. It is intuitive to see that the Transformers’ ad-
vantage of modeling long-range dependencies in learning temporal
contexts across multiple frames for VOD task. Our previous work
TransVOD [44], leverages both the spatial Transformer and the
temporal Transformer, and then provide an affirmative answer to
that. In this paper, based on the TransVOD framework, we provide
two extra solutions including TransVOD++ and TransVOD Lite.
The former aims to improve the performance of TransVOD while
keeping inference efficiency, while the latter carry out real-time
VOD detection with much faster inference speed.
Object Tracking. Most single object tracking methods [62],
[63], [64] adopt Siamese-like tracking pipelines, where the search
patch calculates the correlation with multiple temporal features.
Most multiple object tracking [65], [66], [67] adopts tracking by
detection pipeline with extra appearance learning. Different from
these works, our TransVOD Lite utilizes multiple frames in an
offline manner, which can fully explore the entire temporal context
of video clips.

3 METHOD

Overview. We will first review the previous work including both
DETR [10] and Deformable DETR [11] in Sec. 3.1. Then, we will
give detailed descriptions of our previous proposed TransVOD
framework in Sec. 3.2. It contains three key components: Tempo-
ral Deformable Transformer Encoder (TDTE), Temporal Query
Encoder (TQE), and Temporal Deformable Transformer De-
coder (TDTD). Then, we present two advanced versions of our
TransVOD framework including TransVOD++ (Sec. 3.3 ) and
TransVOD Lite (Sec. 3.4). Finally, we describe the loss functions
and details of inference in Sec. 3.5.

3.1 Revisiting DETR and Deformable DETR
DETR [10] treats object detection as a set prediction problem. A
CNN backbone [68] extracts visual feature maps f ∈ RC×H×W

from an image and H,W are the height and width of the visual
feature map, respectively. The visual features augmented with
position embedding fpe would be fed into the encoder of the
Transformer. Self-attention would be applied to fpe to generate the
key, query, and value features K,Q, V to exchange information
between features at all spatial positions. Let Ωq and Ωk indicate
the set of query and key elements, respectively. Then, q ∈ Ωq

denotes the query element and k ∈ Ωk denotes the key element,
respectively, which indexes the query feature zq ∈ RC , and key
feature xk ∈ RC , where C denotes the dimension of the feature.
Then, the multi-head attention feature is calculated as follows:

MultiHeadAttn(zq, x) =
M∑

m=1

Wm

[ ∑
k∈Ωk

Amqk ·W ′
mxk

]
, (1)
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Fig. 3: The whole pipeline of TransVOD. A shared CNN backbone
extracts features of multiple frames. Next, a series of shared Spatial
Transformer Encoders (STE) produce the feature memories and these
memories are linked and fed into Temporal Deformable Transformer
Encoder (TDTE). Meanwhile, the Spatial Transformer Decoder (STD)
decodes the spatial object queries. Naturally, we use a Temporal
Query Encoder (TQE) to model the relations of different queries and
aggregate these queries, thus we can enhance the object query of the
current frame. Both the temporal query and the temporal memories
are fed into the Temporal Deformable Transformer Decoder (TDTD)
to learn the temporal contexts across different frames.

where m indexes the attention head, W ′
m ∈ RCv×C and

Wm ∈ RC×Cv are learnable weights (Cv = C/M by default).
The attention weights Amqk are normalized as:

Amqk ∝ exp{
zTq U

T
m Vmxk√
Cv

},
∑
k∈Ωk

Amqk = 1, (2)

in which Um, Vm ∈ RCv×C are learnable weights. The
features zq and xk are the concatenation/summation of element
contents and positional embeddings in practice. The decoder’s
output features of each object query are then further transformed
by a Feed-Forward Network (FFN) to output class score and
box location for each object. Given box and class prediction, the
Hungarian algorithm is applied between predictions and ground-
truth box annotations to identify the learning targets of each object
query for one-to-one matching. Deformable DETR [11] replaces
the multi-head self-attention layer with a deformable attention
layer to efficiently sample local pixels rather than all pixels.
Moreover, to handle missing small objects, they also propose
a cross attention module that incorporates multi-scale feature
representation. Due to the fast convergence and computation effi-
ciency, we adopt Deformable DETR as our still image Transformer
detector.

3.2 TransVOD Framework
The overall TransVOD architecture is shown in Fig. 3. It takes
multiple frames in a video clip as inputs and outputs the detection
results for the current frame. It contains four main components:
Spatial Transformer for single frame object detection to extract
both object queries and compact features representation (mem-
ory for each frame), Temporal Deformable Transformer Encoder
(TDTE) to fuse memory outputs from Spatial Transformer, Tem-
poral Query Encoder (TQE) to link objects in each frame along
the temporal dimension and Temporal Deformable Transformer
Decoder (TDTD) to obtain final output for the current frame.
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Spatial Transformer. We choose the recent Deformable
DETR [11] as our still image detector. In particular, to simplify
complex designs in [11], we do not use multi-scale features
in both encoders and decoders. We only use the last stage of
the backbone as the input of the deformable Transformer. The
modified detector includes Spatial Transformer Encoder (STE)
and Spatial Transformer Decoder (STD), which encodes each
frame F (including Reference Frame and Current Frame) into
two compact representations: spatial object query Q and memory
encoding E.
Temporal Deformable Transformer Encoder. The goal of the
Temporal Deformable Transformer Encoder is to encode the
spatial-temporal feature representations and provide the location
cues for the final decoder output. Since most adjacent features
contain similar appearance information, using naive Transformer
encoder [10], [42] directly may bring much extra computation
(most useless computation on object background). Deformable
attention [11] samples only partial information efficiently accord-
ing to the learned offset field. Thus, we can link these memory
encodings Et through the this operation in a temporal dimension.
The core idea of the temporal deformable attention modules is that
we only attend to a small set of key sampling points around a ref-
erence efficiently. The multi-head temporal deformable attention
(TempDefAttn) is as follows:

TempDefAttn(zq, p̂q, {xl}Ll=1) =
M∑

m=1

Wm

[ L∑
l=1

K∑
k=1

Amlqk

xl(ϕl(p̂q) + ∆pmlqk)
]
, (3)

where m indexes the attention head, l indexes the frame sampled
from the same video clip, and k indexes the sampling points, and
∆pmlqk and Amlqk indicate the sampling offset and attention
weights of the kth sampling point in the lth frame and the mth atten-
tion head, respectively. Amlqk denotes the scalar attention weight
in the range of [0, 1], normalized by

∑L
l=1

∑K
k=1 Amlqk = 1.

∆plmqk ∈ R2 are of 2-d real numbers with unconstrained range.
Since pq + ∆pmlqk is fractional, we apply bilinear interpolation
in [69] for computing x(pq + ∆pmlqk). For each frame l, both
∆pmlqk and Amlqk are calculated by feeding the the query
feature zq to a linear projection of 3MK channels, where the
first 2MK channels encode the sampling offsets ∆pmlqk, and the
remaining MK channels are fed to a Softmax function to obtain
the attention weights Amlqk. Here, we use normalized coordinates
p̂q ∈ [0, 1]2 for the clarity of scale formulation, in which (0, 0)
and (1, 1) indicate the top-left and the bottom-right image corners,
respectively. ϕl(p̂q) re-scales the normalized coordinates p̂q to
the input feature map of l-th frame. The multi-frame temporal
deformable attention samples LK points from L feature maps
instead of K points from single-frame feature maps. There exist
total M attention heads in each TDTE layer.
Temporal Query Encoder. As mentioned in the previous part,
learnable object queries can be regarded as the non-geometric
anchors, which automatically learns the statistical features of the
whole still image datasets during the training process. It means
that the spatial object queries are not related to temporal contexts
across different frames. Thus, we propose a simple yet effective
encoder to measure the interactions between the objects in the
current frame and the objects in reference frames.

Our key idea is to link these spatial object queries in each
frame via a temporal Transformer, and thus learn the temporal
contexts across different frames. We name our module Temporal

Query Encoder (TQE). TQE takes all the spatial queries from
reference frames to enhance the spatial output query of the current
frame, and it outputs the temporal query for the current frame.
Moreover, inspired from [34], we design a coarse-to-fine spatial
object query aggregation strategy to progressively schedule the
interactions between the current object query and the reference
object queries. The benefit of such a coarse-to-fine design is that
we can reduce the computation cost to some extent.

Specifically, we combine the spatial object query from all
reference frames, denoted as Qref . Then, we perform the scor-
ing and selection in a coarse-to-fine manner. Specifically, we
use an extra Feed Forward Network (FFN) to predict the class
logits and after that, we calculate the sigmoid value of that:
p = Sigmoid[FFN(Qref )]. Then, we sort all the reference
points by p value and select the top-confident k values from these
reference points. Considering that the shallow layer may learn
more detailed information, while there is less information in the
deep layers, we perform a coarse-to-fine selection. In other words,
the shallow layers should select more confident queries, and the
last layers should choose less credible object queries. The selected
values are fed to feature refiners to interact with the object queries
extracted from different frames, calculating the co-attention with
the output of the current frame. The decoder layers with cross-
attention modules play the role of a cascade feature refiner which
updates output queries of each spatial Transformer iteratively.
The refined temporal object query is the input of the Temporal
Deformable Transformer Decoder.
Temporal Deformable Transformer Decoder. This decoder aims
to obtain the current frame output according to both outputs
from TDTE (fused memory encodings) and TQE (temporal object
queries). Given the aggregated feature memories Ê and the tem-
poral queries Ôq , our Temporal Deformable Transformer Decoder
(TDTD) performs co-attention between online queries and the
temporal aggregated features. The deformable co-attention [11]
of the temporal decoder layer is shown as follows:

DeformAttn(zq, pq, x) =
M∑

m=1

Wm

[ K∑
k=1

Amqk

·W ′
mx(pq +∆pmqk)

]
, (4)

where m indexes the attention head, k indexes the sampled keys,
and K is the total number of the sampled keys (K ≪ HW ). pmqk

and Amqk indicate the sampling offset and attention weight of the
kth sampling point in the mth attention head, respectively. The
attention weight Amqk ∈ [0, 1], normalized by

∑K
k=1 Amqk = 1.

∆pmqk ∈ R2 are of 2-d real numbers with unconstrained range.
Due to the fact that pq + ∆pmqk is fractional, we also adopt
bilinear interpolation in computing x(pq + ∆pmqk) following
[69]. Both ∆pmqk and Amqk are obtained via linear projection
over the query feature zq . In our implementation, the query feature
zq is fed to a linear projection operator. The output of TDTD is
sent to one feed-forward network (FFN) for the final classification
and box regression as the detection results of the current frame.
3.3 TransVOD++
Compared with previous work, despite TransVOD simplifying the
pipeline of VOD, it has several limitations. Firstly, it contains
heavy computation costs in TDTE. Secondly, the performance of
TransVOD is still limited. To solve these problems, we present
TransVOD++ which contains the following improvements includ-
ing Query and RoI Fusion (QRF), Hard Query Mining (HQM),
and a strong backbone. The pipeline is shown in Fig 4.
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Fig. 4: The whole pipeline of TransVOD++. Compared with the original TransVOD, it add the Query and RoI Fusion (QRF) and Hard
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information into each object query. Then, to dynamically reduce the query number and target number, we present HQM for mining the hardest
query with multiple TDTD modules and multiple auxiliary TDTD loss functions. Details of Query Filter Head (QFH) is illustrated in Fig. 5.

Query and RoI Fusion. Previous works [23], [70] show that
the region features are more useful and contain more precise
appearance information for temporal fusion. Our motivation is to
replace the TDTE with features in region of interest (RoI) via
the proxy strategy where each RoI feature is injected into each
query, thus fully utilizing the object-level appearance information
to enhance the object query.

In particular, given the detection boxes from spatial Transform-
ers, we get the region of interest (RoI) of each frame in a video
clip. Then, according to those RoIs and the feature memory from
the spatial Transformer Encoder (STE), we could calculate the RoI
feature ERoI

cur and ERoI
ref of the current frame and the reference

frames, respectively. Next, the cropped RoI features are used to
weigh each query via the transformation of MLP, as shown in the
green part of Fig. 4. The current RoI feature ERoI

cur is aggregated
onto the current query to generate the enhanced current query
Q̂cur , where feature aggregation is conducted through dynamic
convolutions. Similarly, for each reference frame, the reference
RoI features ERoI

ref of the ith frame are fused with the reference
query of the ith frame.

Q̂j+1
ref =

{
QRF(Qj

ref , E
RoI
ref ), if j = 1

QRF(Q̂j
ref , E

RoI
ref ), otherwise

(5)

where Qj
ref denotes the spatial object query of the reference frame

before the jth temporal query encoder (TQE), and Q̂j
ref denotes

the temporal object query before the jth TQE module.
The details of the “Query and RoI fusion” module are de-

scribed as follows: given the object query and RoI feature memory,
we first feed the object query to a multi-head self-attention layer
to reason about the relations between objects. Then, each RoI
feature will interact with the corresponding object query to filter
out ineffective bins and outputs the final object query. Inspired
from [71], we carry out two consecutive 1 × 1 convolutions with
ReLU activation function for light design. The kth object query

generates dynamic parameters of these two convolutions for the
corresponding kth RoI feature via a linear projection.

Finally, the aggregated reference queries Q̂j
ref are used to

enhance the aggregated current query Q̂j
cur via a temporal query

encoder (TQE), thus learning the temporal contexts across differ-
ent frames, as shown in Eq. 6.

Q̂j
cur = TQE(Q̂j

cur, Q̂
j
ref ) (6)

Hard Query Mining. Considering that both the spatial object
queries and temporal object queries contain much redundant
information across the dataset, for example, 300 queries reflect
the temporal appearance distributions of 30 categories, and those
queries need to match more than 300 ground truths during the
training procedure, and there is no need to maintain so many
object queries/targets in both the spatial and temporal dimension.
As such, we are motivated to selectively reduce the redundancy
of query number and target number in the training of temporal
Transformers, and meanwhile, we mine the hardest query in both
the current frame and the reference frames.

Concretely, the current query and the reference queries are fed
forward to the class embedding layer, i.e., a linear classification
layer with sigmoid activation. Then, those reference queries are
concatenated in the dimension of the query number. Inherited from
TransVOD, we adopt the coarse-to-fine object query aggregation
strategy to progressively model the relationships between the
current query and the reference queries via TQE module.

The differences between TransVOD++ and TransVOD lie
in several aspects. Firstly, in contrast to TransVOD that only
selects the reference query, our TransVOD++ selects not only
the reference query but also the current query. Both of them are
treated differently in a coarse-to-fine manner, thus reducing the
computation cost in the temporal Transformer. Secondly, com-
pared to TransVOD, we add a Temporal Defomrable Transformer
Decoder (TDTD) after each TQE module and supervise the object
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query with different query numbers via an auxiliary TDTD loss,
denoted as Laux. We found it helpful to use auxiliary TDTD losses
Laux in temporal Transformer during training, especially to help
the model output the correct number of objects of each class. We
add prediction FFNs and Hungarian loss after each TDTD module.
All prediction FFNs share their parameters.
Strong Backbone. We further adopt Swin Transformer as the
strong backbone network. However, Swin Transformer generates
multi-scale features adopted with FPN-like framework [72] which
is not suitable for our TransVOD framework. We propose a simple
yet effective solution via fusing multi-scale features into one scale
where we directly add multi-scale features into one scale.

3.4 TransVOD Lite
Despite TransVOD and TransVOD++ make the VOD pipeline
much simpler, the inference time is still limited due to multiple
frame query fusing. As mentioned in Section 2, the inference
time is also critical for real application. To embrace the advantage
of modeling sequence data in transformer [39], [50], we present
TransVOD Lite where it takes multi frames as inputs and output
detection results of all frames directly, as shown in Fig. 5.
Direct Multiple Frame Predictions. In TransVOD Lite, we aban-
don the feature aggregation paradigm, which requires much more
computation costs in terms of time and memory space. Instead,
a sequence of video clips is fed as input and output a sequence
of results. As shown in Figure 5, TransVOD Lite inherits the
Hard Query Mining from the TransVOD++ and spatial-temporal
transformer design in TransVOD including TQE, TDTE. The main
difference is that TransVOD Lite directly outputs the multiple
frame prediction with a hyper-parameter Tw which is the temporal
window size of the input clip or the number of the input frames.
When Tw is larger, the inference speed is faster while the memory
is increased. In this way, we can fully use the memory of GPU to
speed up the inference time. We provide detailed experiments on
the effect of choosing Tw in the experiment part.
Sequential Hard Query Mining. Different from TransVOD and
TransVOD++, we do not need to discriminate whether an object
query is the reference query or the current query for filtering, all
object queries in the whole sequence are equally selected in a
coarse-to-fine manner, thus increasing the speed, e.g., FPS, to Tw

times in temporal Transformer than original TransVOD, where Tw

denotes the temporal window size in a given clip. We name our
method “sequential hard query mining” (SeqHQM). For example,
Tw = 12 means the input frames are 12 in the video clip, and then
we need to generate the results of those 12 frames, if each frame
has 300 object queries, there are 3600 object queries in total. There
is no doubt that there exists large redundant information of those
large number of object queries, and it is necessary to dynamically
reduce the computation costs to boost the inference speed, as well
as achieve good results in modeling the temporal motion.

In particular, given a sequence of spatial object query Qseq ,
we fed it into a Query Filter Head (QFH), which select the most
confident object query and filter those redundant object query in
a video sequence. The number of object queries and targets is
dynamically decreasing to reduce the computation redundancy. We
implement the QFH differently before the kth TQE module. If k =
1, we use the class embedding layer of the spatial Transformer to
generate class logits and go through a sigmoid activation function.
If k > 1, the class logits are generated through the learnable
temporal class embedding layer then with a sigmoid activation
function. Next, we compute the maximum probability and select
the top k confident query by sorting and selection in a coarse-
to-fine manner, which is illustrated in the green part of Fig. 5.
Similar to TransVOD++, we add a TDTD after each TQE module
and supervise the object query with different query numbers via
an auxiliary TDTD loss, denoted as Laux. Laux is essential to
help the model output the correct number of objects of each class.
We add prediction FFNs and Hungarian loss after each TDTD
module. All prediction FFNs share their parameters.

3.5 Loss Functions and Inference
Loss functions. Original DETR [10] avoids post-processing and
adopts a one-to-one label assignment rule. Following [10], [11],
[73], we match predictions from STD/TDTD with ground truth by
Hungarian algorithm [74] and thus the entire training process of
spatial Transformer is the same as original DETR. The temporal
Transformer uses similar loss functions given the box and class
prediction output by two FFNs. The matching cost is defined as
the loss function. Following [10], [11], [71], the loss function is:

Laux =
J∑

j=1

[
λcls · Lcls + λL1 · LL1 + λgiou · Lgiou

]
, (7)
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TABLE 1: Comparison with the state-of-the-art methods on Ima-
geNet VID using ResNet 50 as the backbone.

Methods Base Detector mAP (%)

Single Frame Baseline [1] Faster-RCNN 71.8
DFF [26] Faster-RCNN 70.4

FGFA [27] Faster-RCNN 74.0
RDN [34] Faster-RCNN 76.7

MEGA [23] Faster-RCNN 77.3

Single Frame Baseline [11] Deformable DETR 76.0
TransVOD Deformable DETR 79.9

TransVOD++ Deformable DETR 80.5

where J denotes the total number of TDTD modules in the
temporal Transformers, where J = 1 for TransVOD and J = 3
for TransVOD++ and TransVOD Lite in all experiments. Lcls

represents focal loss [5] for classification. LL1 and Lgiou rep-
resent L1 loss and generalized IoU loss [75] in for localization.
λcls, λL1 and λgiou are coefficients of them. We balance these
loss functions following the same setting in [11]. For TransVOD
Lite, we apply such a loss function for all input frames.

Inference for TransVOD Lite. In TransVOD Lite, the window
size of a given video is defined as Tw and the interval between the
two adjacent frames within one clip is denoted as Iw, respectively.
Given a video V = {F1, F2, · · · , FN}, we first expand the video
size to the integer multiples of Tw as: N̂ = ⌈ N

Tw
⌉Tw. Then, for

each expanded video, we divide the video into two parts and adopt
different sampling strategies for these two parts.

As for the first part, the clip is normal where the interval
of different frames is Iw. The index of the first frame in each
video clip is S = TwIwi + j, where i ∈ {0, 1, · · · ,K − 1},
j ∈ {1, · · · , Iw − 1} , K = ⌊ N̂

TwIw
⌋. We input the normal

clip sequentially with window size Tw and interval size Iw to
feed the clip into the model. For the second part, the frames are
not divisible by TwIw. The index of the first frame is the clip is
Twk + 1. There are N̂ − TWk frames in this clip. Those frames
are randomly divided into N̂

Tw
−KIw video clips, with the size of

each clip as Tw.

For example, if N = 10, Tw = 4, Iw = 2, the video
V = {F1, F2, · · · , F10}, we first expand the video size from
N = 10 to N̂ = 12, v̂ = {F1, F2, · · · , F10, F11, F12}, where
F12 = F11 = F10. Then, we will split the video into two parts:
the first part includes two normal clips, Ĉ1 = {F1, F3, F5, F7},
and Ĉ2 = {F2, F4, F6, F8}. The left part includes: Ĉ3 =
{F9, F10, F11, F12}. Ĉ1 and Ĉ2 are directly input to the model
and Ĉ3 are randomly shuffled and sent to the model.

In contrast, we introduce another sampling strategy using
random shuffling. We find that if we first randomly shuffle the
v̂ and split it to N̂

Tw
clips, our model could model the temporal

motions better due to the large view of the video. The empirical
evidence perceived by the human visual system illustrates that
when people are not certain about the identity of an object, they
would seek to find a distinct object from other frames that share
high semantic similarity with the current object and assign them
together. Regarding that Transformers are effective in modeling
the long-range dependencies, if we randomly shuffle the video,
we could increase the data diversity and fully utilize the global
information of the video. The effectiveness of both strategies is
demonstrated in the experimental part.

TABLE 2: Comparison with the state-of-the-art on ImageNet VID.
Most methods use ResNet 101 as the backbone. ⋆ denotes using
Swin-Base as backbone.

Methods Base Detector mAP(%)

Single Frame Baseline [76] R-FCN 73.6
DFF [26] R-FCN 73.0

AdaScale [77] R-FCN 75.5
D&T [52] R-FCN 75.8
FGFA [27] R-FCN 76.3
LWDN [33] R-FCN 76.3
IFF-Net [30] R-FCN 77.1
SCNet [78] R-FCN 77.9
AFA [79] R-FCN 77.9
THP [29] R-FCN 78.6

STSN [32] R-FCN 78.9
PSLA [25] R-FCN 80.0

OGEMN [31] R-FCN 80.0
STMN [80] R-FCN 80.5

TCENet [21] R-FCN 80.3
MAMBA [24] R-FCN 80.8

Single Frame Baseline [1] Faster RCNN 76.7
ST-Lattice [22] Faster RCNN 79.0

BFAN [81] Faster RCNN 79.1
STCA [82] Faster RCNN 80.3
SELSA [49] Faster RCNN 80.3
MINet [83] Faster RCNN 80.6
LRTR [35] Faster RCNN 81.0
RDN [34] Faster RCNN 81.8
TROI [84] Faster RCNN 82.0

MEGA [23] Faster RCNN 82.9
HVRNet [18] Faster RCNN 83.2

TF-Blender [85] Faster RCNN 83.8
DSFNet [20] Faster RCNN 84.1

MAMBA [24] Faster RCNN 84.6
EBFA [19] Faster RCNN 84.8

CFA-Net [86] Faster RCNN 85.0

Single Frame Baseline [87] CenterNet 73.6
CHP [88] CenterNet 76.7

Single Frame Baseline [11] Deformable DETR 78.3
TransVOD Lite Deformable DETR 80.5
TransVOD++ Deformable DETR 82.0

TransVOD++⋆ Deformable DETR 90.0

4 EXPERIMENT

Overview. In this section, we first introduce the experimental
setup for the VOD task, including the dataset and evaluation pro-
tocols. Then, we present the implementation details of TransVOD.
We also compare our proposed method with several other state-of-
the-art VOD methods in various settings. Then, we perform several
ablation studies and analyses for all three models on the ImageNet
VID [43] validation set. Finally, we provide both visualization
results and analysis to our models.

4.1 Experimental Setup
Datasets. We empirically conduct experiments on the ImageNet
VID dataset [43] which is a large-scale benchmark for video object
detection. It contains 3862 training videos and 555 validation
videos with annotated bounding boxes of 30 classes. Since the
ground truth of the official testing set is not publicly available, we
follow the widely adopted setting in previous works [27], [28],
[34], [49] where we train our models using a combination of Im-
ageNet VID and DET datasets [43] and measure the performance
on the validation set using mean average precision (mAP) metric.
Implementation detail. We use ResNet-50 [68] and ResNet-
101 [68] as the network backbone. Following original Deformable
DETR [11], the optimizer is AdamW [89] with batch size 2, initial
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Transformer’s learning rate 2 × 10−4, the backbone’s 2 × 10−5,
and weight decay 10−4. All Transformer weights are initialized
with Xavier init [90], and the backbone ImageNet-pretrained [91]
model with frozen batch-norm layers [92]. The number of initial
object query is set as 300. Following [16], [36], [79], we pre-train
our image detector on the COCO dataset [93]. Following previous
work [23], we use the same data augmentation including random
horizontal flip, random resizing the input images such that the
shortest side is at least 600 while the longest at most 1000. We
train the network for 7 epochs and the learning rate drops at the 5-
th and 6-th epochs when using the ResNet-50 and ResNet-101 as
the backbone network. We also use Swin Transformer [47] as the
backbone. The inference time is calculated on a single V100 GPU
card. In the inference phase, we do not need any sophisticated
post-processing method, which largely simplifies the pipeline
of VOD. Both the spatial Transformer encoder and the spatial
Transformer decoder’s weight are fixed for better convergence
when training the temporal Transformer.

4.2 Main Results

We first compare our proposed TransVOD and TransVOD++ using
ResNet-50 backbone in Table 1. Then we present the detailed
results with the previous state-of-the-art methods in Table 2.
Finally, we compare the real-time models in Table 3.
Results using ResNet-50 backbone. As shown in Table 1, the
results under the same backbone ResNet-50 demonstrate that our
proposed TransVOD achieves the best performance against the
state-of-the-art methods by a large margin. In particular, the mAP
can achieve 79.9 % with ResNet-50, which makes 2.6 % absolute
improvement over the best competitor MEGA [23]. Our proposed
TransVOD++ further improves the original TransVOD by 0.6 %,
achieving 80.5 % on the ImageNet VID validation set.
Results with stronger backbone. We further report stronger
backbone results to compare with the state-of-the-art methods in
Table 2. When equipped with a stronger backbone ResNet-101, the
mAP of our TransVOD++ is further boosted up to 82.0%, which
outperforms most state-of-the-art methods [26], [27], [28], [29],
[77]. Specifically, our model is remarkably better than FGFA [27]
(76.3% mAP) and MANet [28] (78.1% mAP), which both ag-
gregate features based on optical flow estimation, and the mAP
improvements are +5.6% mAP and +3.8% mAP respectively.
When compared with some relation-based methods (LRTRN [35]
(81.0% mAP), RDN [34] (81.8% mAP), SELSA [49] (80.3 %
mAP)), our method also shows its superiority in case of detection
precision. Moreover, our proposed method boosts the strong base-
line i.e., deformable DETR [11] by a significant margin (3%∼ 4%
mAP). After adopting Swin Base (SwinB) as the backbone, our
TransVOD++ achieve 90.0 % mAP and it outperforms previous
works by a large margin (about 4 % ∼ 5 % mAP). We will detail
the setting in the following parts.
Results using TransVOD Lite In Table 3, we report our
TransVOD Lite model with previous real-time models. As shown
in that table, using the ResNet-101 backbone, our method achieves
the best speed and accuracy trade-off. After adopting Swin-Tiny
as the backbone, our TranVOD Lite achieves 83.7 % mAP while
running at nearly 30 FPS. Our best TransVOD Lite model with a
Swin base backbone can achieve 90.1 % mAP while running at
15.0 FPS. Furthermore, the parameter count (46.9M) is fewer than
other video object detectors (e.g., around 100M in [26]), which
also indicates that our method is more friendly for mobile devices.

TABLE 3: Performance comparison with the state-of-the-art
real-time VOD methods on ImageNet VID validation set. In
terms of both accuracy and speed, Our method outperforms most
of them and has fewer parameters than existing models.

Model mAP (%) Runtime
(FPS)

#Params
(M) Backbone

DFF [26] 73.1 20.25 97.8 Res101
D &T [77] 75.8 7.8 - Res101
LWDN [33] 76.3 20 77.5 Res101
OGEMNet [31] 76.8 14.9 - Res101
THP [29] 78.6 13.0 - Res101+DCN
RDN [34] 81.8 10.6 - Res101
SELSA [49] 80.3 7.2 - Res101
LRTR [35] 80.6 10 - Res101
PSLA [25] 77.1 18.7 63.7 Res101
PSLA [25] 80.0 13.3 72.2 Res101+DCN
LSTS [17] 77.2 23.0 64.5 Res101
LSTS [17] 80.1 21.2 65.5 Res101+DCN

TransVOD Lite 80.5 32.3 74.2 Res101
TransVOD Lite 83.7 29.6 46.9 SwinT
TransVOD Lite 85.8 22.2 68.3 SwinS
TransVOD Lite 90.1 14.9 106.3 SwinB

4.3 Ablation Study and Analysis
Overview. In this section, we demonstrate the effect of key
components in our proposed methods including TransVOD,
TransVOD++ and TransVOD Lite. For TransVOD, we adopt
ResNet-50 as the backbone. For TransVOD++ and TransVOD
Lite, we adopt Swin Transformer as the backbone.

4.3.1 Ablation for TransVOD
Effectiveness of each component in TransVOD. Table 4(a)
summarizes the effects of different design components on the
ImageNet VID dataset. Temporal Query Encoder (TQE), Tempo-
ral Deformable Transformer Encoder (TDTE), and Temporal De-
formable Transformer Decoder (TDTD) are three key components
of our TransVOD. The single-frame baseline Deformable DETR
[11] is 76.0%. By only adding TQE, we boost the mAP with an
additional +2.9 %, which demonstrates that TQE can effectively
measure the interaction among the objects in different video
frames. And then, by adding the TDTD and TDTE sequentially,
we boost the mAP with an additional +0.4% and +0.6%, achieving
79.3% and 79.9%, respectively. These improvements show the
effects of individual components of our TransVOD.
Number of encoder layers in TDTE. Table 5(a) illustrates the
ablation study on the number of encoder layers in TDTE. We
observe that when the number of TDTE encoder layers are larger
than 1, it brings no significant benefits to the final performance.
This experiment also proves the claim that aggregating the feature
memories in a temporal dimension via deformable attention is
useful for learning the temporal contexts across different frames.
Number of encoder layers in TQE. Table 5(b) shows the ablation
study on the number of encoder layers in TQE. It shows that
the best result occurs when the number query layer is set to 5.
When the number of layers is up to 3, the performance is basically
unchanged. Thus, we use 3 encoder layers in our final method.
Number of decoder layers in TDTD. Table 5(c) illustrates the
ablation study on the number of decoder layers in TDTD. The
basic setting is 4 reference frames, 1 encoder layer in TQE, and 1
encoder layer in TDTE. The results indicate that only one decoder
layer in TDTD is needed.
Number of top k object queries in TQE. To verify the effective-
ness of our coarse-to-fine Temporal Query Aggregation strategy,
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TABLE 4: Ablation studies of TransVOD on ImageNet VID using ResNet 50 as the backbone.

(a) Effect of each component. TDTE: Temporal Deformable Trans-
former Encoder. TQE: Temporal Query Encoder. TDTD: Temporal
Deformable Transformer Decoder.

Single Frame Baseline TDTE TQE TDTD mAP (%)

✓ 76.0
✓ ✓ ✓ 77.1
✓ ✓ 78.9
✓ ✓ ✓ 79.3
✓ ✓ ✓ ✓ 79.9

(b) Ablation of top k spatial object query numbers with three encoder
layers. Our coarse-to-fine strategy has better results.. Best view it in color.

k1 30 30 30 50 50 80 80
k2 20 20 30 30 50 50 80
k3 10 20 30 20 50 20 80

mAP(%) 79.7 79.6 79.3 79.6 79.5 79.9 79.7

TABLE 5: Ablation studies on TransVOD: number of encoder
layers NTDTE in TDTE, number of encoder layers NTQE in
TQE, number of decoder layers NTDTD in TDTD and top k
spatial query in TQE with one decoder layer.

(a) Number of encoder layers NTDTE in TDTE.
NTDTE 0 1 2 3 4
mAP(%) 77.0 77.7 77.6 77.8 77.7

(b) number of encoder layers NTQE in TQE
NTQE 1 2 3 4 5 6

mAP(%) 78.8 79.4 79.6 79.6 79.7 79.7
(c) number of decoder layers NTDTD in TDTD.

NTDTD 1 2 3 4 5 6
mAP (%) 78.2 77.7 77.1 76.2 74.8 72.3

(d) top k spatial query in TQE with one decoder layer.
k 25 50 100 200 300

mAP(%) 78.0 78.1 78.3 77.9 77.7
(d) Number of reference frames Nref .

Nref 2 4 8 10 12 14
mAP(%) 77.7 78.3 79.0 79.1 79.0 79.3

Fig. 6: Ablations of TransVOD++: (a). Effect on the number of
reference frames Nref using Swin Base as the backbone. (b) Im-
provements over the different single frame baseline.

we conduct ablation experiments in Table 5(d) and Table 4(b)
to study how they contribute to the final performance. All the
experiments in each table are conducted under the same setting.
The first experiment is that when we use 1 encoder layer in TQE
with 4 reference frames, the best performance is achieved when
we choose the top 100 spatial object queries for each reference
frame. The second experiment is conducted in a multiple TQE
encoder layers case, i.e., 3 encoder layers in TQE. We denote the
Fine-to-fine (F2F) selection by using a small number of spatial
object queries in each TQE encoder layer. coarse-to-coarse (C2C)
means selecting a large number of spatial object queries when
performing the aggregation in each layer. Our proposed coarse-
to-fine aggregation strategy is using a larger number of spatial
object queries in the shallow layers and a smaller number of spatial
object queries in the deep layers to conduct the query aggregation.
The results in Table 4(b) show that our coarse-to-fine aggregation

strategy is superior to both the coarse-to-coarse selection and fine-
to-fine selection.
Number of reference frames in TransVOD. Table 5(d) illustrates
the ablations on number of reference. The basic setting is 3
encoder layers in TQE, 1 encoder layer in TDTE, and 1 decoder
layer in TDTD. As shown in Table 5(d), the mAP improves when
the number of reference frames increases, and it tends to stabilize
when the number is up to 8. We set the reference frames to 8 for
both TransVOD and TransVOD++.

4.3.2 Ablation for TransVOD++

Effect of each component in TransVOD++ on strong baseline.
In Table 6(a), we verify the effectiveness of each component in
TransVOD++ on a strong baseline. Adding RoI and Query Fusion
results in 1.4 % mAP improvements while applying Hard Query
Mining leads to extra 0.3 % mAP improvements and 1.6 % mAP
improvements on small objects. This proves that our proposed
Hard Query Mining is suitable for detecting small objects.
Effect of reference frames in TransVOD++. In Fig. 6 (a), we
show the effect of reference frames in TransVOD++ where we find
the best reference frames is 14. This is different from the original
TransVOD. We argue that utilizing more RoI information rather
than full-frame fusion in the temporal dimension leads to better
results. This finding is consistent with previous works [23], [34],
[86] focusing on RoI-wised fusion in Faster-RCNN framework.
We set the number of reference frames to 14 by default.
Improvements over different baselines. In Fig. 6 (b), we show
the imporvements over different single frame baselines includ-
ing Swin Transformer [47] and ResNet [68]. Swin Base, Swin
Small, and Swin Tiny are abbreviated as SwinB, SWinS, SwinT,
respectively. Our proposed TransVOD++ can boost the gain over
2.0%-4.0% mAP on various baselines.
Effect of multi-level feature fusion. In Table 6(b), we show the
improvements on multi-level feature fusion. In total, there is a
0.6 % mAP50 gain. However, there is a more significant gain
(2.3) on mAP50:95 which indicates multi-scale information leads
to more accurate detection results. Thus, we adopt the simple
multi-level feature fusion as the default settings when adopting
Swin Transformer as the backbone for both TransVOD++ and
TransVOD Lite.
Effect of COCO pre-training using Swin base. Following [16],
[36], [79], we pre-train our image detector on the COCO
dataset [93]. As shown in Table 6(c), removing COCO pre-training
leads to a huge drop. This indicates our TransVOD needs more
training examples to achieve better performance and this is also
consistent with original vision transformer [40]. Thus, we pre-
train both TransVOD++ and TransVOD Lite on the COCO dataset
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TABLE 6: Ablation studies of TransVOD++ on ImageNet VID using Swin Transformer Base (SwinB) as the backbone.

(a) Effect of each component of TransVOD++

Component (a) (b) (c)

Single Frame Baseline ✓ ✓ ✓
RoI and Query Fusion ✓ ✓
Hard Query Mining ✓

mAP50 (%) 88.3 89.7 90.0

mAP50:95 (%) 67.3 67.2 67.8

mAP50:95 (%) (small) 14.2 16.0 17.6

mAP50:95 (%) (medium) 39.0 41.5 42.1

mAP50:95 (%) (large) 73.9 73.7 74.4

(b) Effect of multi-level feature fusion.

Component (a) (b)

Single Frame Baseline ✓ ✓
Multi-level feature fusion ✓

mAP50 (%) 87.7 88.3

mAP50:95 (%) 65.0 67.3

mAP50:95 (%) (small) 12.2 14.2

mAP50:95 (%) (medium) 35.3 39.0

mAP50:95 (%) (large) 72.2 73.9

(c) Effect of COCO pre-training.

Component (a) (b)

Single Frame Baseline ✓ ✓
COCO pre-training ✓

mAP50 (%) 44.8 88.3

mAP50:95 (%) 28.5 67.3

mAP50:95 (%) (small) 4.5 14.2

mAP50:95 (%) (medium) 12.8 39.0

mAP50:95 (%) (large) 33.3 73.9

TABLE 7: Ablation studies of TransVOD Lite on ImageNet VID.

(a) Effect of window size Tw with Swin Tiny as backbone.

Tw AP50 AP50:95 APS APM APL FPS
1 76.6 55.1 12.6 31.5 63.7 16.5
2 79.1 56.7 12.4 34.1 65.0 21.7
4 80.9 57.9 12.1 35.1 66.0 23.5
6 81.5 58.3 14.3 35.8 66.4 22.9
8 82.1 58.6 13.7 36.3 66.6 22.5
10 82.3 58.7 13.7 35.9 66.7 29.2
12 82.7 59.0 13.7 36.6 67.0 30.1
14 82.5 58.8 14.4 36.6 66.8 32.2
15 83.7 66.2 14.7 35.1 67.3 29.6

(b) Effect of window size Tw with Swin Base as backbone.

Tw AP50 AP50:95 APS APM APL FPS
1 85.4 64.1 13.8 39.1 72.0 10.6
2 87.6 66.2 14.2 41.2 74.0 12.7
4 88.6 66.5 14.9 42.4 74.1 14.2
6 89.2 67.0 14.2 42.3 74.5 15.2
8 88.9 66.7 14.3 42.6 74.2 15.4
10 88.8 66.4 14.4 42.6 74.0 15.6
12 90.1 67.7 13.7 43.1 75.3 16.2
14 88.9 66.7 14.4 42.3 74.2 15.4
15 90.0 67.3 14.9 41.6 74.9 15.0

(c) Effect of interval size Iw using Swin Base as backbone.

(a) Interval size Iw when window size Tw = 4 .
Iw(Tw = 4) 1 4 8 12 Randomly Shuffle

mAP(%) 86.3 86.9 87.2 87.5 88.6
(a) Interval size Iw when window size Tw = 8 .

Iw(Tw = 8) 1 4 8 12 Randomly Shuffle
mAP(%) 86.6 87.3 88.0 88.2 88.9

(b) Interval size Iw when window size Tw = 12 .
Iw(Tw = 12) 1 4 8 12 Randomly Shuffle

mAP(%) 86.9 88.0 88.7 89.3 90.1

(d) Ablation of top k query numbers in SeqHQM using ResNet-101
as backbone where the window size is set to 14.

k1 30 30 50 80 100 100
k2 20 20 30 50 80 80
k3 10 20 25 30 50 30

mAP50(%) 78.4 78.4 78.8 80.4 80.3 79.9
mAP50:95(%) 56.2 56.4 56.5 58.3 58.2 58.0

mAPS (%) 11.1 11.3 11.4 10.1 10.0 10.0
mAPM (%) 30.8 31.2 31.4 29.1 29.3 28.6
mAPL(%) 65.0 65.1 65.2 65.4 65.2 65.1

by default. This observation shows that our models have the
potentiality to scale up on large video object detection datasets.

4.3.3 Ablation for TransVOD Lite
Effect of window size in TransVOD Lite. In Fig. 7 (a) and
Fig. 7 (b), we show the effect of window size on both accuracy
and inference time where the interval mode is randomly shuffled
within the window for all experiments. As shown in these figures,
increasing window size leads to both accuracy improvements and
FPS increase for both Swin Tiny and Swin base as backbones.
In Table 7(a) and Table 7(b), we detail the results of the above
figures. We choose the best window size Tw as 15 for all models.
Effect of interval size and mode in TransVOD Lite. In Ta-
ble 7(c), we show the effect of interval size between frames in
each fixed window. For different window sizes, increasing the
interval size leads to better results. This indicates that fusing
more global temporal information leads to better results. How-
ever, adopting our proposed randomly shuffled strategy results in
the best performance on different window sizes. This is mainly
because random shuffles increase the diversity of each frame. For
example, the global and local temporal information can exist in
one window. Moreover, during training, the frames are randomly
selected from each clip. Thus randomly shuffled inputs share the
same distribution with training examples. Thus we report the
final performance using such settings. Moreover, as shown in

Fig. 7: Effect of the temporal window size Tw of a video clip on
the mean Average Precision (mAP) (a) and on the Frame Per Second
(FPS) (b) in TransVOD Lite using Swin Base and Swin Tiny as the
backbone, respectively.

Table 7(c), even with the sequential inputs, our methods can still
achieve the best performance compared with methods in Table 3.
Ablation on query numbers in Sequential Hard Query Mining.
In Table 7(d), we perform ablation studies on Sequential Hard
Query Mining (SeqHQM) in TransVOD Lite. From the table, we
find the best hyper-parameter with 80, 50, 30 queries for each
stage. We use that setting for all the TransVOD Lite models.

4.4 Visualization and Analysis
Visual detection results. As shown in Fig. 10, we show the visual
detection results of still image detector Deformable DETR [11]
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Fig. 8: The visualization of the deformable cross-attention in the last
spatial Transformer decoder layer and temporal Transformer decoder
layer. We visualize the sampling locations of the temporal object query
and corresponding spatial object query in one picture. Each sampling
point of the temporal object query is marked as a red-filled circle,
while the blue circle represents the sampling point of the spatial query.

and our proposed TransVOD in odd and even rows, respectively.
The still image detector is easy to cause false detection (e.g.,
turtle detected as a lizard) and missed detection (e.g., zebra not
detected), in the case of motion blur, part occlusion. Compared
with still image detectors, our method can effectively model the
long-range dependencies across different video frames to enhance
the features of the detected image. Thus, our proposed TransVOD
can not only increase the confidence of correct prediction but
also effectively reduce the number of cases that are missed or
falsely detected. Moreover, as shown in Fig. 10 (b), our proposed
TransVOD Lite shows the more confident scores than the still
image detector.
Visual sampling locations of object query in TransVOD. To
further explore the advantages of TQE, we visualize the sampling
locations of both spatial object query and temporal object query
in Fig. 8. The sample locations indicate the most relevant context
for each detection. As shown in the figure, for each frame in each
clip, our temporal object query has more concentrated and precise
results on fore-ground objects while the original spatial object
query has more diffuse results. This proves that our temporal
object query is more suitable for detecting objects in video. This
explains the effectiveness of our temporal query fusion.
Failure case analysis. In Fig. 9, we present several failure cases
using our best TransVOD Lite model. The first two rows show the
missing detection problems. The first is mainly due to the larger
motion blur and the second is caused by the various background
change. The last two rows show the false detection where a car is
detected as a bus. This is caused by the large occlusion. Both cases
show that tackling occlusion and more stable temporal modeling
are needed for further work.

5 CONCLUSION

In this paper, we proposed a novel video object detection frame-
work, namely TransVOD, which provides a new perspective of
feature aggregation by leveraging spatial-temporal Transformers.
TransVOD effectively removes the need for many hand-crafted

Fig. 9: Failure case analysis. First and second row: miss detection.
Third and fourth row: false detection. The results are obtained via our
TransVOD Lite with Swin Base backbone.

components and complicated post-processing methods. Our core
idea is to aggregate both the spatial object queries and the
memory encodings in each frame via temporal Transformers.
Our TransVOD boosts the strong baseline deformable DETR
by a significant margin (3%-4% mAP) on the ImageNet VID
dataset. To our knowledge, our work is the first one that applies
the Transformer to video object detection tasks. Based on the
TransVOD framework, we present two advanced versions, namely
TransVOD++ and TransVOD Lite. The former improves the per-
formance of TransVOD via better Query and RoI fusion (QRF),
and hard query mining (HQM) to fully utilize the object-level
information, and dynamically reduce the number of object queries
and targets. The latter focuses on real-time video object detection
by modeling VOD as a sequence-to-sequence prediction problem
via Sequential Hard Query Mining (SeqHQM). Both models set
new state-of-the-art results on the ImageNet VID dataset on two
different settings: accuracy for non-real-time models and best
speed-accuracy trade-off on real-time models. Our method is the
first work that achieves 90% mAP on ImageNet VID dataset.
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