15,789 research outputs found

    Solving Commutative Relaxations of Word Problems

    Get PDF
    We present an algebraic characterization of the standard commutative relaxation of the word problem in terms of a polynomial equality. We then consider a variant of the commutative word problem, referred to as the “Zero-to-All reachability” problem. We show that this problem is equivalent to a finite number of commutative word problems, and we use this insight to derive necessary conditions for Zero-to-All reachability. We conclude with a set of illustrative examples

    Termination of Linear Programs with Nonlinear Constraints

    Get PDF
    Tiwari proved that termination of linear programs (loops with linear loop conditions and updates) over the reals is decidable through Jordan forms and eigenvectors computation. Braverman proved that it is also decidable over the integers. In this paper, we consider the termination of loops with polynomial loop conditions and linear updates over the reals and integers. First, we prove that the termination of such loops over the integers is undecidable. Second, with an assumption, we provide an complete algorithm to decide the termination of a class of such programs over the reals. Our method is similar to that of Tiwari in spirit but uses different techniques. Finally, we conjecture that the termination of linear programs with polynomial loop conditions over the reals is undecidable in general by %constructing a loop and reducing the problem to another decision problem related to number theory and ergodic theory, which we guess undecidable.Comment: 17pages, 0 figure

    On Termination of Integer Linear Loops

    Full text link
    A fundamental problem in program verification concerns the termination of simple linear loops of the form x := u ; while Bx >= b do {x := Ax + a} where x is a vector of variables, u, a, and c are integer vectors, and A and B are integer matrices. Assuming the matrix A is diagonalisable, we give a decision procedure for the problem of whether, for all initial integer vectors u, such a loop terminates. The correctness of our algorithm relies on sophisticated tools from algebraic and analytic number theory, Diophantine geometry, and real algebraic geometry. To the best of our knowledge, this is the first substantial advance on a 10-year-old open problem of Tiwari (2004) and Braverman (2006).Comment: Accepted to SODA1

    Symmetry groups, semidefinite programs, and sums of squares

    Full text link
    We investigate the representation of symmetric polynomials as a sum of squares. Since this task is solved using semidefinite programming tools we explore the geometric, algebraic, and computational implications of the presence of discrete symmetries in semidefinite programs. It is shown that symmetry exploitation allows a significant reduction in both matrix size and number of decision variables. This result is applied to semidefinite programs arising from the computation of sum of squares decompositions for multivariate polynomials. The results, reinterpreted from an invariant-theoretic viewpoint, provide a novel representation of a class of nonnegative symmetric polynomials. The main theorem states that an invariant sum of squares polynomial is a sum of inner products of pairs of matrices, whose entries are invariant polynomials. In these pairs, one of the matrices is computed based on the real irreducible representations of the group, and the other is a sum of squares matrix. The reduction techniques enable the numerical solution of large-scale instances, otherwise computationally infeasible to solve.Comment: 38 pages, submitte
    corecore