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Prognostics is an essential part of condition-based maintenance (CBM), described as predicting the remaining useful life 
(RUL) of a system. It is also a key technology for an integrated vehicle health management (IVHM) system that leads 
to improved safety and reliability. A vast amount of research has been presented in the literature to develop prognostics 
models that are able to predict a system’s RUL. These models can be broadly categorised into experience-based models, 
data-driven models and physics-based models. Therefore, careful consideration needs to be given to selecting which 
prognostics model to take forward and apply for each real application. Currently, developing reliable prognostics models 
in real life is challenging for various reasons, such as the design complexity associated with a system, the high uncertainty 
and its propagation in the degradation, system level prognostics, the evaluation framework and a lack of prognostics 
standards. This paper is written with the aim to bring forth the challenges and opportunities for developing prognostics 
models for complex systems and making researchers aware of these challenges and opportunities.

1. Introduction
Prognostics is an inherent part of condition-based maintenance 
(CBM). Prognostics is the ability to predict the future health of a 
given component/system, for a fixed time horizon or to predict the 
time to failure, and its remaining useful life (RUL).

Large amounts of literature covering prognostics models have 
already been published by researchers[1-8]. These models can be 
broadly categorised into experience-based models, data-driven 
models and physics-based models, as shown in Figure 1. Experience-
based models correlate knowledge and engineering experience 
with the observed monitoring data to infer the RUL from historical 
measurements[1]. Data-driven models rely only on learning the 
system’s behaviour directly from collected raw monitoring data to 
predict the projection of a system’s state or to match similar patterns 
in the history to infer the RUL. Data-driven models include, but 
are not limited to, statistical models, reliability functions and 
artificial intelligence models[2]. Physics-based models quantitatively 
characterise the behaviour of a failure mode using physical laws to 
estimate the RUL[3]. More recently, hybrid prognostics approaches 
have been presented, attempting to leverage the advantages of 
combining the prognostics models in the aforementioned different 
categories for a better capability of managing the uncertainty related 
to system complexity and data availability to achieve more accurate 
RUL estimations. However, hybrid prognostics models can have a 
higher computational cost, which leads to more difficulties in some 
applications. Hybrid prognostics models can be mainly categorised 
into experience-based and data-driven models[4], experience-
based and physics-based models[5], data-driven and data-driven 
models[6], data-driven and physics-based models[7] and experience-
based, data-driven and physics-based models[8]. Moreover, hybrid 
modelling can be performed in two approaches, namely the series 
approach and the parallel approach[9]. The main challenge of a 
hybrid prognostics approach is choosing the right category, which 
depends on the available data and information, and choosing  
the appropriate fusion mechanism for developing the hybrid  
model.

The performance of a prognostics model can suffer due to 
different factors, such as inherent uncertainties associated with 
the deterioration process, a lack of sufficient quantities of run-to-
failure data, sensor noise, unknown environmental and operating 

conditions and engineering variations. Obviously, in such situations 
it could be quite hard to precisely infer the exact state of degrading 
machinery and to further predict the evolution of degradation from 
the collected data.

Prognostics appears to be a very promising maintenance 
activity because it improves safety, maintenance planning and 
reduces maintenance costs and downtime. However, developing a 
reliable prognostics model in industrial applications is challenging 
because the design complexities associated with a system reduce the 
effectiveness of prognostic techniques, which are developed based 
on assumptions and simplifications, and a redundancy in data 
collection and recording increase the inefficiency in computation 
for prognosis and data selection and analysis strategies to identify 
the right data for the execution of prognostics models.

Figure 1. Classification of prognostics models
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2. Prognostics challenges and 
opportunities

Prognostics has impressive benefits, but it is still not mature in real 
applications. In this section, we will briefly address the challenges 
facing the implementation of prognostics in real applications.

2.1 Redundancy in data collection and recording
Data collection is a key part of prognostics. Therefore, inaccurate 
measurements will lead to an inaccurate estimate of the RUL 
of the system. Moreover, a redundancy in data collection and 
recording increases the inefficiency in computation for prognosis. 
Furthermore, high noise in collected data reduces the sensitivity 
of diagnostic techniques, consequently increasing the impact of 
abnormal operating conditions on the prognostic algorithms by 
decreasing the accuracy of prediction. Data collection is required by 
sensors and, therefore, the selection of the type and location of the 
sensor should be carefully considered for an accurate measurement 
of the change in the parameters linked to the degradation indicators. 
One source of redundancy in data collection and recording is 
ignoring the possibility of the sensor, which needs to be taken into 
account to improve the reliability of the sensor and consequently 
the accuracy of the prediction.

Currently, industries are facing a significantly complex 
challenge during the integration of data recorders inside platforms 
due to the tremendous amount of data generated by the monitored 
components/subsystems. This challenge is often referred to as the 
management of big data and includes, but is not limited to, capturing, 
processing, mining, analysis, integration and visualisation data. This 
challenge needs to be solved by developing advanced automated 
data selection and analysis strategies to identify the right data for 
the execution of prognostics models. This strategy can help to ease 
the management of big data by identifying only data having features 
of interest for the assessment of the component/subsystem/system’s 
prognosis.

2.2 Design complexity
Prognostics models face a big challenge in meeting industrial 
expectations. This can be due to the highly complex and non-
linear operational environment of industrial machinery, which 
makes it hard to establish efficient prognostics approaches that are 
robust enough to tolerate uncertainty and reliable enough to show 
acceptable performance under diverse conditions. In addition, 
the applicability of prognostics approaches is also necessary to 
meet industrial constraints and requirements. Finally, prognostics 
approaches should be enhanced by handling, simultaneously, all 
three challenges: robustness, reliability and applicability, which are 
still open areas.

2.3 System-level prognostics
All reported prognostics applications raise fundamental challenges 
since most of the applications so far have been ‘point solutions’. It has 
focused on predicting the RUL of a single component/subsystem, 
but not on predicting the RUL of the entire system in which these 
components/subsystems reside[10]. Prognostics at a system level is a 
relatively new concept in the aerospace sector. As a consequence, 
there are very few research groups working on this concept. 
Currently, prognostics at a system level are mainly implemented at 
a research level; very few systems actually have prognostics built in 
and these prognostics are based on basic trend and history data. 
The literature shows very little information about prognostics at a 
system level in a real application.

Developing prognostics at a system level can be challenging due 
to the complexity of the system, the lack of exchanged information 

between the components/subsystems within the system and the 
relative lack of efficiency of classical prognostics techniques. The 
system level of prognostics consists of multiple interconnected 
components/subsystems to perform a given function. Failure of 
an individual component/subsystem may or may not cause the 
whole system to fail, but its consequences could propagate through 
the system causing additional components/subsystems to fail, 
eventually compromising the system’s functional capacity. At the 
system level, measurements from several components/subsystems 
may be combined to interpret overall system degradation. In 
addition, prognostics at the system level will require models to 
capture the interdependence and cross-coupling effects between 
components/subsystems within the system.

A distributed solution for addressing the problem of system 
level prognostics has been addressed in[11]. This solution is based 
on the concept of structural model decomposition. The system 
model of a four-wheeled rover simulation test-bed is decomposed 
into dependent sub-models. Then, independent local prognostics 
sub-problems are formed based on these local sub-models. This 
structure results in a scalable, efficient and flexible distributed 
approach to the prognostics problem at system level. The results 
proved that the system-level prognostics problem can be efficiently 
solved in a distributed framework.

Recently, research[12] has considered the problem of system-
level prognostics in the cloud. This research has considered 
the transformation of application systems from system centric 
architecture to cloud-based systems that leverage shared 
computational resources to reduce cost and maximise reach.

2.4 Evaluation framework
Prognostics performance evaluation has gained significant 
attention in the Prognostics Health Management (PHM) Society 
during the last few years. From the literature, several metrics have 
been proposed to measure unique characteristics of prognostics, 
such as accuracy, precision, timeliness and prediction-confidence 
attributes of the prediction of a prognostic algorithm[13-15]. However, 
there are no universally-accepted methods to quantify the benefit of 
prognostics methods[13]. Also, less attention has been paid towards 
determining the correct approach for evaluating and interpreting 
prognostic performance under various uncertainty sources, such as 
state uncertainty, predicting uncertainty and modelling uncertainty. 
Generally, the performance metrics of prognostics can be divided 
into the following four groups (Figure 2):
1. Algorithm performance: In this group, the performance of the 

prognostics algorithm will be evaluated based on the calculated 
error between the ground truth and the estimated RUL. Such 
evaluation is not only inequitable but, sometimes, it may lead to 
incorrect conclusions.

2. Computational performance: In this group, the performance 
of the prognostics model will be evaluated based on its 
computation. This evaluation plays an important role in 
prognostics model development in the case of critical systems 
that require less computational time for decision making. For 
example, CPU time or elapsed time can be used to measure the 
computational performance of a prognostics model.

3. Cost benefit risk: In this group, the performance of the 
prognostics algorithm will be evaluated based on the cost 
benefits of the prognostics model that are influenced by the 
accuracy of RUL estimates. In other words, the operational 
costs will be reduced if the estimated RUL values are accurate. 
The ratio of mean time to failure and mean time between unit 
replacements and return on investment are examples of the 
evaluation metrics for a prognostics model in this group.

4. Ease of algorithm certification: In this group, the metrics 
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are related to the assurance of an algorithm for a specific 
implementation.

In addition to the above classification, a list of offline metrics is 
also proposed by[13-15] to assess prognostics models before they are 
applied to a real application, such as prognostics horizon, prediction 
spread, horizon/prediction ratio, and so on.

2.5 Standards for prognostics techniques
Different organisations, such as SAE International, the 
International Organization for Standardization (ISO) and the 
United States Army (US Army), have published standards related  
to prognostics, see Table 1. These entire published standards  
provide general guidance for prognostics because there is no 
universal methodology. For example, ISO 13381-1 provides users 
with general guidelines, approaches and concepts for failure 
prognostics on engineering systems[16]. It also defines the main  
four stages of prognosis as the pre-processing phase, existing  
failure modes, future failure mode and post-action prognosis. 
In addition, ISO 13381-1 gives a definition of some terms, such 
as prognosis, root cause, confidence level and estimated time to  
failure. Moreover, the standard specifies a set of mathematical 
models for the modelling of degradation mechanisms. An 
explanation of the presented process of failure prognostics in the 
ISO 13381-1 standard through an electromechanical example has 
been presented in[17].

Table 1. Prognostics standards

Organisation Committee/
Subcomittee

Standard

ISO TC 108/SC 5 ISO 13379-2

ISO TC 108/SC 5 ISO 13381-1

ISO TC 108/SC 5 ISO 18129

ISO TC 184/SC 5 ISO 22400-1

ISO TC 184/SC 5 ISO 22400-2

SAE International E-32

SAE International HM-1

US Army Aviation Engineering

Based on the lessons learned from the current prognostics 
standards, we can conclude that the current prognostics standards 
are valuable as a general guideline for prognostics. However, there 
is a lack in the prognostics’ standards due to the challenges in 
developing a universal and reliable prognostics approach across 
various application domains. Therefore, there is an urgent need for 
a new generation of prognostics standards because prognostics has 
become an essential part in the CBM strategy.

3. Conclusions
In this paper, a brief revision of the available prognostics 
models in the literature is presented. Also, the open challenges 
and opportunities for prognostics are discussed. In general, 
the prognostics domain is lacking in standardised concepts 
and is still evolving to attain a certain level of maturity for real 
industrial applications. The computational complexity of existing 
prognostics techniques makes it virtually impossible to apply 
them from a system-level perspective. Therefore, there is a need 
to develop a generic framework for prognostics at a system level. 
New methodologies and tools for prognostics techniques in state 
estimation, fault and failure modelling and prediction can help 
to tolerate uncertainty. Developing an automated data collection 
strategy with the capability to analyse large amounts of data from 
distributed and heterogeneous sources will be a help to ease the 
management of data with features of interest for prognosis.
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