9 research outputs found

    A k-hop Collaborate Game Model: Extended to Community Budgets and Adaptive Non-Submodularity

    Full text link
    Revenue maximization (RM) is one of the most important problems on online social networks (OSNs), which attempts to find a small subset of users in OSNs that makes the expected revenue maximized. It has been researched intensively before. However, most of exsiting literatures were based on non-adaptive seeding strategy and on simple information diffusion model, such as IC/LT-model. It considered the single influenced user as a measurement unit to quantify the revenue. Until Collaborate Game model appeared, it considered activity as a basic object to compute the revenue. An activity initiated by a user can only influence those users whose distance are within k-hop from the initiator. Based on that, we adopt adaptive seed strategy and formulate the Revenue Maximization under the Size Budget (RMSB) problem. If taking into account the product's promotion, we extend RMSB to the Revenue Maximization under the Community Budget (RMCB) problem, where the influence can be distributed over the whole network. The objective function of RMSB and RMCB is adatpive monotone and not adaptive submodular, but in some special cases, it is adaptive submodular. We study the RMSB and RMCB problem under both the speical submodular cases and general non-submodular cases, and propose RMSBSolver and RMCBSolver to solve them with strong theoretical guarantees, respectively. Especially, we give a data-dependent approximation ratio for RMSB problem under the general non-submodular cases. Finally, we evaluate our proposed algorithms by conducting experiments on real datasets, and show the effectiveness and accuracy of our solutions

    Gradient Method for Continuous Influence Maximization with Budget-Saving Considerations

    Full text link
    Continuous influence maximization (CIM) generalizes the original influence maximization by incorporating general marketing strategies: a marketing strategy mix is a vector x=(x1,…,xd)\boldsymbol x = (x_1,\dots,x_d) such that for each node vv in a social network, vv could be activated as a seed of diffusion with probability hv(x)h_v(\boldsymbol x), where hvh_v is a strategy activation function satisfying DR-submodularity. CIM is the task of selecting a strategy mix x\boldsymbol x with constraint βˆ‘ixi≀k\sum_i x_i \le k where kk is a budget constraint, such that the total number of activated nodes after the diffusion process, called influence spread and denoted as g(x)g(\boldsymbol x), is maximized. In this paper, we extend CIM to consider budget saving, that is, each strategy mix x\boldsymbol x has a cost c(x)c(\boldsymbol x) where cc is a convex cost function, we want to maximize the balanced sum g(x)+Ξ»(kβˆ’c(x))g(\boldsymbol x) + \lambda(k - c(\boldsymbol x)) where Ξ»\lambda is a balance parameter, subject to the constraint of c(x)≀kc(\boldsymbol x) \le k. We denote this problem as CIM-BS. The objective function of CIM-BS is neither monotone, nor DR-submodular or concave, and thus neither the greedy algorithm nor the standard result on gradient method could be directly applied. Our key innovation is the combination of the gradient method with reverse influence sampling to design algorithms that solve CIM-BS: For the general case, we give an algorithm that achieves (12βˆ’Ξ΅)\left(\frac{1}{2}-\varepsilon\right)-approximation, and for the case of independent strategy activations, we present an algorithm that achieves (1βˆ’1eβˆ’Ξ΅)\left(1-\frac{1}{e}-\varepsilon\right) approximation.Comment: To appear in AAAI-20, 43 page

    Social Media Influencers- A Review of Operations Management Literature

    Get PDF
    This literature review provides a comprehensive survey of research on Social Media Influencers (SMIs) across the fields of SMIs in marketing, seeding strategies, influence maximization and applications of SMIs in society. Specifically, we focus on examining the methods employed by researchers to reach their conclusions. Through our analysis, we identify opportunities for future research that align with emerging areas and unexplored territories related to theory, context, and methodology. This approach offers a fresh perspective on existing research, paving the way for more effective and impactful studies in the future. Additionally, gaining a deeper understanding of the underlying principles and methodologies of these concepts enables more informed decision-making when implementing these strategie

    Profit Maximization over Social Networks

    No full text
    Influence maximization is the problem of finding a set of influential users in a social network such that the expected spread of influence under a certain propagation model is maximized. Much of the previous work has neglected the important distinction between social influence and actual product adoption. However, as recognized in the management science literature, an individual who gets influenced by social acquaintances may not necessarily adopt a product (or technology), due, e.g., to monetary concerns. In this work, we distinguish between influence and adoption by explicitly modeling the states of being influenced and of adopting a product. We extend the classical Linear Threshold (LT) model to incorporate prices and valuations, and factor them into users ’ decision-making process of adopting a product. We show that the expected profit function under our proposed model maintains submodularity under certain conditions, but no longer exhibits monotonicity, unlike the expected influence spread function. To maximize the expected profit under our extended LT model, we employ an unbudgeted greedy framework to propose three profit maximization algorithms. The results of our detailed experimental study on three real-world datasets demonstrate that of the three algorithms, PAGE, which assigns prices dynamically based on the profit potential of each candidate seed, has the best performance both in the expected profit achieved and in running time
    corecore