24 research outputs found

    Faster computation of the Tate pairing

    Get PDF
    This paper proposes new explicit formulas for the doubling and addition step in Miller's algorithm to compute the Tate pairing. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and the sum or double of the points is faster than with all previously proposed formulas for pairings on Edwards curves. They are even competitive with all published formulas for pairing computation on Weierstrass curves. We also speed up pairing computation on Weierstrass curves in Jacobian coordinates. Finally, we present several examples of pairing-friendly Edwards curves.Comment: 15 pages, 2 figures. Final version accepted for publication in Journal of Number Theor

    Lower data attacks on Advanced Encryption Standard

    Get PDF
    The Advanced Encryption Standard (AES) is one of the most commonly used and analyzed encryption algorithms. In this work, we present new combinations of some prominent attacks on AES, achieving new records in data requirements among attacks, utilizing only 242^4 and 2162^{16} chosen plaintexts (CP) for 6-round and 7-round AES-192/256 respectively. One of our attacks is a combination of a meet-in-the-middle (MiTM) attack with a square attack mounted on 6-round AES-192/256 while another attack combines an MiTM attack and an integral attack, utilizing key space partitioning technique, on 7-round AES-192/256. Moreover, we illustrate that impossible differential (ID) attacks can be viewed as the dual of MiTM attacks in certain aspects which enables us to recover the correct key using the meet-in-the-middle (MiTM) technique instead of sieving through all potential wrong keys in our ID attack. Furthermore, we introduce the constant guessing technique in the inner rounds which significantly reduces the number of key bytes to be searched. The time and memory complexities of our attacks remain marginal

    Algoritmos criptográficos e o seu desempenho no Arduíno

    Get PDF
    O Arduíno é uma plataforma muito robusta e multifacetada utilizada em diversas situações e, cada vez mais, um elemento relevante na arquitetura da Internet das Coisas. Ao disponibilizar várias interfaces de comunicação sem fios, pode ser utilizado para controlar eletrodomésticos, portas, sensores de temperatura, etc. permitindo implementar facilmente a comunicação entre estas “coisas”. Nesta tese foram estudadas as principais redes sem fios utilizadas pelo Arduíno (Bluetooth Low Energy [BLE], Wi-Fi e ZigBee) para tentar perceber qual a que tem o melhor desempenho, vantagens e desvantagens de cada uma, quais os módulos necessários para permitir ao Arduíno utilizar esse tipo de rede sem fios, quais as principais funções para que foram projetadas quando criadas e qual o sistema de segurança utilizado nestas redes. Estas diferentes tecnologias sem fios permitem uma maior mobilidade e uma maior flexibilidade no desenho das estruturas de rede do que as redes com fios convencionais. Porém, este tipo de redes têm uma grande desvantagem já que qualquer um dentro do alcance da rede sem fios consegue intercetar o sinal que está a ser transmitido. Para solucionar e proteger a informação que é transmitida por estas redes foram desenvolvidos vários algoritmos de criptografia. Estes dados encriptados só podem ser lidos por dispositivos que tenham uma determinada chave. Os algoritmos de criptografia Data Encryption Standard (DES), Triple DES (TDES), Advanced Encryption Standard (AES), eXtended TEA (XTEA) Corrected Block TEA (XXTEA) estão entre as técnicas mais conhecidos e usadas tualmente. Nesta tese foram analisados estes algoritmos e as suas vulnerabilidades, tendo também sido feito um levantamento dos principais ataques existentes para avaliar se ainda são seguros atualmente. De forma a avaliar a possibilidade de utilizar o Arduíno em aplicações que utilizem comunicações sem fios com segurança, foram realizados testes de desempenho com os algoritmos de criptografia estudados, usando bibliotecas já existentes. Nos testes de desempenho implementados verificou-se que o AES é bastante mais rápido do que as outras soluções, oferecendo ainda uma maior segurança. Já o TDES verificou-se ser bastante lento, justificando o porquê de o algoritmo ser pouco usado, sendo ao longo dos anos substituído pelo AES. O XXTEA ficou em posição intermédia no teste de desempenho, tendo uma relação segurança/desempenho interessante e revelando-se assim uma escolha melhor do que o TDES.The Arduino is a very robust and multifaceted platform used in many situations and, increasingly, a relevant element in the Internet of Things. By providing several wireless communication interfaces, it can be used to control household appliances, doors, temperature sensors, etc. Allowing easy implementation of communication between these "things". In this thesis the main wireless networks used by Arduino (Bluetooth Low Energy [BLE], Wi-Fi and ZigBee) were studied to try to understand which one has the best performance, the advantages and disadvantages of each one, the modules needed to implement each wireless network and what security system are used. These different wireless technologies allow for greater mobility and greater flexibility in the design of network structures than conventional wired networks. However, such networks have a major disadvantage since anyone within the range of the wireless network can intercept the signal being transmitted. Several cryptographic algorithms have been developed to solve and protect the information that is transmitted by these networks. This encrypted data can only be read by devices that have a certain key. Triple Encryption Standard (DES), Advanced Encryption Standard (AES), eXtended TEA (XTEA) and Corrected Block TEA (XXTEA) encryption algorithms are among the best known and currently used algorithms. In this thesis these algorithms have been analyzed to compare their vulnerabilities and to identify the main existing attacks. In order to evaluate the possibility of using Arduino in applications that use wireless communications with security, performance tests were implemented using existing libraries. The results show that the AES is much faster than the other algorithms, offering even greater security. TDES was found to be quite slow, justifying why the algorithm has little used, and why over the years has been replaced by AES. The XXTEA was ranked in the middle of the performance test, having an interesting safety/performance ratio proving it to be a better choice than TDES

    A Statistical Verification Method of Random Permutations for Hiding Countermeasure Against Side-Channel Attacks

    Full text link
    As NIST is putting the final touches on the standardization of PQC (Post Quantum Cryptography) public key algorithms, it is a racing certainty that peskier cryptographic attacks undeterred by those new PQC algorithms will surface. Such a trend in turn will prompt more follow-up studies of attacks and countermeasures. As things stand, from the attackers' perspective, one viable form of attack that can be implemented thereupon is the so-called "side-channel attack". Two best-known countermeasures heralded to be durable against side-channel attacks are: "masking" and "hiding". In that dichotomous picture, of particular note are successful single-trace attacks on some of the NIST's PQC then-candidates, which worked to the detriment of the former: "masking". In this paper, we cast an eye over the latter: "hiding". Hiding proves to be durable against both side-channel attacks and another equally robust type of attacks called "fault injection attacks", and hence is deemed an auspicious countermeasure to be implemented. Mathematically, the hiding method is fundamentally based on random permutations. There has been a cornucopia of studies on generating random permutations. However, those are not tied to implementation of the hiding method. In this paper, we propose a reliable and efficient verification of permutation implementation, through employing Fisher-Yates' shuffling method. We introduce the concept of an n-th order permutation and explain how it can be used to verify that our implementation is more efficient than its previous-gen counterparts for hiding countermeasures.Comment: 29 pages, 6 figure

    Cryptanalysis of Some Block Cipher Constructions

    Get PDF
    When the public-key cryptography was introduced in the 1970s, symmetric-key cryptography was believed to soon become outdated. Nevertheless, we still heavily rely on symmetric-key primitives as they give high-speed performance. They are used to secure mobile communication, e-commerce transactions, communication through virtual private networks and sending electronic tax returns, among many other everyday activities. However, the security of symmetric-key primitives does not depend on a well-known hard mathematical problem such as the factoring problem, which is the basis of the RSA public-key cryptosystem. Instead, the security of symmetric-key primitives is evaluated against known cryptanalytic techniques. Accordingly, the topic of furthering the state-of-the-art of cryptanalysis of symmetric-key primitives is an ever-evolving topic. Therefore, this thesis is dedicated to the cryptanalysis of symmetric-key cryptographic primitives. Our focus is on block ciphers as well as hash functions that are built using block ciphers. Our contributions can be summarized as follows: First, we tackle the limitation of the current Mixed Integer Linear Programming (MILP) approaches to represent the differential propagation through large S-boxes. Indeed, we present a novel approach that can efficiently model the Difference Distribution Table (DDT) of large S-boxes, i.e., 8-bit S-boxes. As a proof of the validity and efficiency of our approach, we apply it on two out of the seven AES-round based constructions that were recently proposed in FSE 2016. Using our approach, we improve the lower bound on the number of active S-boxes of one construction and the upper bound on the best differential characteristic of the other. Then, we propose meet-in-the-middle attacks using the idea of efficient differential enumeration against two Japanese block ciphers, i.e., Hierocrypt-L1 and Hierocrypt-3. Both block ciphers were submitted to the New European Schemes for Signatures, Integrity, and Encryption (NESSIE) project, selected as one of the Japanese e-Government recommended ciphers in 2003 and reselected in the candidate recommended ciphers list in 2013. We construct five S-box layer distinguishers that we use to recover the master keys of reduced 8 S-box layer versions of both block ciphers. In addition, we present another meet-in-the-middle attack on Hierocrypt-3 with slightly higher time and memory complexities but with much less data complexity. Afterwards, we shift focus to another equally important cryptanalytic attack, i.e., impossible differential attack. SPARX-64/128 is selected among the SPARX family that was recently proposed to provide ARX based block cipher whose security against differential and linear cryptanalysis can be proven. We assess the security of SPARX-64/128 against impossible differential attack and show that it can reach the same number of rounds the division-based integral attack, proposed by the designers, can reach. Then, we pick Kiasu-BC as an example of a tweakable block cipher and prove that, on contrary to its designers’ claim, the freedom in choosing the publicly known tweak decreases its security margin. Lastly, we study the impossible differential properties of the underlying block cipher of the Russian hash standard Streebog and point out the potential risk in using it as a MAC scheme in the secret-IV mode

    The Role of the Adversary Model in Applied Security Research

    Get PDF
    Adversary models have been integral to the design of provably-secure cryptographic schemes or protocols. However, their use in other computer science research disciplines is relatively limited, particularly in the case of applied security research (e.g., mobile app and vulnerability studies). In this study, we conduct a survey of prominent adversary models used in the seminal field of cryptography, and more recent mobile and Internet of Things (IoT) research. Motivated by the findings from the cryptography survey, we propose a classification scheme for common app-based adversaries used in mobile security research, and classify key papers using the proposed scheme. Finally, we discuss recent work involving adversary models in the contemporary research field of IoT. We contribute recommendations to aid researchers working in applied (IoT) security based upon our findings from the mobile and cryptography literature. The key recommendation is for authors to clearly define adversary goals, assumptions and capabilities

    A Statistical Verification Method of Random Permutations for Hiding Countermeasure Against Side-Channel Attacks

    Get PDF
    As NIST is putting the final touches on the standardization of PQC (Post Quantum Cryptography) public key algorithms, it is a racing certainty that peskier cryptographic attacks undeterred by those new PQC algorithms will surface. Such a trend in turn will prompt more follow-up studies of attacks and countermeasures. As things stand, from the attackers’ perspective, one viable form of attack that can be implemented thereupon is the so-called “side-channel attack”. Two best-known countermeasures heralded to be durable against side-channel attacks are: “masking” and “hiding”. In that dichotomous picture, of particular note are successful single-trace attacks on some of the NIST’s PQC then-candidates, which worked to the detriment of the former: “masking”. In this paper, we cast an eye over the latter: “hiding”. Hiding proves to be durable against both side-channel attacks and another equally robust type of attacks called “fault injection attacks”, and hence is deemed an auspicious countermeasure to be implemented. Mathematically, the hiding method is fundamentally based on random permutations. There has been a cornucopia of studies on generating random permutations. However, those are not tied to implementation of the hiding method. In this paper, we propose a reliable and efficient verification of permutation implementation, through employing Fisher–Yates’ shuffling method. We introduce the concept of an -th order permutation and explain how it can be used to verify that our implementation is more efficient than its previous-gen counterparts for hiding countermeasures

    A Side-Channel Assisted Cryptanalytic Attack Against QcBits

    Get PDF
    International audienceQcBits is a code-based public key algorithm based on a problem thought to be resistant to quantum computer attacks. It is a constant-time implementation for a quasi-cyclic moderate density parity check (QC-MDPC) Niederreiter encryption scheme, and has excellent performance and small key sizes. In this paper, we present a key recovery attack against QcBits. We first used differential power analysis (DPA) against the syndrome computation of the decoding algorithm to recover partial information about one half of the private key. We then used the recovered information to set up a system of noisy binary linear equations. Solving this system of equations gave us the entire key. Finally, we propose a simple but effective countermeasure against the power analysis used during the syndrome calculation
    corecore