39,326 research outputs found

    An Algebra of Synchronous Scheduling Interfaces

    Full text link
    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.Comment: In Proceedings FIT 2010, arXiv:1101.426

    Hidden-Markov Program Algebra with iteration

    Full text link
    We use Hidden Markov Models to motivate a quantitative compositional semantics for noninterference-based security with iteration, including a refinement- or "implements" relation that compares two programs with respect to their information leakage; and we propose a program algebra for source-level reasoning about such programs, in particular as a means of establishing that an "implementation" program leaks no more than its "specification" program. This joins two themes: we extend our earlier work, having iteration but only qualitative, by making it quantitative; and we extend our earlier quantitative work by including iteration. We advocate stepwise refinement and source-level program algebra, both as conceptual reasoning tools and as targets for automated assistance. A selection of algebraic laws is given to support this view in the case of quantitative noninterference; and it is demonstrated on a simple iterated password-guessing attack

    Interface groups and financial transfer architectures

    Full text link
    Analytic execution architectures have been proposed by the same authors as a means to conceptualize the cooperation between heterogeneous collectives of components such as programs, threads, states and services. Interface groups have been proposed as a means to formalize interface information concerning analytic execution architectures. These concepts are adapted to organization architectures with a focus on financial transfers. Interface groups (and monoids) now provide a technique to combine interface elements into interfaces with the flexibility to distinguish between directions of flow dependent on entity naming. The main principle exploiting interface groups is that when composing a closed system of a collection of interacting components, the sum of their interfaces must vanish in the interface group modulo reflection. This certainly matters for financial transfer interfaces. As an example of this, we specify an interface group and within it some specific interfaces concerning the financial transfer architecture for a part of our local academic organization. Financial transfer interface groups arise as a special case of more general service architecture interfaces.Comment: 22 page

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Patch-based Hybrid Modelling of Spatially Distributed Systems by Using Stochastic HYPE - ZebraNet as an Example

    Full text link
    Individual-based hybrid modelling of spatially distributed systems is usually expensive. Here, we consider a hybrid system in which mobile agents spread over the space and interact with each other when in close proximity. An individual-based model for this system needs to capture the spatial attributes of every agent and monitor the interaction between each pair of them. As a result, the cost of simulating this model grows exponentially as the number of agents increases. For this reason, a patch-based model with more abstraction but better scalability is advantageous. In a patch-based model, instead of representing each agent separately, we model the agents in a patch as an aggregation. This property significantly enhances the scalability of the model. In this paper, we convert an individual-based model for a spatially distributed network system for wild-life monitoring, ZebraNet, to a patch-based stochastic HYPE model with accurate performance evaluation. We show the ease and expressiveness of stochastic HYPE for patch-based modelling of hybrid systems. Moreover, a mean-field analytical model is proposed as the fluid flow approximation of the stochastic HYPE model, which can be used to investigate the average behaviour of the modelled system over an infinite number of simulation runs of the stochastic HYPE model.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    High-Level Methods for Quantum Computation and Information

    Full text link
    A research programme is set out for developing the use of high-level methods for quantum computation and information, based on the categorical formulation of quantum mechanics introduced by the author and Bob Coecke.Comment: 5 page

    Compositional closure for Bayes Risk in probabilistic noninterference

    Full text link
    We give a sequential model for noninterference security including probability (but not demonic choice), thus supporting reasoning about the likelihood that high-security values might be revealed by observations of low-security activity. Our novel methodological contribution is the definition of a refinement order and its use to compare security measures between specifications and (their supposed) implementations. This contrasts with the more common practice of evaluating the security of individual programs in isolation. The appropriateness of our model and order is supported by our showing that our refinement order is the greatest compositional relation --the compositional closure-- with respect to our semantics and an "elementary" order based on Bayes Risk --- a security measure already in widespread use. We also relate refinement to other measures such as Shannon Entropy. By applying the approach to a non-trivial example, the anonymous-majority Three-Judges protocol, we demonstrate by example that correctness arguments can be simplified by the sort of layered developments --through levels of increasing detail-- that are allowed and encouraged by compositional semantics

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Graphical method for analyzing digital computer efficiency

    Get PDF
    Analysis method utilizes graph-theoretic approach for evaluating computation cost and makes logical distinction between linear graph of a computation and linear graph of a program. It applies equally well to other processes which depend on quatitative edge nomenclature and precedence relationships between edges
    corecore