860 research outputs found

    Optimal Order Assignment with Minimum Wage Consideration (OOAMWC)

    Get PDF
    While the application of crowdsourcing has increased over the years, the technology experiences various issues during implementation. Examples of some of the issues that affect crowdsourcing include task assignment, profit maximizations, as well as time window issues. In some instances addressing some of the issues results in the other issues being overlooked. An example is when assigning tasks to workers, the profits of the workers might not be considered and this ends up affecting the profit maximization aspect. Various algorithms have been proposed to address the task assignment, profit maximizations, and time window issues. However, these algorithms address the issues individually and this results in the occurrence of the other noted issues. Therefore, this calls for the definition of a solution to address the task assignment issue while taking into consideration the time window issue and the minimum wage constraint. Additionally, the solution should address the profit maximization of not only the workers but also the platform and the clients of the platform. To evaluate the efficiency of the proposed solution, a comparison with the different implemented solutions to address individual issues is recommended. Comparing such solutions can provide insight into the efficiency of the proposed approach when addressing multiple issues affecting crowdsourcing

    Privacy Management and Optimal Pricing in People-Centric Sensing

    Full text link
    With the emerging sensing technologies such as mobile crowdsensing and Internet of Things (IoT), people-centric data can be efficiently collected and used for analytics and optimization purposes. This data is typically required to develop and render people-centric services. In this paper, we address the privacy implication, optimal pricing, and bundling of people-centric services. We first define the inverse correlation between the service quality and privacy level from data analytics perspectives. We then present the profit maximization models of selling standalone, complementary, and substitute services. Specifically, the closed-form solutions of the optimal privacy level and subscription fee are derived to maximize the gross profit of service providers. For interrelated people-centric services, we show that cooperation by service bundling of complementary services is profitable compared to the separate sales but detrimental for substitutes. We also show that the market value of a service bundle is correlated with the degree of contingency between the interrelated services. Finally, we incorporate the profit sharing models from game theory for dividing the bundling profit among the cooperative service providers.Comment: 16 page

    Characterization and evaluation of mobile crowdsensing performance and energy indicators

    Get PDF
    Mobile Crowdsensing (MCS) is a contribution-based paradigm involving mobiles in pervasive application deployment and operation, pushed by the evergrowing and widespread dissemination of personal devices. Nevertheless, MCS is still lacking of some key features to become a disruptive paradigm. Among others, control on performance and reliability, mainly due to the contribution churning. For mitigating the impact of churning, several policies such as redundancy, over-provisioning and checkpointing can be adopted but, to properly design and evaluate such policies, specific techniques and tools are required. This paper attempts to fill this gap by proposing a new technique for the evaluation of relevant performance and energy figures of merit for MCS systems. It allows to get insights on them from three different perspectives: end users, contributors and service providers. Based on queuing networks (QN), the proposed technique relaxes the assumptions of existing solutions allowing a stochastic characterization of underlying phenomena through general, non exponential distributions. To cope with the contribution churning it extends the QN semantics of a service station with variable number of servers, implementing proper mechanisms to manage the memory issues thus arising in the underlying process. This way, a preliminary validation of the proposed QN model against an analytic one and an in depth investigation also considering checkpointing have been performed through a case study

    Extending queuing networks to assess mobile crowdsensing application performance

    Get PDF
    Copyright © 2016 EAI. The widespread and pervasive adoption of smart devices is boosting Internet of Things and contribution-based paradigms. In particular, Mobile Crowdsensing (MCS), due to its big potential of sharing and collecting large population of contributors-devices, is acquiring interest. Devices such as smartphones and smart boards are equipped with different sensors and actuators able to probe data about the physical environment. In a typical MCS scenario, data produced by sensors are sent to the remote server, where they are collected and processed by the applications. To exploit the MCS paradigm in large-scale business contexts the quality of service of MCS applications must be monitored and guaranteed. Therefore, techniques and tools able to represent and evaluate MCS system quality attributes such as performance and energy consumption are required. However, modeling MCS system is quite challenging since not only the number of users but also the number of contributors may vary. In this paper, we propose to adopt queuing networks, a well-known formalism able to deal with large number of requests, to address this issue. In particular we introduce and implement a new policy allowing the number of server to be variable. The proposed model is then adopted in the evaluation of an example, providing interesting insights on contribution, provisioning and usage impacts in terms of some performance and energy consumption metrics

    Real-Time Urban Weather Observations for Urban Air Mobility

    Get PDF
    Cities of the future will have to overcome congestion, air pollution and increasing infrastructure cost while moving more people and goods smoothly, efficiently and in an eco-friendly manner. Urban air mobility (UAM) is expected to be an integral component of achieving this new type of city. This is a new environment for sustained aviation operations. The heterogeneity of the urban fabric and the roughness elements within it create a unique environment where flight conditions can change frequently across very short distances. UAM vehicles with their lower mass, more limited thrust and slower speeds are especially sensitive to these conditions. Since traditional aviation weather products for observations and forecasts at an airport on the outskirts of a metropolitan area do not translate well to the urban environment, weather data for low-altitude urban airspace is needed and will be particularly critical for unlocking the full potential of UAM. To help address this need, crowdsourced weather data from sources prevalent in urban areas offer the opportunity to create dense meteorological observation networks in support of UAM. This paper considers a variety of potential observational sources and proposes a cyber-physical system architecture, including an incentive-based crowdsensing application, which empowers UAM weather forecasting and operations
    • …
    corecore