1,971 research outputs found

    Debugging Scandal: The Next Generation

    Get PDF
    In 1997, the general lack of debugging tools was termed "the debugging scandal". Today, as new languages are emerging to support software evolution, once more debugging support is lagging. The powerful abstractions offered by new languages are compiled away and transformed into complex synthetic structures. Current debugging tools only allow inspection in terms of this complex synthetic structure; they do not support observation of program executions in terms of the original development abstractions. In this position paper, we outline this problem and present two emerging lines of research that ease the burden for debugger implementers and enable developers to debug in terms of development abstractions. For both approaches we identify language-independent debugger components and those that must be implemented for every new language. One approach restores the abstractions by a tool external to the program. The other maintains the abstractions by using a dedicated execution environment, supporting the relevant abstractions. Both approaches have the potential of improving debugging support for new languages. We discuss the advantages and disadvantages of both approaches, outline a combination thereof and also discuss open challenges

    ORAC-DR: A generic data reduction pipeline infrastructure

    Get PDF
    ORAC-DR is a general purpose data reduction pipeline system designed to be instrument and observatory agnostic. The pipeline works with instruments as varied as infrared integral field units, imaging arrays and spectrographs, and sub-millimeter heterodyne arrays & continuum cameras. This paper describes the architecture of the pipeline system and the implementation of the core infrastructure. We finish by discussing the lessons learned since the initial deployment of the pipeline system in the late 1990s.Comment: 11 pages, 1 figure, accepted for publication in Astronomy and Computin

    Challenges for the adoption of model-driven web engineering approaches in industry

    Get PDF
    Model-Driven Web Engineering approaches have become an attractive research and technology solution for Web application development. However, for more than 20 years of development, the industry has not adopted them due to the mismatch between technical versus research requirements. In the context of this joint work between academia and industry, the authors conduct a survey among hundreds of engineers from different companies around the world and, by statistical analysis, they present the current problems of these approaches in scale. Then, a set of guidelines is provided to improve Model-Driven Web Engineering approaches in order to make them viable industry solutions.Facultad de InformáticaLaboratorio de Investigación y Formación en Informática Avanzad

    Causality, Information and Biological Computation: An algorithmic software approach to life, disease and the immune system

    Full text link
    Biology has taken strong steps towards becoming a computer science aiming at reprogramming nature after the realisation that nature herself has reprogrammed organisms by harnessing the power of natural selection and the digital prescriptive nature of replicating DNA. Here we further unpack ideas related to computability, algorithmic information theory and software engineering, in the context of the extent to which biology can be (re)programmed, and with how we may go about doing so in a more systematic way with all the tools and concepts offered by theoretical computer science in a translation exercise from computing to molecular biology and back. These concepts provide a means to a hierarchical organization thereby blurring previously clear-cut lines between concepts like matter and life, or between tumour types that are otherwise taken as different and may not have however a different cause. This does not diminish the properties of life or make its components and functions less interesting. On the contrary, this approach makes for a more encompassing and integrated view of nature, one that subsumes observer and observed within the same system, and can generate new perspectives and tools with which to view complex diseases like cancer, approaching them afresh from a software-engineering viewpoint that casts evolution in the role of programmer, cells as computing machines, DNA and genes as instructions and computer programs, viruses as hacking devices, the immune system as a software debugging tool, and diseases as an information-theoretic battlefield where all these forces deploy. We show how information theory and algorithmic programming may explain fundamental mechanisms of life and death.Comment: 30 pages, 8 figures. Invited chapter contribution to Information and Causality: From Matter to Life. Sara I. Walker, Paul C.W. Davies and George Ellis (eds.), Cambridge University Pres

    Masquerade detection using Singular Value Decomposition

    Get PDF
    Information systems and networks are highly susceptible to attacks in the form of intrusions. One such attack is by the masqueraders who impersonate legitimate users. Masqueraders can be detected in anomaly based intrusion detection by identifying the abnormalities in user behavior. This user behavior is logged in log files of different types. In our research we use the score based technique of Singular Value Decomposition to address the problem of masquerade detection on a unix based system. We have data collected in the form of sequential unix commands ran by 50 users. SVD is a linear algebraic technique, which has been previously used for applications like facial recognition. We present experimental results and we analyze the effectiveness and efficiency of this SVD-based masquerade detection

    Detecting anomalous energy consumption in android applications

    Get PDF
    The use of powerful mobile devices, like smartphones, tablets and laptops, are changing the way programmers develop software. While in the past the primary goal to optimize software was the run time optimization, nowadays there is a growing awareness of the need to reduce energy consumption. This paper presents a technique and a tool to detect anomalous energy consumption in Android applications, and to relate it directly with the source code of the application. We propose a dynamically calibrated model for energy consumption for the Android ecosystem, and that supports different devices. The model is then used as an API to monitor the application execution: first, we instrument the application source code so that we can relate energy consumption to the application source code; second, we use a statistical approach, based on fault-localization techniques, to localize abnormal energy consumption in the source code
    • …
    corecore