710 research outputs found

    Peer Review Report 2007

    Get PDF
    The purpose of this document is to report findings from the research peer reviews held March 27-29, 2007 for PHMSA’s Pipeline Safety Research and Development Program. The findings and recommendations in this report derive from the scoring and comments collected from the peer review panelists. Department of Transportation (DOT) Operating Agencies (OA) are required to develop and execute a systematic process for peer review plan for all influential and highly influential information the OA plans to disseminate in the foreseeable future. Through the Information Quality Act1, Congress directed Office of Management and Budget (OMB) to “provide policy and procedural guidance to Federal agencies for ensuring and maximizing the quality, objectivity, utility, and integrity of information, (including statistical information) disseminated by Federal agencies.” A resulting OMB Bulletin, titled “Final Information Quality Bulletin for Peer Review,” was issued prescribing required procedures for Federal programs. The Office of the Secretary of Transportation (OST) produced procedures governing modal implementation of this OMB Bulletin. These procedures, as well as the OMB Bulletin, serve as the basis and justification for the PHMSA Pipeline Safety R&D Program peer reviews. The purpose of peer reviews is to uncover any technical problems or unsolved issues in a scientific work product with technically competent and independent, objective experts. Peer review of a major scientific work product that will have the imprimatur of the Federal Government needs to be incorporated into the upfront planning of any action based in the work product. This includes obtaining the proper resources commitments (reviewers and funds), then establishing realistic schedules

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Advanced Manned Launch System (AMLS) study

    Get PDF
    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1986

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station

    Democratizing Manufacturing: Bridging the Gap Between Invention and Manufacturing

    Full text link
    Entrepreneurs and small firms in the U.S. face significant challenges as they scale up their innovations to volume production. Despite innovative new technologies such as 3D printers, the transition to cost-competitive, large-scale manufacturing can be difficult for domestic firms. To assist small U.S. companies to more effectively ramp up production, MForesight assembled more than 30 experts in manufacturing at a workshop on “Democratizing Manufacturing.” The goal of the workshop was to evaluate the gaps and barriers in technology and education that prevent the competitive design and production of engineered components by small businesses in the U.S. This effort is both timely and important because a large fraction of high-value products are now manufactured outside of the U.S. Companies in Europe and Asia are winning bids to manufacture products designed in the U.S. for a host of reasons, including a willingness on the part of their own governments to consistently invest in manufacturing (both infrastructure and human capital). To successfully compete in the global manufacturing marketplace, the U.S. needs to adopt new strategies for education, technology development, and industrial policy.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145152/1/Democratizing-Manufacturing-Dec2016.pd

    Liquid rocket booster study. Volume 2, book 3, appendices 2-5: PPIP, transition plan, AMOS plan, and environmental analysis

    Get PDF
    This Preliminary Project Implementation Plan (PPIP) was used to examine the feasibility of replacing the current Solid Rocket Boosters on the Space Shuttle with Liquid Rocket Boosters (LRBs). The need has determined the implications of integrating the LRB with the Space Transportation System as the earliest practical date. The purpose was to identify and define all elements required in a full scale development program for the LRB. This will be a reference guide for management of the LRB program, addressing such requirement as design and development, configuration management, performance measurement, manufacturing, product assurance and verification, launch operations, and mission operations support

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report

    Get PDF
    This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process
    corecore