25,582 research outputs found

    Prognostics: Design, Implementation, and Challenges

    Get PDF
    Prognostics is an essential part of condition-based maintenance (CBM), described as predicting the remaining useful life (RUL) of a system. It is also a key technology for an integrated vehicle health management (IVHM) system that leads to improved safety and reliability. A vast amount of research has been presented in the literature to develop prognostics models that are able to predict a system’s RUL. These models can be broadly categorised into experience-based models, data-driven models and physics-based models. Therefore, careful consideration needs to be given to selecting which prognostics model to take forward and apply for each real application. Currently, developing reliable prognostics models in real life is challenging for various reasons, such as the design complexity associated with a system, the high uncertainty and its propagation in the degradation, system level prognostics, the evaluation framework and a lack of prognostics standards. This paper is written with the aim to bring forth the challenges and opportunities for developing prognostics models for complex systems and making researchers aware of these challenges and opportunities

    Major challenges in prognostics: study on benchmarking prognostic datasets

    Get PDF
    Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major challenges in both of these approaches by examining a number of published datasets for their suitability for analysis. Data-driven methods require sufficient samples that were run until failure whereas physics-based methods need physics of failure progression

    Enabling electronic prognostics using thermal data

    Get PDF
    Prognostics is a process of assessing the extent of deviation or degradation of a product from its expected normal operating condition, and then, based on continuous monitoring, predicting the future reliability of the product. By being able to determine when a product will fail, procedures can be developed to provide advanced warning of failures, optimize maintenance, reduce life cycle costs, and improve the design, qualification and logistical support of fielded and future systems. In the case of electronics, the reliability is often influenced by thermal loads, in the form of steady-state temperatures, power cycles, temperature gradients, ramp rates, and dwell times. If one can continuously monitor the thermal loads, in-situ, this data can be used in conjunction with precursor reasoning algorithms and stress-and-damage models to enable prognostics. This paper discusses approaches to enable electronic prognostics and provides a case study of prognostics using thermal data.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    A review of physics-based models in prognostics: application to gears and bearings of rotating machinery

    Get PDF
    Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing, health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health condition monitoring. The main contribution of this article is the identification of potential physics-based models for prognostics in rotating machinery

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction

    Get PDF
    Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimations on each time instance. The presented model is tested on; Virkler’s fatigue crack growth dataset, a drilling process degradation dataset, and a sliding chair degradation of a turnout system dataset. Prediction performances are compared utilizing an evaluation metric. Efficiency analysis of optimization results show that the modified similarity-based model performs better than the original definition

    Using a high fidelity CCGT simulator for building prognostic systems

    Get PDF
    Pressure to reduce maintenance costs in power utilities has resulted in growing interest in prognostic monitoring systems. Accurate prediction of the occurrence of faults and failures would result not only in improved system maintenance schedules but also in improved availability and system efficiency. The desire for such a system has driven research into the emerging field of prognostics for complex systems. At the same time there is a general move towards implementing high fidelity simulators of complex systems especially within the power generation field, with the nuclear power industry taking the lead. Whilst the simulators mainly function in a training capacity, the high fidelity of the simulations can also allow representative data to be gathered. Using simulators in this way enables systems and components to be damaged, run to failure and reset all without cost or danger to personnel as well as allowing fault scenarios to be run faster than real time. Consequently, this allows failure data to be gathered which is normally otherwise unavailable or limited, enabling analysis and research of fault progression in critical and high value systems. This paper presents a case study of utilising a high fidelity industrial Combined Cycle Gas Turbine (CCGT) simulator to generate fault data, and shows how this can be employed to build a prognostic system. Advantages and disadvantages of this approach are discussed

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process
    corecore