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a b s t r a c t

Tiwari (2004) proved that the termination problem of a class
of linear programs (loops with linear loop conditions and
updates) over the reals is decidable through Jordan forms and
eigenvector computation. Braverman (2006) proved that it is also
decidable over the integers. Following their work, we consider the
termination problems of three more general classes of programs
which are loops with linear updates and three kinds of polynomial
loop conditions, i.e., strict constraints, non-strict constraints and
both strict and non-strict constraints, respectively. First, we prove
that the termination problems of such loops over the integers
are all undecidable. Then, for each class we provide an algorithm
to decide the termination of such programs over the reals. The
algorithms are complete for those programs satisfying a property,
Non-Zero Minimum.
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1. Introduction

Termination analysis is an important aspect of program verification. Guaranteed termination of
program loops is necessary for many applications, especially those for which unexpected behavior
can be catastrophic. For a generic loop

while (conditions) {updates},

it is well known that the termination problem is undecidable in general, even for a simple class
of polynomial programs (Bradley et al., 2005). Blondel et al. (2001) proved that, even when all the
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conditions and updates are given as piecewise linear functions, the termination of the loop remains
undecidable.
Tiwari (2004) proved that termination of the following program is decidable over R (the real

numbers)

LP0 : while (BX > b) {X := AX + C},

where X = [x1 . . . xN ]T is the vector of state variables of the program, A and B are respectively N × N
andM × N rational matrices, b and C are rational vectors, BX > b represents a conjunction of linear
inequalities over the state variables X and X := AX + C represents a (deterministic) simultaneous
update of all variables. His method is based on Jordan forms and eigenvector computation. However,
Xia et al. provided a symbolic method to determine the termination of LP0 in Xia et al. (2009).
Braverman (2006) proved that the termination of LP0 is decidable over Z (the integers).
In this paper, we consider the termination problem of the following loop:

L̃P1 : while (P(X) > b) {X := AX + C},

where P(X) = [P1(X) P2(X) . . . PM(X)]T > b are polynomial constraints, each Pi(X) (1 ≤ i ≤ M) is a
polynomial inQ[X] and A is an N ×N matrix overQ (the rational numbers). That is to say, we replace
the linear constraints in the loop condition of LP0with polynomial constraints and keep linear updates
unchanged. If b = 0 and C = 0, L̃P1 becomes

LP1 : while (P(X) > 0) {X := AX}.

The termination of L̃P1 can be reduced to the termination of some LP1 by replacing X with (XT , 1)T
and Awith A′ where

A′ =
(
A C
0 1

)
.

Without loss of generality, wewill consider the termination problems of LP1 and the following two
more classes of programs

LQ 1 : while (P(X) ≥ 0) {X := AX}
LR1 : while (P(X) > 0 ∧ R(X) ≥ 0) {X := AX},

where X, A and P are the same as in LP1 and R(X) is a set of polynomials in Q[X]. Throughout this
paper, we mainly discuss the termination of LP1.
There are somewell known techniques for deciding termination of some special kinds of programs.

Ranking functions are most often used for this purpose. A ranking function for a loop maps the
values of the loop variables to a well-founded domain; further, the values of the map decrease
on each iteration. A linear ranking function is a ranking function that is a linear combination of
the loop variables and constants. Recently, the synthesis of ranking functions draws increasing
attention, and some heuristics concerning how to automatically generate linear ranking functions
for linear programs have been proposed, for example, in Colon and Sipma (2001), Dams et al. (2000)
and Podelski and Rybalchenko (2004). Podelski and Rybalchenko (2004) provided an efficient and
complete synthesis method based on linear programming to construct linear ranking functions. Chen
et al. (2007) proposed a method to generate nonlinear ranking functions based on semi-algebraic
system solving. However, the existence of ranking function is only a sufficient condition on the
termination of a program. There are programs, which terminate, but do not have ranking functions.
Another popular technique, presented in Lee et al. (2001), is size-change principle, which is based on
parameter size changes and well-founded data. The well-founded data can ensure that there are no
infinitely descents, which guarantees termination of programs.
To solve the termination problem of LP1, we do not use the technique of ranking functions, size-

change principle or Jordan forms. Our method is similar to that of Tiwari in some sense, but use
different techniques. Our main contributions in this paper are as follows. First, we prove that the
termination problems of LP1, LQ1 and LR1 over Z are undecidable. Furthermore, if the entries of A
in LP1, LQ1 and LR1 are confined to integers, the termination problems of the resulted LP1, LQ1 and
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LR1 over Z are still undecidable. Second, we provide an algorithm to decide the termination of LP1
satisfying an additional property overR. Then, we extend this algorithm to determine the termination
of LQ1 and LR1 over R. Finally, we conjecture that the termination problems of LP1, LQ1 and LR1 over
R are undecidable in general.
The rest of the paper is organized as follows. Section 2 proves the undecidability of LP1, LQ1 and LR1

over Z. Section 3 presents our main algorithm and the proof for its correctness is given in Section 4.
The main algorithm is extended to determine the termination of LQ1 and LR1 over R in Section 5. The
details of some proofs and algorithms are presented in Section 6. We conclude the paper in Section 7.

2. Undecidability of LP1 over Z

Definition 1. A loop with N variables is called terminating over a ring R if for any input X ∈ RN , it
terminates; otherwise it is called nonterminating.

The undecidability of LP1 over Z is obtained by reduction of Hilbert’s 10th problem. Consider the
following loop:

LP2 : while (xN − f (x1, . . . , xN−1)2 > 0) {X := AX}

where X = [x1 . . . xN ]T, A = diag(1, . . . , 1, 1/2) is a diagonal matrix and f (x1, . . . , xN−1) is a
polynomial with integer coefficients.

Lemma 2. For any input (x1, . . . , xN) ∈ ZN LP2 terminates if and only if f (x1, . . . , xN−1) does not have
integer roots.

Proof. (⇒) If f has an integer root, say (y1, . . . , yN−1), obviously LP2 does not terminate with the
input Y = (y1, . . . , yN−1, 1).
(⇐) If f (x1, . . . , xN−1) has no integer roots, for any given X ∈ ZN , −f (x1, . . . , xN−1)2 is a fixed

negative number. Because (x1, . . . , xN−1) will never be changed and (1/2)n → 0 as n → +∞, the
loop will terminates after sufficiently large n iterations. �

Theorem 3. Termination of LP1 over Z is undecidable.

Proof. Because the existence of an integer root of an arbitrary Diophantine equation is undecidable,
the termination of LP1 over Z is undecidable according to Lemma 2. �

Let us denote by LQ2 the loop obtained by substituting ‘‘≥" for ‘‘>" in LP2. From the proof of
Lemma 2, it is easy to see that Lemma 2 still holds for LQ2. Then we get the following theorem.

Theorem 4. Termination of LQ1 over Z is undecidable.

In order to obtain the undecidability of LR1 over Z, let us consider the following loop.

LR2 : while (xN+1 − f (x1, . . . , xN−1)2 > 0 ∧ xN ≥ 0) {X := AX}

where f is the same as in LP2 and A = diag(1, . . . , 1, 1/2) is an (N + 1) × (N + 1) diagonal matrix.
According to the proof of Lemma 2, it still holds for LR2. Hence, we obtain the following theorem.

Theorem 5. Termination of LR1 over Z is undecidable.

In LP2, LQ2 and LR2, one of the entries of A is a rational number. A natural question is whether the
termination problems of LP1, LQ1 and LR1 overZ are still undecidable if all the entries of A are confined
to integers. Let us consider the following program.

LP3 : while (xN − x2N+1f (x1, . . . , xN−1)
2 > 0 ∧ x2N+1 − 1 > 0) {X := AX}

where X = [x1 . . . xN+1]T, A = diag(1, . . . , 1, 2) is a diagonal matrix and f (x1, . . . , xN−1) is a
polynomial with integer coefficients.

Lemma 6. For any input X ∈ ZN+1 LP3 terminates if and only if f (x1, . . . , xN−1) does not have integer
roots.
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Proof (⇒). If f has an integer root, say (y1, . . . , yN−1), obviously LP3 does not terminate with the
input Y = (y1, . . . , yN−1, 1, 2).
(⇐) If f (x1, . . . , xN−1) has no integer roots, for any given X ∈ ZN+1 satisfying the loop constraint of

LP3,−x2N+1f (x1, . . . , xN−1)
2will go to the negative infinity as LP3 is executed.However, the assignment

in LP3 does not change the value of xN . Finally, xN−x2N+1f (x1, . . . , xN+1)
2will become negative. Hence,

the loop will terminate after sufficiently large n iterations. �

Thus, we obtain the following theorem.

Theorem 7. If all the entries of A in LP1 are confined to integers, termination of LP1 over Z is still
undecidable.

Similarly, we can get the following theorem.

Theorem 8. If all the entries of A in LQ1 (LR1) are confined to integers, termination of LQ1 (LR1) over Z is
still undecidable.

3. Algorithm for termination of LP1 over R

To decide whether LP1 is terminating, it is equivalent to check whether there exists X such that
P(AnX) > 0 holds for all n ≥ 0. That means we should check the sign of each Pi(AnX) for all
i = 1, . . . ,N and for all n ≥ 0. To this end, we first compute AnX , the value of state variables X after
n iterations, and obtain a unified formula expressing each entry of AnX . Then we express the value of
Pi(AnX) using the formula. Finally, we may try to determine whether Pi(AnX) > 0 as n → +∞ by
guessing its dominant term and deciding the sign of this term. That is the main idea of our algorithm
which will be described formally in Section 3.4.

3.1. Formulae expressing each entry of AnX

Intuitively, by considering the Jordan form of A over C, each entry of AnX can be expressed
in x1, . . . , xN , n and the complex eigenvalues ξi’s of A. The following proposition gives an exact
description of each entry of AnX and its proof is presented in Section 6.

Proposition 9. Suppose A is a d× d square matrix with its entries inQ and the characteristic polynomial
of A is D(x) = xd + α1xd−1 + · · · + αd−uxu,where αd−u 6= 0 and u ≥ 0. Define F(X, n) = An+uX and let
Fj(X, n) be the jth component of F(X, n). Then for each j, Fj(X, n) can be expressed as

Fj(X, n) =
k∑
i=1

fji(X, n)ξ ni , (1)

where ξi’s are all the distinct non-zero complex eigenvalues of A and fji(X, n) is a polynomial in n of degree
less than the multiplicity of ξi.

Remark 10. According to Proposition 9, we may compute the unified formulae for An+uX in the form
of Eq. (1) as follows. First, compute all the complex eigenvalues of A and their multiplicities. Second,
suppose each Fj(X, n) of F(X, n) is in the form of Eq. (1)where the coefficients of fji are to be computed.
Third, compute F(X, 1), . . . , F(X, d), and obtain a set of linear equations by comparing the coefficients
of the result Fj(X, i) (1 ≤ i ≤ d) to those of Eq. (1). Finally, by solving those linear equations, we can
obtain Fj(X, n) and F(X, n).

Example 11. For clarity, let us consider a simple loop:

while (x21 + x1x2 > 0) {X := AX},

where

A =
[
1 − 25
2 1

5

]
.
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We shall show how to compute the unified formula for each entry of AnX by Proposition 9. The
characteristic polynomial of A is

D(λ) = λ2 −
6
5
λ+ 1.

The eigenvalues of A are

ξ1 =
3+ 4i
5

, ξ2 =
3− 4i
5

.

Set F(X, n) = AnX =
[
F1(X, n) F2(X, n)

]T . Because the multiplicities of ξ1 and ξ2 are all 1, by
Proposition 9 we get

F1(X, n) = (a11x1 + a12x2)ξ n1 + (b11x1 + b12x2)ξ
n
2 ,

F2(X, n) = (a21x1 + a22x2)ξ n1 + (b21x1 + b22x2)ξ
n
2 .

Let F(X, 1) and F(X, 2) be equal to AX and A2X , respectively, and by solving some linear equations
(see Remark 10) we obtain

F1(X, n) =
(
2− i
4
x1 +

i
4
x2

)
ξ n1 +

(
2+ i
4
x1 −

i
4
x2

)
ξ n2 ,

F2(X, n) =
(
−5i
4
x1 +

2+ i
4
x2

)
ξ n1 +

(
5i
4
x1 +

2− i
4
x2

)
ξ n2 .

3.2. Formulae expressing each resulted Pj(X) after n iterations

If we substitute the unified formulae of An+uX for X in P(X) and denote the resulted Pj(X) (1 ≤ j ≤
M) by Pj(X, n), then Pj(X, n) can be written as

Pj(X, n) = pj0(X, n)+ pj1(X, n)ηn1 + · · · + pjm(X, n)η
n
m, (2)

where ηk (1 ≤ k ≤ m) is the product of some ξj’s.
To determine whether LP1 terminates, we have to determine whether there exists X such that for

each j, Pj(X, n) > 0 holds for all n. To this end, it is sufficient to knowwhether there exists X such that
all the dominant terms (leading terms, to be defined later) of the Pj(X, n)’s are positive as n→+∞. In
the following,we shall give amore detailed description of Pj(X, n) so thatwe can obtain the expression
of its leading term.
Let ηk = rkeαk2π i, where i =

√
−1 and rk is the modulus of ηk. Without loss of generality, we

assume r1 < r2 < · · · < rm. Set η0 = r0 = 1 and rewrite Pj(X, n) as

Pj(X, n) = pj0(X, n)rn0 + · · · + pjm(X, n)e
nαm2π irnm. (3)

Suppose T is the common period2 of all eαq2π i’s contained in Pj(X, n) (1 ≤ j ≤ M) where αq is
rational. Obviously e(Tn+t)αq2π i = etαq2π i for all rational αq and 0 ≤ t ≤ T − 1. Hence

∃X∀n ∧Mj=1 Pj(X, n) > 0⇔ ∃X
T−1∧
t=0

(∀n ∧Mj=1 Pj(X, Tn+ t) > 0).

Thus, in what follows, we shall focus on checking whether there exists X such that
T−1∧
t=0

(∀n ∧Mj=1 Pj(X, Tn+ t) > 0).

2 An algorithm, ComputingCommonPeriod, for computing T is presented in Section 6.
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Definition 12. For each j (1 ≤ j ≤ MT ), if j = (s− 1)T + t (1 ≤ t ≤ T ), then define

Gj(X, n) , Ps(X, Tn+ t − 1).

Notation 1. For each j (1 ≤ j ≤ MT ), expand Gj(X, n), collect the result with respect to (w.r.t.) nlrnk ,
and let Cjkl(X, n) denote the coefficient of the term nlrnk .

Then Gj(X, n) can be written as

Cj00(X, n)rn0 + Cj01(X, n)nr
n
0 + · · · + Cj0d0(X, n)n

d0 rn0 + · · ·

+ Cjm0(X, n)rnm + Cjm1(X, n)nr
n
m + · · · + Cjmdm(X, n)n

dm rnm,

where dl (0 ≤ l ≤ m) is the greatest degree of n in Gj(X, n)w.r.t. rl.
It can be deduced that if ri < rj, nl1 rni /n

l2 rnj tends to zero for any l1 and l2 as n goes to infinity.
Similarly, if l1 < l2, nl1 rni /n

l2 rni tends to zero too as n goes to infinity. So, it is natural to define an
ordering over the terms nlrnj as follows.

Definition 13. We define nl1 rni l nl2 rnj if ri < rj or ri = rj and l1 < l2. A term Cjkln
lrnk in Gj(X, n) is

said to be the leading term and Cjkl the leading coefficient if nlrnk occurring in Gj(X, n) is the largest one
under that ordering l.

Suppose Gj(X, n) = Ps(X, Tn+ t) for some s and t . If αq is a rational number

e(Tn+t)αq2π i = etαq2π i,

and n is eliminated from the above expression. However, since there may be some e(Tn+t)αq2π i’s with
irrational αq’s, each Cjkl(X, n) can be divided into two parts,

Cjkl(X, n) = Cjkl1(X)+ Cjkl2(X, n),

where Cjkl1(X) does not depend on n and Cjkl2(X, n) contains those e(Tsn+t)αq2π i with irrational αq,3
where n cannot be eliminated. Further, Cjkl2(X, n) can be written as

C ′jkl2(X, sin((nT + t)αk12π), cos((nT + t)αk12π), . . . , sin((nT + t)αksk2π),
cos((nT + t)αksk2π)),

where {αk1, . . . , αksk} is a maximum rationally independent group.
4 For the sake of clarity, these two

notations will be used interchangeably in what follows.

Example 14. We continue to use the loop in Example 11 to illustrate the above concepts and
notations.
Because |ξ1| = |ξ2| = 1, let ξ1 = eα12π i and ξ2 = e−α12π i, where α12π is the argument of ξ1.

With an algorithm in Section 6 it can be checked that α1 is an irrational number,5 and there is no
eigenvalue of A whose argument is a rational multiple of π . Hence T is 1. For clarity, in the following
we firstly reduce the expressions of F1(X, n) and F2(X, n), and then substitute them in the loop guard.
After careful computation, it is obtained that

F1(X, n) = x1 cos(nα12π)+
x1 − x2
2

sin(nα12π),

F2(X, n) = x2 cos(nα12π)+
5x1 − x2
2

sin(nα12π).

3 In fact Cjkl1(X) and Cjkl2(X, n) are real for any n.
4 An algorithm, MaximumRationallyIndependentGroup, described in Section 6 aims at computing a maximum
rationally independent group, and the related further explanations will be made.
5 It is solved by an algorithm, FindingPeriod, presented in Section 6, which checks whether the argument of an algebraic
number is a rational multiple of π .
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Substituting F1(X, n) and F2(X, n) for x1 and x2 respectively in the loop guard, we get that the
resulted loop guard is

G1(X, n) = C100(X, n)1n = C1001(X)+ C1002(X, n),

where

C1001(X) =
5x21 + x

2
2 − 2x1x2
4

, C1002(X, n) = D1 cos(n2α12π)+ D2 sin(n2α12π),

D1 =
−x21 − x

2
2 + 6x1x2
4

, D2 =
7x21 − x

2
2 − 2x1x2
4

.

3.3. The Non-Zero Minimum (NZM) property

Let T = {(x, y) ∈ R2|x2 + y2 = 1}. Denote by

Y = (y11, y12, . . . , yD1, yD2) ∈ TD

if (yi1, yi2) ∈ T for 1 ≤ i ≤ D. In the following we shall write Y ∈ TD for short.

Notation 2. Denote by Cjkl(X, n) � 0 (and call Cjkl(X, n) ‘‘positive") if

min{Cjkl1(X)+ C ′jkl2(X, Y )} > 0 subject to Y ∈ Tsk ,

where yi1 and yi2 correspond to sin(nαki2π) and cos(nαki2π) respectively for 1 ≤ i ≤ sk in Cjkl2(X, n).
If� and> are replaced with� and≥ respectively in the above, we get the notation of Cjkl(X, n) � 0
(‘‘nonnegative").

Remark 15. According to the definition of Notation 2, Cjkl(X, n) � 0 iff

∀Y (Y ∈ Tsk ⇒ Cjkl1(X)+ C ′jkl2(X, Y ) > 0).

Since Tsk is a bounded closed set, there exists some c > 0 such that

∀Y (Y ∈ Tsk ⇒ Cjkl1(X)+ C ′jkl2(X, Y ) > c),

and then ∀n ≥ 0, Cjkl(X, n) > c . Similarly, Cjkl(X, n) � 0 iff

∀Y (Y ∈ Tsk ⇒ Cjkl1(X)+ C ′jkl2(X, Y ) ≥ 0).

Roughly speaking, for any Gj(X, n), if its leading coefficient Cjkl(X, n) � 0 (‘‘positive"), there exists
an integer N1 such that for all n > N1, Gj(X, n) > 0. If the leading coefficients of all the Gj(X, n)’s
are ‘‘positive", there exists N ′ such that for all n > N ′, all the Gj(X, n)’s are positive. Therefore, LP1 is
nonterminating with input X ′ := AN

′

X . On the other hand, if LP1 is nonterminating, does there exist
an input X such that the leading coefficients of all the Gj(X, n)’s are ‘‘positive"? We do not know the
answer yet. However, if LP1 satisfies the property below, the answer is yes.

Property Non-Zero Minimum (NZM): We say that LP1 satisfies NZM if for any X ∈ RN and any
Cjkl(X, n), Cjkl2(X, n) being not identically zero implies

min(Cjkl1(X)+ C ′jkl2(X, Y )) 6= 0 subject to Y ∈ Tsk . (4)

According to the definition, NZM is equivalent to the following formula:

[∀X∀Y (Cjkl2(X, n) ≡ 0 ∨ (Y ∈ Tsk ⇒ Cjkl1(X)+ C ′jkl2(X, Y ) > 0))]
∨

[∀X∃Y (Cjkl2(X, n) ≡ 0 ∨ (Y ∈ Tsk ∧ Cjkl1(X)+ C ′jkl2(X, Y ) < 0))],

where for a real value X , Cjkl2(X, n) ≡ 0 means that Cjkl2(X, n) = 0 for any n ≥ 0. Because Cjkl2(X, n)
can be written as∑

i∈I

fi1(X) sin(nαki2π)+ fi2(X) cos(nαki2π),
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where I is an index set, Cjkl2(X, n) ≡ 0 is equivalent to∧
i∈I

(fi1(X) = fi2(X) = 0).

Thus, NZM can be checked with real quantifier elimination techniques.
A large number of programs satisfy the property NZM, which include, for example, the following

classes of programs where

1. all the eigenvalues of A are real numbers, for example when A is symmetric; or
2. the argument of each imaginary eigenvalue of A is a rational multiple of π ; or
3. after substituting An+uX for X in P(X), the resulted P(X) does not contain those enαq2π i’s with
irrational αq’s.

Since all the above cases can make Cjkl2(X, n) ≡ 0, the NZM is satisfied.

Example 16. For those Cjkl’s in Example 14, let us check whether they satisfy NZM. This example is so
simple that we can check it by hand without real quantifier elimination techniques. From Example 14

∀X, D = inf
Y∈T
C ′1002(X, Y ) = infY∈T

D1y2 + D2y1 = −
√
(D1)2 + (D2)2.

Thus, D = −

√(
−x21−x

2
2+6x1x2
4

)2
+

(
7x21−x

2
2−2x1x2
4

)2
.

Since (C1001(X))2 − D2 = −116 (5x
2
1 + x

2
2 − 2x1x2)

2
≤ 0,

∀X,min
Y∈T
C100(X, Y ) = C1001(X)+ D ≤ 0. (5)

If C1001(X)+D = 0, (C1001(X))2−D2 = −116 (5x
2
1+ x

2
2− 2x1x2)

2
= 0. Then we obtain that x1 = x2 = 0

and C1002(X, n) ≡ 0. Thus, NZM is satisfied.

Remark 17. There are, indeed, programs which do not satisfy NZM. The following example is one

while (x1x2 + 5 > 0)

{
X :=

[
3
5 −

4
5

4
5

3
5

]
X

}
.

However, this program is nonterminating by letting x1 = x2 = 0.

3.4. Main algorithm

Now, we are ready to describe our main algorithm. For brevity, the algorithm is described as a
nondeterministic algorithm. The basic idea is to guess a leading term for each Gj(X, n) first. Then,
setting its coefficient to be ‘‘positive" and the coefficients of the terms with higher ordering to be
‘‘nonnegative", we get a semi-algebraic system (SAS). If one of our guesses is satisfiable, i.e., one of
the SASs has solutions, LP1 is nonterminating. Otherwise, check whether NZM is satisfied. If so, return
‘‘terminating"; otherwise return ‘‘uncertain".

Main Algorithm 1 Termination(A, P(X))

Step 0 Compute the general expression of An+uX .
Step 1 Substitute An+uX for X in P(X), and compute all Gj(X, n) (finitely many, say, j = 1, . . . , L).
Step 2 Guess a leading term for each Gj(X, n), say Cjkj ljn

lj rnkj .
Step 3 Construct a semi-algebraic system S as follows.

Sj = Cjkj lj � 0 ∧
∧
nlj rnkj

lnlrnk
Cjkl(X, n) � 0,

S =
∧L
j=1 Sj.

Step 4 If one of these systems is satisfiable, return ‘‘nonterminating". Otherwise, if NZM is satisfied
return ‘‘terminating"; otherwise return ‘‘uncertain".
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Remark 18. It is well known that real quantifier elimination is decidable since Tarski’s work (Tarski,
1951). Therefore, the semi-algebraic systems in Step 3 can be solved. For practical tools for solving
semi-algebraic systems, please refer to Collins (1975), Collins and Hong (1991), Dolzman and Sturm
(1997) and Xia (2007).

Example 19. For the loop in Example 11, we have computed G1(X, n) in Example 14 and verified that
it satisfies NZM in Example 16. We shall finish the termination decision for this example, following
the steps in Termination.
By Steps 2 and 3 of Termination, we should guess leading terms and construct SASs accordingly.

Since there is only one C100(X, n), there is only one guess, C100(X, n) � 0. In Example 16, we have
shown that ∀X,minY∈T C100(X, Y ) = C1001(X) + D ≤ 0. Thus, the above predicate formula does not
hold. Thus, the loop in Example 11 is terminating.

Remark 20. It may be interesting to point out that there are no continuous real-valued ranking
functions for the program in Example 11.
Assume that there is a continuous real-valued ranking function, Ran(x1, x2), for the program in

Example 11. According to the ranking condition of the ranking function, there exists ε > 0 such that

∀x1, x2, x21 + x1x2 > 0⇒ Ran(x1, x2)− Ran
(
x1 −

2x2
5
, 2x1 +

x2
5

)
> ε.

Let x1 = x2 = 1
n , which satisfy x

2
1 + x1x2 > 0 for any n. Hence,

Ran
(
1
n
,
1
n

)
− Ran

(
3
5n
,
11
5n

)
> ε for any n.

As n goes to infinity, the distance between ( 1n ,
1
n ) and (

3
5n ,

11
5n ) goes to zero, which means that

the distance between Ran( 1n ,
1
n ) and Ran(

3
5n ,

11
5n ) goes to zero since Ran(x1, x2) is continuous. But

according to the ranking condition, the distance is always greater than ε. That is a contradiction. Thus,
there are no continuous ranking functions for that program.

4. Correctness

To prove the correctness of Termination, we need some further results. For readers interested
in ergodic theory, please refer to Mane (1987).
Usually, (a, b) (∈ T) can be denoted as a + bi = exi. Thus, Tm

′

can be rewritten as Tm
′

=

{(ex12π i, . . . , exm′2π i)| xj ∈ R} and define Lπ(α) : Tm
′

→ Tm
′

as

(ey12π i, . . . , eym′2π i)→ (e(y1+α1)2π i, . . . , e(ym′+αm′ )2π i),

where α = (α1, . . . , αm′) ∈ Rm
′

.

Lemma 21 (Mane, 1987). If α ∈ Rm
′

, the translation Lπ(α)(X) is ergodic if and only if for all K ∈ Zm
′

,
(K , α) /∈ Z, where (K , α) stands for the inner product of K and α.

Definition 22. Irrational numbers α1, . . . , αm′ are rationally independent if there do not exist rational
numbers β1, . . . , βm′ such that

∑m′
j=1 ajβj ∈ Q.

Remark 23. It can be deduced that {α1, . . . , αm′} are rationally independent if and only if
∀(b1, . . . , bm′) ∈ Zm

′

,
∑m′
j=1 bjαj /∈ Z. According to Lemma 21, if {α1, . . . , αm′} are rationally

independent, Lπ(α)(X) is ergodic, and then the closure of {Lnπ(α)(0)}n≥1 is Tm
′

, where Lnπ(α) is the
composition of Lπ(α) by n times and

{Lnπ(α)(0)}n≥1 = {(e
nα12π i, . . . , enαm′2π i)|n ≥ 1}.

Thus, if {αk1, . . . , αksk} are rationally independent, then for a fixed X

inf
n≥1
C ′jkl2(X, sin(nαk1), cos(nαk1), . . . , sin(nαksk), cos(nαksk)) = min

Y∈Tsk
C ′jkl2(X, Y ),

where αki = αki2π for i = 1, . . . , sk.
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Proposition 24. Let γi = (Tn+ t)αki2π (1 ≤ i ≤ sk), where {αk1, . . . , αksk} are rationally independent.
Then

inf
n≥1
{C ′jkl2(X, sin(γ1), cos(γ1), . . . , sin(γsk ), cos(γsk ))} = min{C

′

jkl2(X, Y )}

subject to Y ∈ Tsk .

Proof. It is sufficient to prove that Tsk is the closure of {(eγ1i, . . . , eγsk i)}n≥1. Because {αk1, . . . , αksk}
are rationally independent, {Tαk1, . . . , Tαksk} are rationally independent, too. According toRemark 23,
Tsk is the closure of {(enTαk12π i, . . . , enTαksk2π i)}n≥1. The result of rotating (enTαk12π i, . . . , enTαksk2π i)
by (tαk12π, . . . , tαksk2π) is (e

γ1i, . . . , eγsk i). Consequently, Tsk is the closure of {(eγ1i, . . . , eγsk i)}n≥1.
That completes the proof. �

Remark 25. Since Tsk is a bounded closed set, according to Proposition 24,

I = inf
n≥1
{Cjkl(X, n)} = min

Y∈Tsk
{Cjkl1(X)+ C ′jkl2(X, Y )},

and if I < 0, there exists some c < 0 such that Cjkl(X, n) < c for infinitely many n’s.

If Termination finds one solution X0, the leading coefficient of Gj(X0) (j = 1, . . . , L), say
Cjkl(X0, n), satisfies Cjkl(X0, n)� 0. According to Remark 15 there exist cj > 0 such that Cjkl(X0, n) > cj
for all n. Thus LP1 is nonterminating. This means that if the algorithm outputs ‘‘nonterminating", then
LP1 is nonterminating indeed.
On the other hand, if Termination outputs ‘‘terminating", then NZM must be satisfied. For any

{Cjkj lj(X, n)|1 ≤ j ≤ L} there is a subset V ⊆ {1, . . . , L} such that ∀j ∈ V

Cjkj lj(X, n) � 0 ∧
∧

nlj rnkj
lnlrnk

Cjkl(X, n) � 0

is not satisfiable subject to

∧
j/∈V

Cjkj lj � 0 ∧ ∧
nlj rnkj

lnlrnk

Cjkl(X, n) � 0

 . (6)

If there is some j such that
∧
nlj rnkj

lnlrnk
Cjkl(X, n) � 0 does not hold, then there is some Cjkl(X, n)

such that I = infn≥1 Cjkl(X, n) < 0. Thus, according to Remark 25, there is some c < 0 such that
Cjkl(X, n) < c for infinitely many n’s. Then Cjkj lj(X, n)n

lj rnkj cannot be the dominant term, and our
guess does not hold. Otherwise Cjkj lj(X, n) � 0 does not hold for any j ∈ V , and we get that for those
X satisfying Eq. (6),

∀j ∈ V , Ij = min
Y∈T

skj
Cjkj lj1(X)+ C

′

jkj lj2(X, Y ) ≤ 0.

According to NZM, ∀j ∈ V , Cjkj lj2(X, n) is identically zero or Ij < 0. If the former holds, Cjkj lj(X, n) ≤ 0
for any n. If the latter holds, by Remark 25 there are infinitely many n’s and some cj < 0 such that
Cjkj lj(X, n) < cj for ∀j ∈ V . Neither can make all the dominant terms identically positive. That means
LP1 is terminating. Therefore, we get the following theorem.

Theorem 26. For those programs satisfying NZM, Termination returns ‘‘terminating" if and only if LP1
is terminating. For those not, LP1 is nonterminating if Termination return ‘‘nonterminating".
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5. Algorithm for termination of LQ1 and LR1 over R

Let us first consider termination of LQ1. The difference between LP1 and LQ1 is that the loop
condition of LQ1 is P(X) ≥ 0 instead of P(X) > 0. It means that Gj(X, n) need not have a positive
leading term, and if so, all Cjkl(X, n) in Gj(X, n) should be ‘‘nonnegative". Hence, we need to add this
into the algorithm Termination. Here is the modified algorithm for the termination of LQ1 over R.

Extended Algorithm 1 TerminationM(A, P(X))

Step 0 Compute the general expression of An+uX .
Step 1 Substitute An+uX for X in P(X), and compute all Gj(X, n) (finitely many, say, j = 1, . . . , L).
Step 2 Guess no leading term or a leading term, say Cjkj ljn

lj rnkj , for each Gj(X, n).
Step 3 If Gj(X, n) is guessed to have a leading term,

Sj = Cjkj lj � 0 ∧
∧

nlj rnkj
lnlrnk

Cjkl(X, n) � 0; otherwise Sj =
∧
k,l

Cjkl(X, n) � 0.

Construct a semi-algebraic system S =
∧L
j=1 Sj.

Step 4 If one of these systems is satisfiable, return ‘‘nonterminating". Otherwise, if NZM is satisfied
return ‘‘terminating"; otherwise return ‘‘uncertain".

With similar idea Termination can be extended to determine the termination of LR1 over R.

Extended Algorithm 2 TerminationR(A, P(X), R(X))

Step 0 Compute the general expression of An+uX .
Step 1 Substitute An+uX for X in P(X), and compute all Gj(X, n) (finitely many, say, j = 1, . . . , L).
Step 2 Guess a leading term, say Cjkj ljn

lj rnkj , for each Gj(X, n) from some Pi(X) ∈ P(X); guess no leading
term or a leading term, say Cjkj ljn

lj rnkj too, for each Gj(X, n) from some Ri(X) ∈ R(X).
Step 3 If Gj(X, n) is guessed to have a leading term,

Sj = Cjkj lj � 0 ∧
∧

nlj rnkj
lnlrnk

Cjkl(X, n) � 0; otherwise Sj =
∧
k,l

Cjkl(X, n) � 0.

Construct a semi-algebraic system S =
∧L
j=1 Sj.

Step 4 If one of these systems is satisfiable, return ‘‘nonterminating". Otherwise, if NZM is satisfied
return ‘‘terminating"; otherwise return ‘‘uncertain".

Remark 27. The proofs of correctness ofTerminationM andTerminationR are similar to the proof
in Section 4. However, let us give a more intuitive one here.
If one of the systems is satisfiable, it means that for each Gj(X, n) from some strict loop condition

there is a positive leading term and for each Gj(X, n) from some non-strict loop condition there is a
positive leading term or all the terms are nonnegative. Hence, the loop must be ‘‘nonterminating".
Otherwise, if NZM is satisfied, our algorithm will output ‘‘terminating". Suppose there is indeed

some X0 such that the loop is nonterminating. Hence, Gj(X0, n) is greater than zero for each n(≥ 0)
if it comes from some strict loop condition; otherwise Gj(X0, n) is greater than or equal to zero for
each n(≥ 0). Now let us check the coefficient, say Cjkj lj , of its leading term for each non-zero Gj(X0, n).
Since its minimum is non-zero according to the NZM, it must be greater than or less than zero. Since
X0 makes the loop nonterminating, the minimum of Cjkj lj w.r.t Y (see Eq. (4)) must be positive. Now,
let us construct a semi-algebraic system. If Gj(X0, n) is non-zero,

Sj = Cjkj lj � 0 ∧
∧

nlj rnkj
lnlrnk

Cjkl(X, n) � 0,
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where Cjkj lj is the coefficient of its leading term. Otherwise,

Sj =
∧
k,l

Cjkl(X, n) � 0.

Let S =
∧L
j=1 Sj, and S must be satisfiable since X0 is such a solution. However, according to our

algorithm none of the possible semi-algebraic systems is satisfiable. This is a contradiction. Hence,
there is no such X0.

6. Proofs and algorithms

For the sake of self-containedness, this section presents the details of the proofs and the algorithms
mentioned in the above sections.

6.1. Proof of Proposition 9

Before proving Proposition 9, let us introduce a useful lemma.

Lemma 28 (Stanley, 1997). Let α1, . . . , αd be a sequence of complex numbers, d ≥ 1 and αd 6= 0. The
following conditions on a function f : N→ C are equivalent to each other:

i.
∑
n≥0 f (n)x

n
=

P(x)
Q (x) , where Q (x) = 1+ α1x+ · · · + αdx

d and P(x) is a polynomial in x of degree less
than d.

ii. For all n ≥ 0, f (n+ d)+ α1f (n+ d− 1)+ α2f (n+ d− 2)+ · · · + αdf (n) = 0.
iii For all n ≥ 0, f (n) =

∑k
i=1 Pi(n)γ

n
i , and Q (x) = 1+ α1x+ α2x

2
+ · · · + αdxd =

∏k
i=1(1− γix)

di ,
where the γi’s are distinct, and Pi(n) is a polynomial in n of degree less than di.

Proof of Proposition 9. In what follows, the X in F(X, n)will be regarded as constants. First,

Ad + α1Ad−1 + · · · + αd−uAu = 0,

because D(x) is the characteristic polynomial of A. So, for any n ≥ 0,

F(X, n+ d− u)+ α1F(X, n+ d− (u+ 1))+ · · · + αd−uF(X, n)
= An+dX + α1An+d−1X + · · · + αd−uAn+uX
= (Ad + α1Ad−1 + · · · + αd−uAu)AnX = 0.

Thus, for each j,

Fj(X, n+ d− u)+ α1Fj(X, n+ d− (u+ 1))+ · · · + αd−uFj(X, n) = 0.

By Lemma 28, Fj(X, n) =
∑k
i=1 fji(X, n)ξ

n
i and

Q (x) = 1+ α1x+ · · · + αd−uxd−u =
k∏
i=1

(1− ξix)di ,

where fji(X, n) is a polynomial in n of degree less than di. It is obvious that x = 0 is not a solution of
Q (x) and

∑k
i=1 di = d− u. Because

D(x) = xdQ
(
1
x

)
= xd + α1xd−1 + · · · + αd−uxu

= xd
k∏
i=1

(
1−

ξi

x

)di
= xu

k∏
i=1

(x− ξi)di .

The ξi’s are all the distinct non-zero complex eigenvalues of A and di is the multiplicity of ξi. That
completes the proof. �
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6.2. Algorithm ComputingCommonPeriod

T is necessary for defining Gj(X, n), where T is the common period of all the eαq2π i’s with rational
αq that are contained in Ps(X, n) (1 ≤ s ≤ M). However, in order to compute T we need to solve the
following problems:

1. Compute the minimal polynomial of ηk (1 ≤ k ≤ m) over Q in Eq. (2) that is the product of some
ξj’s.

2. Given ηq = rqeαq2π i and its minimal polynomial over Q, check whether αq is a rational number.
3. If αq in the above is a rational number, compute the period of eαq2π i that is the minimal tq ∈ Z>0
s.t. etqαq2π i = 1.

Then, T is the least commonmultiple of the above tq’s. In fact, the first problem is solved by Strzebonski
(1997), and in the following we shall solve the next two problems.
Theminimal polynomial of an algebraic number α overQ is amonic polynomial,M(x) ∈ Q[x]with

the least degree that satisfiesM(α) = 0, and the degree ofM(x) is defined as the degree of α. The jth
cyclotomic polynomial over Q is the monic polynomial

CPj(x) =
r∏
j=1

(x− ξj),

where ξ1, . . . , ξr are all the distinct primitive jth roots of unity in Q. In fact for each j, CPj(x) can be
computed in advance.
Suppose theminimal polynomial ofα isM(x)whose degree is d.Without loss of generality suppose

α = reβ2π i. Since the degree of α is d, the degree of α must be d. Then the degree of α · α = r2 is at
most d2. Thus the degree of r is at most 2d2. The degree of r−1 is at most 2d2 because the degree of
r−1 is equal to the degree of r . Since the degree of α is d, the degree of α · r−1 = eiβ2π is at most 2d3.
If β is a rational number, α · r−1 must be a root of unity and its minimal polynomial must be

a cyclotomic polynomial. As a result, if β is a rational number, the minimal polynomial of α · r−1
must be a cyclotomic polynomial whose degree is less than or equal to 2d3. Since the degree of the
jth cyclotomic polynomial is φ(j), the Euler function, and φ(n) ≥

√
n for all n except n = 2 and 6,

j ≤ max{4d6, 6}. We can bound α in a rectangle,W , by isolating all the complex roots ofM(x). Then,
β is a rational number if and only if there is some j(1 ≤ j ≤ max{4d6, 6}) s.t.

∃r
(
(r 6= 0)

∧
(CPj(x/r) = 0)

∧
(M(x) = 0)

∧
(x ∈ W )

)
(7)

is satisfiable. Assume the minimal j that satisfies Eq. (7) is j′, then the period of eβ2π i is j′.
The formal description of the above idea is presented as follows.

Algorithm FindingPeriod(W,M(x))
Input:W is a rectangle and contains only one complex root, say η, ofM(x), whereM(x) is a polynomial
with rational coefficients.
Output: If the argument of η is a rational multiple of π , return the period of η

|η|
; otherwise, return 0.

Step 1. d← degree(M(x));
Step 2. Compute CPj(x), 1 ≤ j ≤ max{4d6, 6}, l← 1;
Step 3. While(l ≤ max{4d6, 6}) do

If

∃r
(
(r 6= 0)

∧
(CPl(x/r) = 0)

∧
(M(x) = 0)

∧
(x ∈ W )

)
(8)

is TRUE, return l;
else l← l+ 1;
End do
Return 0;

End



B. Xia, Z. Zhang / Journal of Symbolic Computation 45 (2010) 1234–1249 1247

The formal description of ComputingCommonPeriod is given as follows.

Algorithm ComputingCommonPeriod(W [H],f1(x), . . . , fH(x))
Input:W [ ] is an array of rectangles, andW [j] contains only one complex root, say ηj, of fj(x)(1 ≤ j ≤
H), where fj(x) is a polynomial with rational coefficients.
Output: If there exist some ηj’s whose arguments are rational multiples of π , return their common
period; otherwise return 0.

for (j from 1 to H) do
IPj ← FindingPeriod(W [j], fj(x));

end do
Return the least common multiple of {IP1, . . . , IPH}.

End

6.3. Algorithm MaximumRationallyIndependentGroup

We are given a set of algebraic numbers, α1 = eβ12π i, . . . , αd = eβd2π i, where all βi are irrational
numbers. In this subsection we present a method to compute a maximum rationally independent
group of β1, . . . , βd. In fact it is sufficient to devise an algorithm to check whether a given group of
irrational numbers are rationally independent. That is because if they are rationally dependent, we
can delete one at a time from {β1, . . . , βd} until the remaining ones are rationally independent, and
the resulted group is a maximum rationally independent group. In the following, we shall present
a method to check whether {β1, . . . , βd} are rationally independent. First, let us introduce a useful
lemma which ensures correctness of our method.

Lemma 29 (Baker, 1966). Let λ1, . . . , λm with m ≥ 2 be linearly dependent logarithms of algebraic
numbers. Define α′j = eλj (1 ≤ j ≤ m). For 1 ≤ j ≤ m, let log Aj ≥ 1 be an upper bound for

max{h(α′j),
|λj|

D } where D is the degree of the number field K = Q(α1, . . . , αm) over Q and h(α) denotes
the absolute logarithmic height ofα. Then there exist rational integers n1, . . . , nm, not all of which are zero,
such that n1λ1 + . . .+ nmλm = 0 and |nk| < (11(m− 1)D3)m−1 (log A1)...(log Am)log Ak

, 1 ≤ k ≤ m.

Remark 30. Baker is the first one to use transcendence arguments to establish such an estimate.
However, the description here follows Lemma 7.19 in Waldschimidt (2000).

According to Definition 22, {β1, . . . , βd} are rationally dependent iff {β1, . . . , βd, 1} are linearly
dependent in Q. If {β1, . . . , βd, 1} are linearly dependent in Q, according to Lemma 29 there exist
integers n1, . . . , nd+1, not all of which are zero, such that n1β1 + · · · + ndβd + nd+1 = 0 and
|nk| < (11dD3)d (log A1)...(log Ad+1)log Ak

(1 ≤ k ≤ d + 1), where D, A1, . . . , Ad+1 are defined as in Lemma 29.
Then n1β12π i+ · · · + nd+12π i = 0 and en1β12π i · · · endβd2π i = 1. That is, α

n1
1 · · ·α

nd
d = 1.

Thus, according to Lemma 29 we can decide whether {β1, . . . , βd} are rationally independent by
enumerating nk from⌊

−(11dD3)d
(log A1) · · · (log Ad+1)

log Ak

⌋
to ⌈

(11dD3)d
(log A1) · · · (log Ad+1)

log Ak

⌉
,

for k = 1, . . . , d and checking whether αn11 · · ·α
nd
d = 1. If there exists {n1, . . . , nd} such

that αn11 · · ·α
nd
d = 1, then {β1, . . . , βd} are rationally dependent; otherwise they are rationally

independent. For any given (n1, . . . , nd), whether α
n1
1 · · ·α

nd
d = 1 can be determined by checking

whether the following SAS has solutions.

{xn11 · · · x
nd
d = 1, qj(xj) = 0, xj ∈ Wj, j = 1, . . . , d},
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where qj is the minimal polynomial of αj and Wj contains only one complex root, αj, of qj for j =
1, . . . , d.
The formal description of the above idea is presented as follows.

Algorithm CheckingRationalInpendence(W [d],q1(x1), . . . , qd(xd))
Input: W [ ] is an array of rectangles, andW [j] contains only one complex root, say αj, of qj(xj), 1 ≤
j ≤ d. qj(xj) is a polynomial with rational coefficients.
Output: If {β1, . . . , βd} are rationally independent, return 1, where βj2π is the argument of αj, 1 ≤
j ≤ d; otherwise return 0.

Step 1. MB1 ← b−(11dD3)d
(log A1)···(log Ad+1)

log Ak
c;

MB2 ← d(11dD3)d
(log A1)···(log Ad+1)

log Ak
e;

Step 2. for (i1 fromMB1 toMB2) do
. . .

for (id fromMB1 toMB2) do
If
{xn11 · · · x

nd
d = 1, qj(xj) = 0, xj ∈ Wj, j = 1, . . . , d}

is satisfiable, return 0.
end do
. . .

end do
Return 1.

End

The formal description of MaximumRationallyIndependentGroup is presented as follows.

Algorithm MaximumRationallyIndependentGroup(W [d],q1(x1), . . . , qd(xd))
Input: The same as that of CheckingRationalInpendence.
Output: A maximum rationally independent group of {β1, . . . , βd}, where
βj (1 ≤ j ≤ d) is the same as in CheckingRationalInpendence.

Step 1. ST ← W [d], PT ← {q1(x1), . . . , qd(xd)};
Step 2. while (CheckingRationalInpendence(ST , PT ) = 06) do

delete one element, sayW [j], from ST , and delete qj(xj) from PT ;
end do

Return those βj’s contained in eachW [j] ∈ ST .
End

Remark 31. Suppose that G = {γ1, . . . , γl} is a maximum rationally independent group of
{β1, . . . , βd}. In the above method each βi (1 ≤ i ≤ d) not in G, can be represented by a linear
function of Gwith rational coefficients. However, we hope that each βi not in G, could be represented
by a linear function of G with integer coefficients. In fact this can be easily done. In what follows, our
main idea is illustrated with an example.
If β1 and β2 not in G, can be represented as follows

β1 =
γ1

2
+
3γ2
8
, β2 =

2γ1
3
+
3γ2
4
,

then let γ ′1 =
γ1
6 , γ

′

2 =
γ2
8 and substitute γ

′

1 and γ
′

2 for γ1 and γ2 respectively in G. Thus,

β1 = 3γ ′1 + 3γ
′

2, β2 = 4γ ′1 + 6γ
′

2, γ1 = 6γ ′1, γ2 = 8γ ′2
and all the elements in the resulted G are still rationally independent.

6 This is a shorthand for invocation for CheckingRationalInpendence.
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7. Conclusion and future works

In this paperwe have proved that termination problems of LP1, LQ1 and LR1 overZ are undecidable.
Furthermore, if the entries of A in LP1, LQ1 and LR1 are confined to integers, the termination problems
of the resulted LP1, LQ1 and LR1 over Z are still undecidable. Then we have given a relatively complete
algorithm to determine whether LP1 is terminating over R. If LP1 satisfies NZM, it is terminating if
and only if our algorithm outputs ‘‘terminating". If not, it is nonterminating if our algorithm outputs
‘‘nonterminating". We have demonstrated the main steps of our algorithm by an example. Finally,
we extend this algorithm to determine the termination of LQ1 and LR1 over R. It is obvious that the
complexity of our main algorithms is very high because we have used many quantifier eliminations
(at most 2(MT )N quantifier eliminations, whereM is the number of loop conditions, T is the common
period and N is the number of variables). Hence, our future work will focus on how to reduce the
complexity of our algorithms.
However, it is not easy to deal with the case that NZM is not satisfied. Here wemake the following

conjecture.

Conjecture. The termination problems of LP1, LQ1 and LR1 over R are undecidable in general.
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