
HAL Id: hal-01614569
https://hal.inria.fr/hal-01614569

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Side-Channel Assisted Cryptanalytic Attack Against
QcBits

Mélissa Rossi, Mike Hamburg, Michael Hutter, Mark Marson

To cite this version:
Mélissa Rossi, Mike Hamburg, Michael Hutter, Mark Marson. A Side-Channel Assisted Cryptanalytic
Attack Against QcBits. CHES 2017 - Conference on Cryptographic Hardware and Embedded Systems,
Sep 2017, Taipei, Taiwan. pp.22, �10.1007/978-3-319-66787-4_1�. �hal-01614569�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132019448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01614569
https://hal.archives-ouvertes.fr

A Side-Channel Assisted Cryptanalytic Attack
Against QcBits

Mélissa Rossi2,3,4?, Mike Hamburg1, Michael Hutter1, Mark E. Marson1

1Rambus Cryptography Research
425 Market Street, 11th Floor, San Francisco,

CA 94105, United States

2Thales Communications & Security
3Département d’informatique de l’ENS, École normale supérieure, CNRS,

PSL Research University, 75005 Paris, France
4INRIA

melissa.rossi@ens.fr,
{mike.hamburg,michael.hutter,mark.marson}@cryptography.com

Abstract. QcBits is a code-based public key algorithm based on a prob-
lem thought to be resistant to quantum computer attacks. It is a constant-
time implementation for a quasi-cyclic moderate density parity check
(QC-MDPC) Niederreiter encryption scheme, and has excellent perfor-
mance and small key sizes. In this paper, we present a key recovery attack
against QcBits. We first used differential power analysis (DPA) against
the syndrome computation of the decoding algorithm to recover partial
information about one half of the private key. We then used the recovered
information to set up a system of noisy binary linear equations. Solving
this system of equations gave us the entire key. Finally, we propose a sim-
ple but effective countermeasure against the power analysis used during
the syndrome calculation.

Keywords: QcBits · Post-quantum cryptography · McEliece · Niederre-
iter · QC-MDPC codes · Side-channel analysis · Differential power anal-
ysis · Noisy binary linear equations · Learning parity with noise

1 Introduction

1.1 Quantum computers and post-quantum cryptography

The security of the most commonly-used public key cryptosystems is based on
the difficulty of either the integer factorization problem or the discrete logarithm
problem. Unfortunately, both of these problems can be efficiently solved using
quantum computers [37]. Progress in quantum computing has been steady, and
many believe that practical quantum computers will become a reality within the
next 20 years [12, 28]. In fact, the National Security Agency (NSA) and the Na-
tional Institute of Standards and Technology (NIST) have both issued announce-
ments calling for the standardization and transition to post-quantum public key

? This work was done while the author was at Rambus Cryptography Research.

algorithms in the near future [34, 12]. A European initiative, PQCRYPTO, spon-
sored by the European Commission under its Horizon 2020 Program, published
a report entitled “Initial Recommendation of long-term secure post-quantum
systems”[1]. This report recommends the development of cryptography which
is resistant to quantum computers. These concerns about quantum computers
have given research in post-quantum cryptography a great deal of momentum
in the past few years. Some of the most promising directions include cryptosys-
tems based on lattices, error correcting codes, hash functions, and multivariate
quadratic equations. The mathematical problems upon which these cryptosys-
tems are based are expected to remain intractable even in the presence of quan-
tum computers [7].

In this paper, we analyze and successfully attack a code-based post-quantum
public key cryptosystem called QcBits [13]. QcBits (pronounced “quick-bits”) is a
variant of the McEliece public-key cryptosystem [24] based on quasi-cyclic (QC)
moderate density parity check (MDPC) codes [26]. Although the McEliece cryp-
tosystem in its original form is still regarded as secure, the public keys for the
originally proposed parameters are very large. On the other hand, cryptosystems
based on QC-MDPC codes have much smaller and simpler public and private
keys. The quasi-cyclic form allows the public and private keys to be completely
defined by the first rows of their matrices.

However, it is precisely the quasi-cyclic structure and moderate density of
the private key which allows our attack to succeed. The QcBits secret parity
check matrix is the concatenation of two sparse circulant matrices, denoted H 0

and H 1. We first used differential power analysis (DPA) against H 0 to narrow
down the locations of its nonzero elements. This gave us enough information to
set up a system of noisy binary linear equations, which we could solve with high
probability. Solving these equations gave us both the exact matrix H 0, as well
as the other matrix H 1.

1.2 Previous related work

The first code-based public key cryptosystem is due to McEliece [24]. Its security
is based on the difficulty of decoding a random linear code. It has been exten-
sively analyzed since being proposed, and is still regarded as secure in its original
form using Goppa codes. The main drawback of this construction is the size of
the public keys. For the originally proposed parameters these keys contain about
500 Kbits. This drawback motivated the search for secure code-based cryptosys-
tems with more manageable key sizes [19, 23, 29, 39]. Unfortunately, most of the
proposed McEliece variants using codes other than Goppa codes have turned out
to be insecure [14, 22, 25, 27, 35, 40]. Using QC-MDPC codes to replace Goppa
codes in the McEliece cryptosystem was first suggested by Misoczki et al. in 2013
[26], and appears to be a promising choice. Some hardware implementations of
this scheme followed in 2013 [18] and 2014 [43].

2

QC-MDPC codes are characterized by moderate density parity check matri-
ces in quasi-cyclic form. The quasi-cyclic form allows both the public key and
private key matrices to be completely defined by their first rows, leading to much
smaller key sizes. Also, because of the way the public generator matrix is con-
structed, there is no need for scrambling and permutation matrices. Instead, the
generator matrix is directly presented as a public key in its systematic form.
In [1], the PQCRYPTO group recommends the QC-MDPC scheme for further
study.

QC-MDPC McEliece was originally designed to be secure against chosen
plaintext attacks (CPA) but not against chosen ciphertext attacks (CCA). To
achieve security against adaptive chosen ciphertext attacks, some transforma-
tions were proposed in [4] and [20]. A hybrid CCA-secure encryption protocol
using QC-MDPC Niederreiter was proposed by Persichetti [32] and implemented
by Von Maurich et al. [44]. QcBits is an implementation of a variant of this pro-
tocol due to Chou in [13]. It operates in a constant time and has very good speed
results and small keys sizes.

Another issue with the QC-MDPC cryptosystems is that they have a non-
negligible probability of decryption failure, with the failure rate depending on
the security parameters. The failure rate was around 10−7 in Misoczki et al.
original proposal [26], and is even worse for constant-time decoders. In [16],
Guo et al. take advantage of the decryption failures to recover the secret key of
Misoczki’s original version in minutes. Preliminary work was done to improve
constant-time decoding algorithms in [10], but they did not improve the failure
rate below 10−7. For CCA-secure versions of QC-MDPC cryptosystems, Guo et
al. proposed a more complex version of their attack that requires at most 350
million decryptions and has a time complexity of 239.7. QcBits is CCA-secure but
it has a more advanced constant-time decoder [13]. Chou claims a failure rate of
10−8 for the 80-bit secure version. Guo et al. still estimate the time complexity
for attacking QcBits to be 255.3, but to our knowledge have not run the attack.
They have not provided estimates against the 128-bit secure version. They pro-
posed drastically reducing the decoding failure probability as countermeasure
against this attack, but no details about how to do so have been published.

Side-channel attacks against code-based schemes have focused more on the
original version of the McEliece cryptosystem based on Goppa Codes. Timing
leakages were first studied in [42]. This was followed by Strenzke and Shoufan et
al., who performed a key recovery attack using timing analysis [38, 41]. Heyse
et al. performed a simple power analysis (SPA) attack against software imple-
mentations of the original McEliece algorithm [17]. In [33], Petrvalsky et al.
present DPA results against a software implementation of the original McEliece
cryptosystem and provide a countermeasure using codewords as masks. In [11],
Chen et al. describe a differential power analysis (DPA) [21] key recovery at-
tack against a QC-MDPC FPGA McEliece implementation. To our knowledge,

3

no DPA attacks have been performed on CCA-secure constant-time versions of
QC-MDPC McEliece.

Our attack also includes solving a learning parity with noise (LPN) problem.
We set up and solve a system of noisy binary linear equations to complete the
key recovery. Solving such systems has a long history in cryptanalysis, with
many different methods used depending upon the specifics of the problem. See
Belaid et al. in [2] and [3] for recent examples of such attacks. Our system of
equations has very low noise. We therefore used an elementary method which,
for very low noise systems (1%), was shown in [36] to be more efficient than the
Blum-Kalai-Wasserman (BKW) algorithm [9].

1.3 Our contribution

In this paper we present a side-channel assisted cryptanalytic attack against
QcBits. In contrast to Guo et al.’s attack in [16], our attack focuses on the first
step of the decoding process, and is independent of its failure probability. Our
attack only requires us to observe a small number of decryptions (about 200
power traces for the implementation we analyzed), and we need to analyze less
than 1% of each trace. Our attack also works for both the 80-bit and 128-bit
security versions.

Our attack consists of two steps:

1. A DPA attack targeting the syndrome computation of the decryption oper-
ation. The operation uses half of the private key, and during this step we
recover some information about that half of the key. Because of the way in
which the implementation leaks, there is some ambiguity as to the exact
location of the nonzero elements of the key.

2. A linear algebra computation which takes advantage of the sparseness of the
private key and succeeds with high probability. We repeat this operation
(varying the equations slightly each time) until the computation succeeds.
This allows us to recover the entire secret key.

The number of traces required in the first step will of course depend upon the
implementation and hardware on which it is run. The amount of work required
for the second step will depend on how much information is recovered in the first
step. For the implementation and hardware we used for our analysis, the DPA
attack required about 200 power traces in Step 1. The work factors in Step 2
were 224 for the 80-bit security version, and 227 for the 128-bit security version.
See Section 4 for details.

1.4 Paper roadmap

In Section 2, we describe the QcBits cryptosystem introduced by Chou in [13].
In Section 3, we describe the DPA attack we used to recover information about

4

the private key. In Section 4, we present the algebraic attack we implemented
recovering the entire private key. In Section 5, we describe a simple countermea-
sure to help protect against our attack. Finally, in Section 6, we summarize our
results and discuss future research.

2 Description of the QcBits cryptosystem

2.1 Definitions

Definition 1 (Circulant matrix) A r × r matrix is a circulant matrix if its
rows are successive cyclic shifts of its first one.

Definition 2 (Quasi-cyclic matrix) A matrix H = (H0, ...,Hm) is a quasi-
cyclic (QC) matrix if the submatrices H0, ...,Hm are circulant matrices.

Definition 3 (QC-MDPC code) An (n, r, w)-QC-MDPC code is a binary lin-
ear code with n-bit codewords and dimension r which is defined by a QC Moderate
Density Parity Check (MDPC) matrix H.

C = {x ∈ Fn2 |H · xT = 0}. (1)

In other words, the codewords are all the vectors in the right nullspace of H
which is QC and has a ”moderate density”. ”Moderate” here means that H has
a constant row weight w = O(

√
n.log(n)).

2.2 QC-MDPC codes used for QcBits

QcBits uses (n, r, w)-QC-MDPC binary codes with n = 2r. The parity check
matrix in its QC-MDPC form is then composed of 2 square sparse circulant
matrices

H = (H 0,H 1) ∈ Fr×n2 (2)

The generator matrix in its systematic form is the r × n binary matrix

G = (I ,P) (3)

where I is the r × r identity matrix and P is an r × r dense binary circulant
matrix

P = (H−11 ·H 0)T (4)

The reader can easily verify that H ·GT = 0 , so the rows of G form a basis for
the codewords. An r-bit data vector x is encoded by multiplying it by G:

c = x ·G. (5)

Let e be a n-bit error vector, and ĉ the corrupted codeword

ĉ = c ⊕ e = x ·G ⊕ e . (6)

5

In the general case, decoding a corrupted codeword (i.e., removing its errors)
from a random binary linear code is an NP-hard problem [5]. However, if the
QC-MDPC parity check matrix H = (H 0,H 1) is known and the Hamming
weight of e is not too large, there are efficient algorithms for decoding corrupted
QC-MDPC codewords. There is no known efficient algorithm if the two sparse
circulant matrices H 0 and H 1 are not known. The most commonly-used decod-
ing algorithm is the probabilistic bit-flipping algorithm introduced by Gallager
in [15]. See Section 2.3 for details.

For the bit-flipping decoding algorithm on QC-MDPC codes, the maximum
allowed number of bit errors, denoted t, is an estimated value. In [26] the au-
thors determined values for QC-MDPC code parameters (n, r, w, t) which would
provide the desired security levels, while keeping the probability of a decoding
failure as low as possible (< 10−7). The parameters they selected are shown in
Table 1.

Table 1. Proposed QC-MDPC instances with security level

n r w t Bits of Security

9602 4801 90 84 80
19714 9857 142 134 128

For the remainder of this paper, we focus on QC-MDPC codes with the
two parameter sets (n, r, w, t) from Table 1. The private key of QcBits is the
QC-MDPC parity check matrix H priv :

H priv = (H 0,H 1) (7)

where H 0,H 1 ∈ Fr×r2 are randomly generated circulant matrices with weight w
2

in each row. The private key is sparse, so only the indices of the nonzero values
of the first row are stored. Knowing the private key, one can use the bit-flipping
decoding algorithm to recover a codeword which has been corrupted by up to t
errors.

The public key is computed directly from the private key H priv as the dense
circulant r × r matrix P :

P = (H−11 ·H 0)T . (8)

Knowing P allows anyone to build the generator matrix in its systematic form
Gpub and a parity check matrix H pub :

Gpub = (I ,P), (9)

H pub = (PT , I). (10)

6

2.3 QcBits encryption and decryption algorithms

QcBits is an hybrid CCA-secure encryption protocol based on Niederreiter [29].
Unlike McEliece cryptosystem, Niederreiter uses the parity-check matrix rather
than the generator matrix for the encryption. QcBits uses the following crypto-
graphic primitives. See [13] for more details.

1. A hash function denoted Hash. QcBits uses Keccak [31];

2. A symmetric stream cipher denoted (Senc,Sdec). QcBits uses Salsa20 [8];

3. An authentication function denoted (Tag,Check). QcBits uses Poly1305 [6].

The encryption of a message m using QcBits is shown in Algorithm 1.

Algorithm 1: QcBits encryption

Data: Plaintext m , Public matrix P
Result: Ciphertext (c|d |g)

1 e ← $ // Drawing a random n-bit error vector with Hamming weight t
2 key ← Hash(e)

3 cT ← (I ,P−T) · eT ∈ Fr2
4 d ← Senc(key ,m)
5 g ← Tag(key)
6 Return (c|d |g)

The reader can verify that (c|0) ∈ Fn2 is a codeword corrupted with the error e .
The encrypted message d has the size of the plaintext m , as it is encrypted with
a stream cipher. The message authenticator g is 16 bytes in length.

We next describe the bit-flipping algorithm, which is used by the decryption
algorithm. Given a vector that is at most t errors away from a codeword, the bit
flipping algorithm attempts to recover the codeword (or equivalently the error)
using a sequence of iterations. During each iteration the algorithm decides which
of the n positions of the input vector are most likely to be wrong, and inverts
those bits. The resulting vector then becomes the input to the next iteration.
In QcBits, the bit-flipping algorithm performs a total of jmax = 6 iterations.
It uses the precomputed thresholds Thresh[0, . . . , 5] = [29, 27, 25, 24, 23, 23] in
each iteration to determine which bits should be flipped. The bit-flipping process
is shown in Algorithm 2.

7

Algorithm 2: Bit Flipping

Data: H priv ∈ Fr·n2 ,x ∈ Fn2
Result: Corrected codeword v

1 v ← x

2 S ← H priv · vT // Syndrome computation
3 for j ∈ {0, jmax} do
4 for i ∈ {0, ..., n− 1} do
5 σi ← 〈S ,h i〉 ∈ Z // h i denotes the i-th column of H
6 if σi ≥ Thresh[j] then
7 v i ← v i ⊕ 1
8 end

9 end

10 S ← H priv · vT
11 end
12 Return the codeword v

Algorithm 3 shows the decryption process. First, (c|0) ∈ Fn2 gets decoded.
The bit-flipping returns the error e . Then, the decryption hashes e to com-
pute the symmetric key, verifies the tag g , and decrypts the second part of the
ciphertext, d .

Algorithm 3: QcBits decryption

Data: Ciphertext (c|d |g), Private key H priv = (H 0,H 1)
Result: Plaintext m or ⊥

1 s← (c | 0) ∈ Fn2
2 e ← Bit-Flipping(H priv, s)⊕ s
3 key ← Hash(e)
4 if Check(key, g) then
5 Return m ← Sdec(key ,d)
6 else
7 Return ⊥
8 end

We performed our side-channel attack against the use of the secret parity
check matrix H priv during Step 2 in Algorithm 2. This gave us enough infor-
mation after just a few decryptions to complete the cryptanalytic attack. This
is in contrast to the attack of Guo et al., who obtained information about the
key during the low-probability failures of Algorithm 3. We describe our attack
in the next two sections.

3 Differential Power Analysis Attack Against QcBits

In this section, we describe how we used DPA to recover some partial information
about the secret matrix H 0. Our attack targets the syndrome calculation at the
start of the bit-flipping algorithm, and recovers partial information about H 0.

8

3.1 General leakage model

We analyzed the C code of QcBits and identified the syndrome computation
of the bit-flipping decoding (Step 2 in Algorithm 2) as a candidate for a DPA
attack:

H priv ·
(
cT

0

)
= (H 0,H 1) ·

(
cT

0

)
= H 0 · cT (11)

where c ∈ Fr2 is the first part of the ciphertext. We will focus our attention on
this computation.

Let {x0, ..., x(w2 −1)} denote the unknown indices of the nonzero elements of
h0, the first row of H 0. Because H 0 is a circulant, it is uniquely defined by the
xi, and is represented in QcBits as a list of these indices. Due to its structure,
the matrix H 0 can be decomposed as a sum of w

2 rotation matrices

H 0 = Rx0
+ ...+ Rx(w

2
−1)
. (12)

Multiplying cT by Rxi , 0 ≤ i ≤ w
2 − 1, results in a left circular shift of c by xi

positions:
Rxi · cT = rxi(c). (13)

Hence the multiplication in Eq. 11 can be accomplished by computing the
rotated ciphertexts rxi(c), 0 ≤ i ≤ w

2 − 1, and XORing them all together:

H 0 · cT =

w
2 −1⊕
i=0

rxi(c). (14)

In fact, this is how the multiplication is performed in the QcBits implementation.
In a loop, each rotated vector rxi(c) is stored into a temporary memory location
as it is calculated, and then XORed with the partial XOR sum from the previous
loop iteration:

Si = Si−1 ⊕ rxi(c) =

i−1⊕
j=0

rxj (c)⊕ rxi(c). (15)

Our side-channel analysis model assumes that the power consumption of the
device depends on whether the leftmost bit (bit position 0) of each rotated vector
rxi(c) is either 0 or 1 when it is stored to memory. Note that bit xi of c is rotated
into bit position 0 by rxi and into bit position 1 by rxi−1. We therefore expect
the device to leak for multiple guesses near the correct value, with the number
of guesses exhibiting leaks related to the native word size of the device.

3.2 The experiment setup

We used the reference C version of QcBits1 with 80 and 128 bits of security. We
ported the code to run on ChipWhisperer evaluation platform designed by Colin

1 Available at http://www.win.tue.nl/~tchou/qcbits/.

9

http://www.win.tue.nl/~tchou/qcbits/.

O’Flynn [30]. The ChipWhisperer is a board composed of a programmable chip
(Atmel AVR XMEGA128) and an on-board power-measurement circuit that
can be connected to a PC via USB interface. An open-source python software is
available that can be used to communicate with the chip, for example, to send
encryption or decryption commands to the AVR. In order to measure the power
consumption, the board features an analog to digital converter (OpenADC) that
allows synchronous clocking to the AVR’s clock. The clock frequency is fixed at
7.37 MHz. The signal is amplified with up to 55 dB gain and the power traces
were sampled at a 96 MS/s rate.

We then generated a set of N known, random values {c0, ..., cN−1} ∈ Fr2.
These were padded with zeros and passed to the bit-flipping Algorithm 2. Since
they were randomly generated, the zero-padded values were almost certainly
not codewords corrupted by at most t errors. As we were attacking the syn-
drome calculation at the beginning of the bit-flipping algorithm, however, we
were not concerned with whether these values could be decoded properly. If
properly formed ciphertext was required by the implementation, it could have
been computed using the public-key information.

Samples [#105]

0 50 100 150 200 250 300 350 400 450 500

Po
w

er
 c

on
su

m
pt

io
n

-0.1

0

0.1

0.2

Storage

Fig. 1. Power trace of the first rotated ciphertext computation.

Figure 1 shows a typical power trace during the computation of one cipher-
text rotation rxi(c) in QcBits. After the computation, the result is stored into
memory, which can be seen in the power trace at the very end of the rotation
operation. Figure 2 zooms into the store operation where the first 64-bits of the
rotated value are written to memory. Because the XMEGA is an 8-bit archi-
tecture, we can observe eight different power patterns which are related to the
storing of each 8-bit value from internal registers into internal RAM. We col-
lected 13, 000 traces of that operation for each key index, which was sufficient
for our analyses. To characterize the leakage behavior of the device, we analyzed
25 different key indices, varying both the secret value and the loop iteration in
which it gets XORed into the partial sum in Equation 15.

10

Samples [+ 530#105]

0 20 40 60 80 100 120 140 160 180

Po
w

er
 c

on
su

m
pt

io
n

-10

-5

0

5

Fig. 2. Storing of the first 64 bits of the result of the rotation.

We attacked the unknown values {x0, . . . , x(w2 −1)} sequentially using stan-
dard DPA. We first made guesses for all possible values for the unknown x0.
Given the size of the secret matrix H 0 this is clearly an exhaustible parameter.
For each of those guesses, we sorted the traces Tj into two partitions based on
whether the leftmost bit of the each rotated vector {rx0(c0), ..., rx0(cN−1)} was
a zero or a one. We averaged the traces in the two partitions separately and
computed the difference of the averages. Large spikes in the difference trace in-
dicated a leak of information. As will be discussed in the next section, multiple
guesses for each xi exhibited significant leaks. This is due to how the algorithm
was implemented, and how the hardware on the evaluation board leaked. We
discuss how we resolved this ambiguity in Section 4. The DPA process is then
repeated for each of the unknowns xi.

3.3 DPA results

Indices x
0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
if

fe
re

nc
e

of
 M

ea
ns

0

0.2

0.4

0.6

0.8

Fig. 3. Maximum Difference of Means (DoM) using 500 traces over all possible
values xi. Significant difference is observed for around the correct index 2000.

Figure 3 shows the result of the DPA targeting for all possible values xi using
500 power traces on the 80-bit version. The device clearly shows a significant
leakage around the correct index (value 2, 000 in this experiment). However, it
also shows that there are other indices leaking, for example, the indices 1,985
up to 2,000 show similar Difference of Mean (DoM) values. We performed DPA
attacks targeting other unknown indices of h0 and identified a particular leakage
model. For a given secret index xi, the device always leaks for 16 consecutive
guesses starting at index

yi = b (xi − 1) mod r

64
c · 64 + 1, (16)

11

0 20 40 60 80 100 120 140 160 180

D
if

fe
re

nc
e

of
 M

ea
ns

-0.8

-0.6

-0.4

-0.2

0

0.2

Samples [+ 530#105]

0 20 40 60 80 100 120 140 160 180

D
if

fe
re

nc
e

of
 M

ea
ns

-0.8

-0.6

-0.4

-0.2

0

0.2

Fig. 4. Upper plot shows the DPA result using indices from 1,985 to 1,992 (drawn in
black), the lower plot shows the result using indices from 1,993 to 2,000 (drawn in
black). Other indices are drawn in gray.

which is b 2000−164 c · 64 + 1 = 1985 in our example.

This gives us 64 different possible values for xi. Complicating matters is
that there isn’t always a DPA peak for the correct secret index because the
device leaks only for 16 consecutive guesses. For example, if xi = 2030, then
yi = b 2030−164 c · 64 + 1 = 1985 and the device will show leaks only for the 16 con-
secutive guesses from (1,985 to 2,000). Fortunately, more information is available
if we look at the times at which the leaks occur.

We observed that the leak corresponding to yi can appear in one of 8 different
time locations corresponding to the 8-bit AVR memory-store operations. These
8 positions can be seen in Figure 4. The upper plot shows the DPA results for
the indices 1,985 to 1,992 (drawn in black) and other index values from 0 to
1,984 (drawn in gray). The lower plot shows the results for the indices 1,993 to
2,000, and other index values from 2,001 to 4,800. The leakage occurs during
two 8-bit AVR memory-store operations near sample points 146 and 172. We
discovered that the time location at which the leak for guess yi occurs gives us
more information about the correct value xi.

Let qi ∈ {0, ..., 7} denote the location at which the leak corresponding to
guess yi occurs. It turns out that qi is related to xi by Equation 17:

qi = 7− b (xi − 1) mod 64

8
c ∈ {0, ..., 7}. (17)

12

In our example, qi = 7−b 2000−1 mod 64
8 c = 6th position. In Figure 4, we see that

the leak corresponding to yi = 1985, in the upper plot, is in the 6th location.

Hence, using power analysis we were able to recover a pair of values (yi, qi)
which narrows down the choice of xi to one of 8 possible values. Given (yi, qi),
there are only 8 possible values for xi which satisfy both Eqn. 16 and Eqn. 17:

xi ∈ Zi = [yi + (7− qi)× 8, yi + (7− qi)× 8 + 7]. (18)

In our example we measured (yi, qi) = (1985, 6), and therefore deduce that
Zi = [1993, 2000].

3.4 About the index search intervals Zi

We denote by α the length of index search intervals Zi. In a sense, α repre-
sents the precision of the DPA analysis. Our attack gave us search intervals of
length α = 8, which actually equals to the word width of the underlying AVR
architecture. We assume that on other devices, with different architectures and
word lengths, our attack could yield search intervals with different lengths. For
example, on a 64-bit device, the search interval could have length α = 64. We
will see in Section 4 that the algebraic part of the attack is not feasible for such
a large value of α. In this case, we recommend looking for ways to improve the
precision of the power analysis step to reduce the size of the search intervals,
or using a stronger method than we did for solving the noisy system of equations.

It may be the case that different secret indices lie in the same interval Zi. We
denote by β the total number of unique search intervals Zi. Note that β satisfies
β ≤ w

2 . In our experiments, we needed around 100− 200 traces to identify all β
intervals of size α = 8 containing the nonzero elements of h0. Figure 5 illustrates
the intervals recovered.

h0 ?0

-�
α

Interval Z 0 Interval Z 1 ... Interval Z β−1

Fig. 5. Partial knowledge of h0 after the DPA attack.

4 Recovering the rest of the key

In this section we describe how we used the partial information discovered by
our DPA attack to recover the rest of the key. A brute force attack could take
up to α

w
2 calculations, which would be infeasible. However, the sparseness of the

13

private key enables a much more efficient attack.

We simply choose a large number of private key bit positions at random, and
hope that all the bits in those positions are 0. Since over 99% of the private key
bits are 0, our guess will be correct with non-negligible probability. Combined
with the information recovered in the DPA attack, this will give us enough linear
equations to solve for the private key. A more sophisticated attack might work
with less information recovered, but our attack is sufficient for α up to 32.

4.1 Cryptanalytic attack using partial information of secret key

Recall that the public key is P = (H−11 ·H 0)T . Setting Q = P−1 we rearrange
and write

Q ·H T
0 = H T

1 . (19)

The matrices H 0 and H 1 are sparse circulants defined by their first rows h0

and h1 respectively. We can therefore write 19 as the system of linear equations

Q · hT0 = hT1 (20)

where Q is dense and known, h0 is sparse and partially known as shown in
Figure 5, and h1 is sparse and unknown.

We now use the information we recovered about h0 to help us completely
solve the system of equations in 20. First, we know the β intervals {Z 0, ...,Z β−1}
of length α which contain all the nonzero entries of h0. All the entries of h0

outside these intervals are known to be zero. We can therefore remove from our
system of equations the zero-valued entries of h0, and the corresponding columns
of Q . This leaves us with a new system of equations

Q ′ · h ′ T0 = hT1 (21)

where h ′0 = (Z 0, ...,Z β−1) is the vector of length αβ obtained by concatenating
the variables in the intervals containing the nonzero entries of h0, and Q ′ is the
r × αβ matrix obtained by removing from Q the columns corresponding to the
zero-valued entries of h0. This step is illustrated in Figure 6 below. We use the
color gray to represent the removed variables.

=

hT
0

Zβ−1

Z1

Z0

Z2

hT
1Q

→

h ′ T
0

hT
1Q ′

Z0

Z1
.
.
.

Zβ−1
=

Fig. 6. Removing the columns of Q

14

The DPA attack allows us to know if two or more secret indices lie in the same
interval Zi. We therefore know the number of nonzero values of each interval of
h0 and use this information to add parity equations to the system. Let bi denote
the number of nonzero values of the interval Z i modulo 2. Then

bi = (1, 1, ..., 1) · Z T
i . (22)

There will be exactly β such equations. Let b = (b0, ..., bβ−1) and W be the
β × αβ matrix which for row i, 0 ≤ i < β, has ones in positions j for i ·
α ≤ j < (i + 1) · α and zeros elsewhere. We can then extend our system of
equations to include the parity equations by appending W to the bottom of Q ′

and appending b to h1. The new extended (r + β)× αβ system of equations is
shown in Figure 7 below.

h ′ T
0

hT
1Q ′

Z0

Z1
.
.
.

Zβ−1
= →

=

bT
h ′ T

0

hT
1Q ′

W

Z0

Z1
.
.
.

Zβ−1

Fig. 7. Adding the parity equations

We don’t know the vector h1. However, it is generated to be an extremely
sparse vector and the entries are zero with probability 1 − w

2r > 0.99. Suppose
we create a square αβ ×αβ system of equations by randomly selecting β(α− 1)
entries from h1, and keeping the corresponding rows of Q ′. We also retain all
the parity information W and b. Then the probability p that all the randomly
selected entries from h1 are zero is

p =
number of h1 for which guess is right

total possible number of h1
(23)

=

(
r−β(α−1)

w
2

)(
r
w
2

) =
(r − β(α− 1))!(r − w

2)!

r!(r − β(α− 1)− w
2)!

(24)

The expected number of attempts before finding a subvector of h1 with all zeros
entries is 1

p . Table 2 gives an estimation of this, using the parameters proposed
for QcBits and assuming the worst case of β = w

2 .

Table 2. Approximate number of attempts in the worst case

α = 8 16 32 64

80-bit 22 950 223 258

128-bit 40 3500 226 264

15

The last step in the attack proceeds as follows. We randomly select β(α− 1)
entries of h1, and guess that they are all zero. We also extract the corresponding
rows of Q ′ and denote the resulting matrix Q ′′. We retain all the parity infor-
mation W and b as well, giving us a square αβ × αβ system of equations. This
process is shown in Figure 8 below. Here the color gray represents the rows that
we keep.

=

bT
h ′ T

0

hT
1Q ′

W

Z0

Z1
.
.
.

Zβ−1
→ =

with prob.
p bT

h ′ T
0

0Q ′′

W

Z0

Z1
.
.
.

Zβ−1

Fig. 8. Selecting random positions in h1 and corresponding rows of Q ′

Finally, we solve the system of equations(
Q ′′

W

)
· h ′ T0 =

(
0

bT

)
(25)

If all the selected entries of h1 are actually zero, then the correct value of h ′0 is
among the solutions. We then look for a solution vector h ′ T0 with weight exactly
w
2 , and we also check that Q · hT0 has weight exactly w

2 . If this is the case, we
have found h0, and h1 can be computed directly from it. If this is not the case,
the selected entries of h1 are not all zero and a suitable solution will not be
found. We then keep repeating the final step with different random subvectors
of h1 until a solution is found.

4.2 Attack Complexity

To compute the attack’s complexity, we include the cost of repeatedly solving
αβ × αβ systems of binary linear equations. For our estimates, we assume the
worst case, in which β = wα

2 . As for solving the system, Vassilevska Williams

has an algorithm which can solve such a system with complexity (wα2)
2.373

[45].
Hence the average total complexity of the algebraic part of our attack is

1

p
· (wα

2
)
2.373

(26)

In our experiments, the DPA attack gave us α = 8. Hence, the total average
complexity of our key recovery attack is 224 for the 80-bit security version, and
227 for the 128-bit security version.

16

4.3 Experimental results

We verified the algebraic part of our attack using SAGE on one core of a 2.9 GHz
Core i5 MacBook Pro. We tested the attack for α ∈ {8, 16, 32}. For α ∈ {8, 16}
we had a 100% success rate with a bounded number of iterations. We success-
fully recovered the secret key in each test, with at most 10, 000 iterations. For
α = 32 with 80 bits of security, the expected time in the worst case of β = w

2 is
around 16 hours. For α = 32 with 128 bits of security, and α = 64, we estimated
the expected times based on our experiments with the other α values.

The results are shown in Table 3, and the times shown exclude the prepara-
tion step of computing the initial matrix Q ′. Since the main loop of the attack
is based on guessing subsets of the equations until a guess is correct, it is com-
pletely parallelizable. Thus the results should scale inversely with the number of
cores used to perform the attack.

Table 3. Approximate solving times in SAGE on one core

α = 8 16 32 64

80bits 0.4 sec 15 sec 16 hours ≈ 530 years

128bits 2 sec 4 min ≈ 7 days ≈ 790,000 years

5 Attack Countermeasure

We propose a simple masking technique to help defend against side channel
attacks during the syndrome calculation in QcBits. Since QC-MDPC codes are
linear, the XOR of two codewords is another codeword. Also, all codewords are
in the nullspace of the parity check matrix H priv. We can therefore mask the
corrupted codeword (c|0) by XORing it with a random codeword cm before
passing it to the syndrome calculation. This does not change the outcome of the
syndrome calculation since

H priv · ((c|0)⊕ cm)T = H priv · (c|0)T ⊕H priv · cTm = H priv · (c|0)T . (27)

It does effectively mask the DPA leak we exploited, however. Figure 9 shows
the difference of means for all possible guesses for xi with this countermeasure
implemented. In contrast to Figure 3, there is no significant spike for any of the
guesses.

17

Indices x
0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
if

fe
re

nc
e

of
 M

ea
ns

0

0.2

0.4

0.6

0.8

Fig. 9. Maximum Difference of Means (DoM) using 500 traces over all possible
values xi when the countermeasure is enabled. The right key index is 2000.

This countermeasure is of course only effective during the syndrome calcula-
tion. Additional side-channel countermeasures would be required to protect the
private key during other calculations such as the bit flipping algorithm.

6 Conclusions

In this paper we described a key recovery attack against QcBits. We first per-
formed power analysis to recover partial information about the key. We then
used that information to set up and solve a system of noisy binary linear equa-
tions. Solving that system recovered the entire key. Finally, we proposed a simple
countermeasure which was effective against the power analysis we performed in
the attack.

QcBits has sparse, highly structured private keys. The sparseness is required
for the decoding algorithm to work. The quasi-circulant nature of the keys is
essential for small key sizes and efficient calculations. We exploited both these
features in our attack. Another characteristic of QcBits and other code-based
algorithms is that the Hamming weight of the noise added to codewords during
encryption must be modest enough that the corrupted word can be decoded.

Many proposals for post-quantum cryptography are based on noisy linear
systems: lattices, learning with errors or error-correcting codes. In terms of
side-channel resilience, these systems have an important difference from systems
based on number-theoretic problems. Leaking a few bits of a number-theoretic
system may open up a new avenue of attack, but it usually doesn’t directly con-
tribute to solving the underlying hard problem. For noisy linear systems, leaking
a few bits of the secret is likely to directly erode the difficulty of the underlying
hard problem. Therefore designers and analysts may wish to consider the risks of
side-channel analysis when evaluating post-quantum cryptographic algorithms.

18

Bibliography

[1] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos, Johannes Buchmann,
Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron, Andreas Hüls-
ing, Tanja Lange, Mohamed Saied Emam Mohamed, Christian Rechberger, Peter
Schwabe, Nicolas Sendrier, Frederik Vercauteren, and Bo-Yin Yang. Initial rec-
ommendations of long-term secure post-quantum systems. http://pqcrypto.eu.
org/docs/initial-recommendations.pdf, 2015. 2, 3

[2] Sonia Beläıd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benôıt Gérard, Jean-
Gabriel Kammerer, and Emmanuel Prouff. Improved side-channel analysis of
finite-field multiplication. In Tim Güneysu and Helena Handschuh, editors,
CHES 2015, volume 9293 of LNCS, pages 395–415. Springer, Heidelberg, Septem-
ber 2015. 4

[3] Sonia Beläıd, Pierre-Alain Fouque, and Benôıt Gérard. Side-channel analysis of
multiplications in GF (2128) - Application to AES-GCM. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
306–325. Springer, Heidelberg, December 2014. 4

[4] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Heidelberg,
August 1998. 3

[5] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. van Tilborg. On the inher-
ent intractability of certain coding problems. IEEE Transactions on Information
Theory, 24(3):384–386, May 1978. 6

[6] Daniel J. Bernstein. The Poly1305-AES Message Authentication Code. In Henri
Gilbert and Helena Handschuh, editors, Fast Software Encryption: 12th Interna-
tional Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected
Papers, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer,
2005. 7

[7] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-
quantum cryptography. First international workshop PQCrypto 2006, Leuven, The
Netherland, May 23–26, 2006. Selected papers. Berlin: Springer, 2009. 2

[8] Daniel J. Bernstein and Peter Schwabe. New AES software speed records. In
Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress
in Cryptology - INDOCRYPT 2008, 9th International Conference on Cryptology
in India, Kharagpur, India, December 14-17, 2008. Proceedings, volume 5365 of
Lecture Notes in Computer Science, pages 322–336. Springer, 2008. 7

[9] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In F. Frances Yao and Eugene M. Luks,
editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, May 21-23, 2000, Portland, OR, USA, pages 435–440. ACM, 2000. 4

[10] Julia Chaulet and Nicolas Sendrier. Worst case QC-MDPC decoder for McEliece
cryptosystem. In IEEE International Symposium on Information Theory, ISIT
2016, Barcelona, Spain, July 10-15, 2016, pages 1366–1370. IEEE, 2016. 3

[11] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt. Dif-
ferential power analysis of a McEliece cryptosystem. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS
15, volume 9092 of LNCS, pages 538–556. Springer, Heidelberg, June 2015. 3

[12] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on post-quantum cryptography. National Institute

19

http://pqcrypto. eu.org/docs/initial-recommendations.pdf
http://pqcrypto. eu.org/docs/initial-recommendations.pdf

of Standards and Technology (NIST), NISTIR 8105 Draft, U.S. Department of
Commerce, February 2016. 1, 2

[13] Tung Chou. QcBits: Constant-time small-key code-based cryptography. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 280–300. Springer, Heidelberg, August 2016. 2, 3, 4, 7

[14] Alain Couvreur, Irene Marquez Corbella, and Ruud Pellikaan. A polynomial time
attack against algebraic geometry code based public key cryptosystems. In 2014
IEEE International Symposium on Information Theory, Honolulu, HI, USA, June
29 - July 4, 2014, pages 1446–1450. IEEE, 2014. 2

[15] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Information
Theory, 8(1):21–28, 1962. 6

[16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on
MDPC with CCA security using decoding errors. Cryptology ePrint Archive,
Report 2016/858, 2016. http://eprint.iacr.org/2016/858. 3, 4

[17] Stefan Heyse, Amir Moradi, and Christof Paar. Practical power analysis attacks on
software implementations of McEliece. In Nicolas Sendrier, editor, Post-Quantum
Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Ger-
many, May 25-28, 2010. Proceedings, volume 6061 of Lecture Notes in Computer
Science, pages 108–125. Springer, 2010. 3

[18] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. Smaller keys for code-based
cryptography: QC-MDPC McEliece implementations on embedded devices. In
Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of
LNCS, pages 273–292. Springer, Heidelberg, August 2013. 2

[19] Heeralal Janwa and Oscar Moreno. McEliece public key cryptosystems using
algebraic-geometric codes. Des. Codes Cryptography, 8(3):293–307, 1996. 2

[20] Kazukuni Kobara and Hideki Imai. Semantically secure McEliece public-key
cryptosystems-conversions for McEliece PKC. In Kwangjo Kim, editor, Public
Key Cryptography, 4th International Workshop on Practice and Theory in Pub-
lic Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001,
Proceedings, volume 1992 of Lecture Notes in Computer Science, pages 19–35.
Springer, 2001. 3

[21] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999. 3

[22] Grégory Landais and Jean-Pierre Tillich. An efficient attack of a McEliece cryp-
tosystem variant based on convolutional codes. Cryptology ePrint Archive, Report
2013/080, 2013. http://eprint.iacr.org/2013/080. 2

[23] Carl Löndahl and Thomas Johansson. A new version of McEliece PKC based on
convolutional codes. In Tat Wing Chim and Tsz Hon Yuen, editors, ICICS 12,
volume 7618 of LNCS, pages 461–470. Springer, Heidelberg, October 2012. 2

[24] Robert J. McEliece. A public-key system based on algebraic coding theory. DSN
Progress Report 44, page 114—116, 1978. 2

[25] Lorenz Minder and Amin Shokrollahi. Cryptanalysis of the Sidelnikov cryptosys-
tem. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
347–360. Springer, Heidelberg, May 2007. 2

[26] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check
codes. In Proceedings of the 2013 IEEE International Symposium on Information
Theory, Istanbul, Turkey, July 7-12, 2013, pages 2069–2073. IEEE, 2013. 2, 3, 6

20

http://eprint.iacr.org/2016/858
http://eprint.iacr.org/2013/080

[27] Chris Monico, Joachim Rosenthal, and Amin Shokrollahi. Using low density parity
check codes in the McEliece cryptosystem. In In IEEE International Symposium
on Information Theory (ISIT 2000, page 215, 2000. 2

[28] Michele Mosca. Cybersecurity in an era with quantum computers: Will we be
ready? Cryptology ePrint Archive, Report 2015/1075, 2015. http://eprint.

iacr.org/2015/1075. 1
[29] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.

In Problems of Control and Information Theory 15, pages 159–166, 1986. 2, 7
[30] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source plat-

form for hardware embedded security research. In Emmanuel Prouff, editor, Con-
structive Side-Channel Analysis and Secure Design - 5th International Workshop,
COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers, volume
8622 of Lecture Notes in Computer Science, pages 243–260. Springer, 2014. 10

[31] Michaël Peeters, Gilles Van Assche, Guido Bertoni, and Joan Daemen. Keccak
and the SHA-3 standardization. http://csrc.nist.gov/groups/ST/hash/sha-3/
documents/Keccak-slides-at-NIST.pdf, 2013. 7

[32] Edoardo Persichetti. Secure and anonymous hybrid encryption from coding the-
ory. In Philippe Gaborit, editor, Post-Quantum Cryptography - 5th International
Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, volume
7932 of Lecture Notes in Computer Science, pages 174–187. Springer, 2013. 3

[33] Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel, and
Viktor Fischer. Differential Power Analysis Attack on the Secure Bit Permuta-
tion in the McEliece Cryptosystem. In Conference Radioelektronika 2016, Kosice,
Slovakia, April 2016. 3

[34] Bruce Schneier. NSA plans for a post-quantum world. https://www.schneier.

com/blog/archives/2015/08/nsa_plans_for_a.html, 2015. 2
[35] Nicolas Sendrier. On the concatenated structure of a linear code. Appl. Algebra

Eng. Commun. Comput., 9(3):221–242, 1998. 2
[36] Yannick Seurin. Primitives et protocoles cryptographiques à sécurité prouvée, sec-

tion 3.5.7. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, 2009.
4

[37] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press, November
1994. 1

[38] Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöttinger. A
timing attack against Patterson algorithm in the McEliece PKC. In Donghoon
Lee and Seokhie Hong, editors, Information, Security and Cryptology - ICISC
2009, 12th International Conference, Seoul, Korea, December 2-4, 2009, Revised
Selected Papers, volume 5984 of Lecture Notes in Computer Science, pages 161–
175. Springer, 2009. 3

[39] V. M. Sidelnikov. A public-key cryptosystem based on binary Reed-Muller codes.
Discrete Mathematics and Applications, 4(3), 1994. 2

[40] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based
on generalized Reed-Solomon codes. Discrete Mathematics and Applications
2(4):439-444, 1992. 2

[41] Falko Strenzke. A timing attack against the secret permutation in the McEliece
PKC. In Nicolas Sendrier, editor, Post-Quantum Cryptography, Third Inter-
national Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010.
Proceedings, volume 6061 of Lecture Notes in Computer Science, pages 95–107.
Springer, 2010. 3

21

http://eprint.iacr.org/2015/1075
http://eprint.iacr.org/2015/1075
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html

[42] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdulhadi
Shoufan. Side channels in the McEliece PKC. In Johannes Buchmann and Jin-
tai Ding, editors, Post-Quantum Cryptography: Second International Workshop,
PQCrypto 2008 Cincinnati, OH, USA, October 17-19, 2008 Proceedings, pages
216–229. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. 3

[43] Ingo von Maurich and Tim Güneysu. Lightweight code-based cryptography: QC-
MDPC McEliece encryption on reconfigurable devices. In Gerhard Fettweis and
Wolfgang Nebel, editors, Design, Automation & Test in Europe Conference &
Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014, pages 1–6. Eu-
ropean Design and Automation Association, 2014. 2

[44] Ingo von Maurich, Lukas Heberle, and Tim Güneysu. IND-CCA secure hybrid en-
cryption from QC-MDPC Niederreiter. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2016. 3

[45] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-
Winograd. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 887–898. ACM, 2012. 16

22

	A Side-Channel Assisted Cryptanalytic Attack Against QcBits

