
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-18-2014

Masquerade detection using Singular Value
Decomposition
Sweta Vikram Shah
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Information Security
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shah, Sweta Vikram, "Masquerade detection using Singular Value Decomposition" (2014). Master's Projects. 379.
DOI: https://doi.org/10.31979/etd.uuwj-d4z7
https://scholarworks.sjsu.edu/etd_projects/379

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SJSU ScholarWorks

https://core.ac.uk/display/70409124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/379?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


 

 

                         

Masquerade detection using Singular Value Decomposition 

 

 

 

A Project 

Presented to 

The Faculty of the Department of Computer Science 

San José State University 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

 

By 

Sweta Shah 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2014 

Sweta Shah 

ALL RIGHTS RESERVED 

 



 

 

The Designated Project Committee Approves the Project Titled 

 

Masquerade detection using Singular Value Decomposition 

 

by 

Sweta Vikram Shah 

 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

 

SAN JOSÉ STATE UNIVERSITY 

 

 

                              Dr. Sami khuri                  Department of Computer Science 

                              Dr. Thomas Austin          Department of Computer Science 

                              Mr. Kunjan Kapadia       NetApp Inc. 

 

 

  



i 

 

Acknowledgements 

I am very thankful to my advisor Dr. Sami Khuri for his continuous guidance and support 

throughout this project. Also I would like to thank the committee members Dr. Thomas 

Austin and Mr. Kunjan Kapadia for monitoring the progress of the project and their valuable 

time. 

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Abstract 

Information systems and networks are highly susceptible to attacks in the form of 

intrusions. One such attack is by the masqueraders who impersonate legitimate users. 

Masqueraders can be detected in anomaly based intrusion detection by identifying the 

abnormalities in user behavior. This user behavior is logged in log files of different types. In 

our research we use the score based technique of Singular Value Decomposition to address 

the problem of masquerade detection on a unix based system. We have data collected in 

the form of sequential unix commands ran by 50 users. SVD is a linear algebraic technique, 

which has been previously used for applications like facial recognition. We present 

experimental results and we analyze the effectiveness and efficiency of this SVD-based 

masquerade detection. 
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Chapter 1 

Introduction 

 
 Computer-system logs provide a glimpse into the states of a running system. 

Instrumentation occasionally generates short messages that are collected in a system-

specific log. The content and format of logs can vary widely within different systems and 

also with components within a system [1]. Log Analysis is done to achieve goals like 

debugging, performance monitoring, fault detection, profiling and prediction. Log analysis 

can be used to find problems, define operational profiles, and even pro-actively prevent 

issues. Modern software-based systems collect information about their activity in logs. The 

information in the logs can therefore be used to trace the authenticity of the system’s 

activities. Logs can be in any form like single files, collections of files, databases, or streams 

of data in a raw text format [2]. 

 

A strong logging infrastructure is essential for supporting the variety of applications 

is described here. It requires at least two features: log generation and log storage. Most 

general-purpose logs are raw or in an unstructured text format. The dataset used for this 

research is from one of the statistical science publications [4] by Professor Matthias 

Schonlau on intrusion detection in computer systems. This dataset provides UNIX command 

line data of 50 users collected over a period of several months. The dataset has been 

seeded with masqueraders, which have been used for the testing phase of our model. 

 

The base for this research is to create a user profile indicating a genuine behavioral 

pattern and then test the actual behavior against the legitimate pattern to detect the 

abnormal behavior. The technique we use is Singular Value Decomposition (SVD), which is a 

matrix factorization technique. This technique takes a highly variable and diverse input 

matrix and reduces it to a smaller dimension, which will yet very well expose the 

substructure of the original input matrix [9]. The SVD is trained by a set of legitimate 
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commands provided as input in the form of a matrix, which gets transformed to a resultant 

matrix. This trained model is then used over the test data, which is a combination of both, 

legitimate and masquerade activities.  We have done our experiments on the Schonlau’s 

masquerade detection dataset for 50 users and got good results.  

Further, chapter 2 will highlight the extensive literature survey that was done to 

support the research done. Chapter 3 talks about masquerade detection, the various 

techniques that can be used to carry out detection and its relation to machine learning. 

Chapter 4 explains the technique of Singular Value decomposition used for masquerade 

detection, the dataset and the algorithm. Chapter 5 and 6 contain the experimental results, 

its explanation and conclusion. 
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Chapter 2 

Masquerade Detection 

2.1 Introduction 

In the modern world of computer security, a lot of effort has been put to prevent intrusions 

or attacks to a computer system. Masqueraders often attack systems that solely depend on 

password validations or login credentials. Once they have access to a user account they 

perform malicious activities, which they are not authorized for. 

A masquerader is someone who tries to act like a legitimate user and secretly perform 

operations, which are unlikely to be performed by a normal, legitimate user. These attacks 

are often seen happening within an organization and they remain hidden and are difficult to 

find. 

Intrusion detection performs vulnerability assessment to manage the security of computer 

networks and systems. It gathers information from several sources that record and maintain 

the system behavior on a timely basis and contain impressions of unusual or odd incidents.  

In fig.1, A Network intrusion detection system is used to detect malicious activities by 

trapping traffic at crucial points of a web application that travels in and out of the system. 

This information is then analyzed to detect intruders in a system. These systems are easy to 

deploy as they do not change or affect the overall infrastructure of the system. One of the 

drawbacks is that a large amount of data is gathered over a period of time, which can get 

hard to manage. 

Intrusion detection functions include: 

 Monitoring and analyzing both user and system activities 

 Analyzing system configurations and vulnerabilities 

 Assessing system and file integrity 

 Ability to recognize patterns that are typical of attacks 

 Analysis of abnormal activity patterns in system 

 Tracking user policy violations [7] 
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Figure 1. Detecting attacks on a network. [8] 

 

There are two techniques of intrusion detection namely anomaly based and signature based 
intrusion detection. 

 Anomaly based IDS: In an anomaly-based approach, the user profile or network traffic 

of the system is compared to a baseline formed by prior analysis carried out by the 

system. These baselines represent normal or acceptable states in a system. A massive or 

considerable deviation from this baseline generates an alarm in the intrusion detection 

system. 

 

 Signature based IDS: In this technique, elements like user activity or network activities 

are compared against a database of signatures, which represent malicious activities 

recorded previously over the system. In case of a new attack, there will be a time gap 

for that attack to be added to the signature database.  
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In this research, we consider the anomaly-based technique of intrusion detection by 

maintaining user profiles with a baseline of valid user activity to which the actual data is 

tested against. The SVD helps in detection of variance between the baseline and actual data 

in the UNIX environment. We assume each user to have his, own peculiar style or behavior 

in running UNIX commands. 

2.2 Machine Learning techniques: 

Machine Learning techniques are widely used in various applications like artificial 

intelligence, bio-informatics, data mining etc. A machine gets trained from previous 

experiences and then provides prediction or feedback on new situations that are unknown. 

There are two learning approaches in machine learning. 

1. Supervised learning:  

In our approach, SVD technique falls under the bracket of supervised learning 

where there is enough data available in advance that can be used to train a model for a 

good user. Once the model has extracted enough information from the existing dataset, 

it can be used to classify the valid user from the bad user (masquerader) in test data. 

 

2. Unsupervised learning:  

In unsupervised learning, we do not train a model in advance with available 

datasets. It performs classification of data into clusters and those clusters are later 

assigned class names. It’s an advantage in unsupervised learning, which can be used 

when you do not have the data available in advance or are unaware of the data fields. 

The results of unsupervised learning sometimes deviate from the human perception of a 

particular field or cluster to be important. It might end up considering other classes as 

important which are not expected. 
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2.3 Singular Value Decomposition 

Singular Value Decomposition is a supervised machine learning technique, which has a very 

popular application in facial recognition. Facial recognition is an important field of study 

used for identifying criminals, digital image processing and so on. For facial recognition, the 

face can be decomposed into small feature images known as the eigenfaces. The space 

covered by these eigenfaces is known as facespace. SVD is a technique, which mainly 

identifies and orders the dimensions along those datapoints, which exhibit most variation 

[9]. On identifying the most variations, it is easily possible to generate a very good 

approximation of the original dataset. That is one of the reason SVD is used for data 

reduction. 
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Chapter 3 

Literature Review 

Intrusion detection aims at the timely discovery of any activity that jeopardizes the 

integrity, availability, or the confidentiality of an IT system. Based on the activity it observes, 

an intrusion detection system (IDS) may be either of three types: host, network, or 

application [3]. A host IDS is usually set to audit the functionality of the underlying 

operating system, as it executes system calls, but can also be set to watch critical resources. 

Based on the classification scheme, an IDS is either misuse or anomaly. According to author 

Garcia and K.A.  Scotiabank the interest is in a problem, which is closely related to intrusion 

detection. The problem, which we call postmortem intrusion detection, is defined as 

follows: given a log file, find the point where the exploitation happened, if any. Thus, while 

intrusion detection tries to detect intrusions as they happen, postmortem intrusion 

detection monitors the system information that is offline with an intention to detect and 

locate the execution of the attack [3]. 

 

 The postmortem IDS stated by author Garcia and K.A.  Scotiabank use a novel 

combination of k-means and hidden markov model, which Garcia et altogether calls the 

KHMM. Since the IDS is a host based IDS, it also talks about T-stide. T-stide defines normal 

behavior by means of short-range correlations in the execution of system calls of a process. 

It is able to detect several common intrusions involving UNIX processes. T-stide uses a 

sliding window protocol to explore the user activity on the system, looking for any 

deviations from the profile of ordinary or expected system behavior [3]. 

 

The Garcia et al then suggests an approach to build an anomaly, learning-based, 

host-based intrusion detection model, where the working hypothesis is that an attack takes 

the form of an unusual sequence of system calls. In the test setup, the author assumes that 

the system has been compromised by an attack and that this intrusion has left some 

http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
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information somewhere [3]. The first step of the mechanism is reduction where a lot of 

repetitive information is removed. Then, the approach uses a sliding window, which would 

take a certain threshold of events from beginning each time, and feed it to a classification 

system. The results of the classification system are compared with other techniques for 

performance checks. The classification is carried out using the KHMM technique [3]. 

 

The use of event co-occurrence scheme to preprocess the data before performing 

principal component analysis is one of the ways of intrusion detection. There are two steps 

to decide an input data as normal or intrusive. The initial step is extraction of features of the 

data. The second step is classification of the extracted features of the data. ECM (Event Co-

Occurrence Matrix) represents the causal relationship by converting a section of an event 

sequence to an event co-occurrence matrix. An element of the co-occurrence matrix 

represents the occurrence of pair of events in the event sequence within a scope size [5]. 

 

On feeding the ECM, the principal component analysis technique will generate an 

eigen co-occurrence matrix which is the output of the learning phase. On projection of the 

event co-occurrence matrix on the Eigen matrix, Y.Oyama obtains the feature vector. The 

main feature of their implementation was the co-occurrence matrix representation of the 

feature and the reduction using PCA [5]. 

 

Log Analysis is crucial and fundamental to System Administration in today’s world. 

Logs provide with an insight on exactly what is happening with the system that is being 

monitored. The article talks a lot about how as the systems vary the instrumentation that 

writes the log also varies. It discusses the advancements and the challenges associated to 

log analysis [1]. 

 

 The paper provides an idea of some of the most common applications of log analysis, 

describes some of the log types which can be analyzed and the methods of analyzing them, 
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and describes some of the challenges associated with it [1]. First, is debugging, in which he 

talks about some previous techniques like “printf” or “grep” commands that were used to 

understand the flaws of the system.  The simplest and most common use for a debug log is 

to grep for a specific message. If a server operator assumes that a program crashed due to a 

kind of a network failure, then he would try to look for a message in the server logs [1]. But 

debugging gets difficult when we don’t know what to search for or the log messages 

individually are misleading. Second, is performance monitoring, in which log analysis can 

help us improve resource allocation, bottleneck situations and preparing resource usage 

statistics for long term review. 

 

Security is another very useful application where logs can help detect fraudulent activities. 

Intrusion detection is the term that is used to describe this kind of log analysis. This 

approach needs real time monitoring of the data that will help prevent such mishaps. Log 

analysis for security may be signature based, in which the user tries to detect specific 

behaviors that are known to be malicious; or anomaly based, in which the user looks for 

shift from typical/normal or good behavior [1]. The other applications discussed are 

prediction and reporting and profiling. User’s footprint over the Internet is a very valuable 

piece of information and it can help detect shopping patterns, likes, and dislikes of the 

consumer. Logs that monitor characteristics of tasks from a cluster’s workload can be used 

for resource utilization profiling at large data centers that compute terabytes of data which 

cannot afford any downtime [1]. 

  

The paper also speaks about how the machine learning techniques can be used for the 

various applications dealing with log analysis. Machine-learning techniques, especially 

anomaly detection, are normally used to monitor failure messages that can help root cause 

issues in the system. Machine-learning tools usually require input data as numerical feature 

vectors. It is a cumbersome task to convert free-text log messages into meaningful feature 

vectors that can used to analysis of the system under concern [1]. 

 



 

 

10 

 

 

Chapter 4 

Singular Value Decomposition for Masquerade detection 

4.1 Eigen Vectors and Eigen Values 

An Eigen vector is a non zero value of a particular square matrix say A, such that the 

multiplication of that vector x with A is equal to a scalar value multiplication of the vector. 

The standard equation is as given below. 

                                             

In Linear Algebra, if a vector satisfies the above equation, then x is considered to the eigen 

vector of A and as the eigen value associated to the vector x. The figure given below 

would explain the relation [19]. 

         

                                         Figure 2: Eigen vector x and Eigen value  

In the diagram above we see, that matrix A stretches vector x where the direction of x does 

not change but only the magnitude changes. Thus x is a vector of A. In our technique, the 

user commands are parsed and placed in a matrix A, and the variation of data in the matrix 

is placed in covariance matrix [19]. The eigen vectors and eigen values for these matrices is 

calculated and these eigen vectors are then projected into a space called as the eigenspace. 
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More the value of the eigen vector, more important would be its corresponding eigen 

vector in contributing to the variance of the dataset that we provided. Thus, SVD uses eigen 

vector and eigen values to understand the high variance points in the data. 

4.2 Singular Value Decomposition for Face Recognition 

In Face Recognition, the images are expressed in terms of a covariance matrix and the eigen 

vectors for these matrix are calculated. The eigen vectors which represent the variations in 

the images are projected on a space called the face space. These vectors enclose this face 

space. When an image is projected on to the face space, the original image can be 

reconstructed using the eigen vectors [17]. In facial recognition technique after the column 

vector is constructed with the pixels of individual image, we subtract the mean pixel value 

of all the training input images at that position from the actual pixel value of all the images 

which was being projected. 

 

                                          Figure 3: Training Images [10] 
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The next figure contains the eigen faces for the training input set of images shown above. 

These images are further used for projection. 

 

Figure 4: Eigen faces of the images [10] 

We would now look at the projection of images. When a known, legitimate image is 

projected on the eigen space, the original image can be reconstructed. But when an 

unknown, invalid image is projected on the eigen space, the original image cannot be 

reconstructed. The next image shows the projection image for a known as well as an 

unknown image on the eigen space [17]. 

 

Figure 5: Projection of a known image 
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Figure 6: Projection of an unknown image 

 

4.3 Schonlau’s Dataset 

The dataset consists of UNIX commands ran by 50 different users. For each user the dataset 

consists of 15k commands. Genuine users run the first 5k commands and the remaining 10k 

commands are seeded with masqueraders and our algorithm aims at identifying the 

masqueraders from those 10k commands. The 10k commands are thought of as 100 blocks 

of 100 commands each. The algorithm would try to locate the masqueraded block out of 

the 100 blocks of commands. 

After the first 5000 commands, the probability of a masquerader block starts with 1%. If a 

block is a masquerader block, there is a probability of 80% that the next block too might be 

a masquerader block. Up to 5% of the test data i.e. the 10k commands can be masquerader 

blocks. The website also provides the location of masqueraders in the dataset to validate 

the results of the masquerade detection algorithm. The file has 50 columns for 50 different 

users, where each column has 100 values for 100 blocks of test data. The values in the 

columns are in the form of 1’s and 0’s. 1 represents a masquerade block and 0 represents a 

genuine user block.  
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Sample Dataset: 

 Here is a sequence for legitimate user commands for User 3 of the dataset. 

cpp 
sh 
xrdb 
cpp 
sh 
xrdb 
mkpts 
env 
csh 
csh 
csh 
sh 

 

 This is a sequence of commands by the masquerader who pretends to be User 3 

 egrep 
 egrep 
 egrep 
 java  
 java 
 make 
 .java_wr 
 expr 
 expr 
 dirname 
 basename 
 egrep 
 egrep 
 egrep 
 egrep 
 

The difference in the commands as well the sequence in which they are run would highlight 
this block as a masquerade block in the results of our implementation. 
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 Example of SVD 

SVD is based on linear algebraic expression which states that a rectangular matrix can be 

broken down into three matrices – a diagonal matrix U, a  diagonal matrix S and a transpose 

of orthogonal matrix V. 

 

 

Starting with a matrix A, 

 

 

So, inorder to find U, we need transpose of A 

 

 

Lets now find the eigen values and eigen vectors of the above matrix. 

 

Forming an equation, 
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Rearranging the equation gives us, 

 

Finally we get, 

 

Now we would substitute the eigen values in the equation, 

On substituting 12, 

 

On substituting 10, 

 

Thus the final matrix is where column one is eigen vector for value 12 and the second 

column is for value 10: 

 

On applying orthonormalization we get U as, 



 

 

17 

 

 

Similarly we need to find transpose of A x A for matrix V and follow the same steps. That 

gives us, 

 

The non-zero eigen values of U and V form the diagonal elements of the diagonal matrix S. 

These valus are same for both U and V. We also add a zero column vector for proper 

dimensions. 

  

On multiplying all the three matrices we end up getting the original matrix A. 

 

This example clearly illustrates how a matrix gets decomposed into matrices [9] using the 

Singular Value Decomposition technique, which has been used for the user commands in 

the context of our project. 
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4.4 Algorithm for masquerade detection 

According to the dataset, the first 5K commands are legitimate, out of which we use the 

first 2K commands for training the system and the remaining 3K commands to form a 

threshold of genuine data. SVD would be applied to the training set of 2K commands. 

1. The training set gets divided into 20 blocks of 100 commands each forming an input 

matrix of 100 x 20. On applying SVD to this matrix, we get matrices for U, V and Sigma(S). 

Matrix A is given by Matrix U multiplied by Matrix S (Sigma) multiplied by transpose (T) of 

Matrix V. The size of each of them is 100 x 20, 20 x 20 and 20 x 20.  

A = U S V
T   

Where, A is 100 x 20 

2. The matrix U contains vital information about the input matrix A. We need to project the 

input matrix A on an Eigen space which is UT.  

UT  x   A  =  Output of training phase [20 x 20] 

3. The Threshold data set of 3k commands are divided into 30 blocks of 100 commands each 

which is 100 x 30 in dimension. We now project the threshold dataset on the eigen space 

(UT). 

UT   x   B  = Projection of Threshold data on the Eigen space [20 x 30]  

4.   Euclidean distance will be calculated between the threshold data projection and the 

training output where every column of threshold set will be compared to every other 

column of the training output and the minimum value would be selected. This results in 

generating the distance between training data and threshold data in the form of 30 scores. 
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5. The test data set consisting of 10k commands are divided into 100 blocks of 100 

commands each and are projected on the Eigen space just like the threshold dataset. 

UT  x   T  =  Projection of test data on the Eigen space [20 x 100] 

6. Euclidean distance will be calculated between the test data projection and the training 

output where every column of test set will be compared to every other column of the 

training output and the minimum value would be selected. This results in generating the 

distance between training data and test data in the form of 100 scores. 

7. The threshold dataset scores and the test dataset scores are then projected on a graph. 

The threshold scores form a threshold indicating the boundary, which represents 

commands from a legitimate user. The test data scores are projected to see instances 

where they are far apart from the threshold data scores, which indicate the masquerade 

blocks of data. 

 The scores from the test data were then compared to Schonlau’s result validation 

file, which provides the location of all the masqueraders in the test dataset. This helped to 

verify the performance of the algorithm on the dataset. The experiments were run on all 50 

users and results would be seen in the next section.   
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Chapter 5 

Experiments 

The charts contain the plotting of the threshold scores and the test data scores on a scatter 

plot. The main observation on the chart would be to see points where the test data scores 

are far apart form the threshold data scores.  

Fig 6 shows results for evaluating masquerade out of set of legitimate commands. On 

running the technique, the results contain 30 values that indicate the threshold and 100 values 

that represent the test data scores. Series 2 represents a single value for the threshold, which 

is an average of threshold values. This result indicates that none of the test data scores 

surpass the threshold, which indicates there has not been a masquerade attack for User 1.  

 

User 1 

  

No. of scores 

Figure 6: Scores for User 1 
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In fig 7 for User 2, the threshold value is 10.57 so all the test data points, which cross this 

range, would be considered to be as masquerade data points. Block 61 and 62 in the chart are 

far beyond the threshold and that is why these commands blocks of test data would be 

considered as masquerade blocks. The test dataset of 10k commands get divided into 100 

blocks of 100k commands each. The result indicates that block 61 and 62 are blocks of 

commands ran by the masquerader. 

 

User 2 

 

                                            No. of scores 

                                  Figure 7: Scores for User 2 
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 5000 blocks of commands with 100 commands in each block were tested as a part of the 

Testing Phase. Each of those blocks was identified as a masquerade or a non-masquerade 

block of commands.  Some of the blocks were identified as false positive alarm or false 

negative alarm. Table 1 indicates the total number of blocks in each category and the 

users that exhibited those alarms. 

 

 Analysis of results for 5000 blocks [False Positives, False Negatives/Error Free]: 
 
 
Category Number of blocks (Sum of 

blocks of users in a category) 
Users  

False Positives 13 6,37 

False Negatives 754 2,7,10,15,16,24,25,26,34,36,42,45, 
48 

No False 
Positives/Negatives 

2133 27,29,31,32,33,35,38,39,40,41,43, 
46,49,50 

 

Table 1: False Positive/Negative statistics 
 
Table 1 Specifies results for users, which had more intruder alarms than expected (False 

positives), lesser alarms than expected (False negatives) and those, which had no false 

positives or negatives. Rest of the command blocks (4233 blocks), were accurate and were 

neither false positive/negative or may belong to the category of having no masquerades. 

These include all the blocks that were identified as a masquerade or a non-masquerade 

block in the complete testing phase and if that identification was valid. 

 

 Statistics for masquerade free files: 

 No. Out of total users (%)  Error 

Masquerade Free Files in the 

dataset 

21 42%  

No 
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Masquerade Free Files 

detected by the system 

21 42% 

Table 2: Evaluation for Masquerade Free Files 
 

Table 2 indicates that our implementation of the technique could identify all the users, 

which did not have any masqueraders attacking them exactly. Out of 50 users, there were 

21 users with no masquerader commands. 

 

 Statistics of error free results 

 No. Of users Out of total users(%)  

Exact results 

(Results with no false or 

missing alarms) 

 

35 

 

70% 

Table 3: Evaluation of Exact results 

Table 3 shows there were exactly 35 users for which the results had no false positives and 

negatives. Based on the data in table 1 and table 2 exact results is the combined sum of 

masquerade Free Files and no False Positives/Negatives data set. Table 3 also shows 70% of 

total data is exact determination of the results. They are identified exact masquerader 

blocks as per the result set on Schonlau’s page [11]. 

 System Setup for execution: 

The code implementation for the SVD technique is done in Java using the Java SE 

development Kit 7. JAMA library was used for all the matrix computations involved in the 

technique. The code has been divided into two modules, the Trainining Model Phase and 

the TestExecution phase. The training model processes the training dataset and the test 

execution is done on the threshold dataset and the test dataset. The system configuration is 

as follows. 
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Operating System: MacOS X version 10.9.3 

Processor: 2.6GHz Intel Core i7 

Memory: 16GB 

Program runtime for 1 User: 2101 milliseconds (35.01 seconds)  
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Chapter 6 

Comparison other techniques 

The statistical science research paper implemented by Prof. Schonlau [4] and other 

scientists has compared several other techniques on the same dataset. There is also a well-

defined comparison of these different statistical approaches. Each of these techniques have 

their own thresholds on the basis on which the false positives and negatives get calculated. 

The techniques are as follows: 

1. Uniqueness 
2. Bayes one-step Markov 
3. Hybrid multistep Markov 
4. Compression 
5. Sequence match 
6. IPAM 

 

The best performing techniques were the Bayes one-step and Hybrid multistep technique. 

Bayes one-step Markov: 

It is based on one-step transitions from one command to the next. It uses a Bayes factor 

statistic to test the null hypothesis that the observed one-step command transition 

probabilities [20]. 

Hybrid multistep Markov: 

It is a combination of markov chain and the independence model. Whenever Markov 

models become unusable on the dataset, in such cases a model of probabilities is used. 

Uniqueness:The uniqueness approach is based on the idea that commands not previously 

seen in the training. Data may indicate an attempted masquerade. Moreover, the fewer 
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users that are known to use that command, the more indicative that command is of a 

masquerade [20]. 

Compression: 

This technique creates a mapping of training set and the testing set to the amount of 

compression possible. The differentiating factor would be the fact that data different form 

the restricted set of training set would not compress as well as the training set [20]. 

IPAM (Incremental probabilistic action modeling): 

This technique depends on one step command change probabilities estimated using the 

training dataset. This model keeps updating itself with modifications to the training step 

updating the overall analysis [20]. 

Sequence Match: 

In this technique, a similarity measure is computed between the recent commands and the 

existing user’s profile. The user’s profile too is a sequence of 10 commands used by the user 

in the past. The similarity measure is a match comparison between the user profile and the 

new set of commands [20]. 
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Statistics of each technique: 

Method False Alarms(%) Missing Alarms(%) 

Uniqueness 1.4 60.6 

Bayes one-step Markov 6.7 30.7 

Hybrid multistep Markov 3.2 50.7 

Compression 5.0 65.8 

Sequence-Match 3.7 63.2 

IPAM 2.7 58.9 

SVD 4.0 26 

 

Table 4: Performance statistics of other technique [20] 

 Table 4 above shows the performance of other intrusion detection techniques 

compared to Singular value detection (SVD). As per the table 4 above, 4% is false alarms and 

26% for the missing alarms for SVD. This technique looks strong when looked at the data on 

missing alarms. The highlighted technique (SVD) in the table comes from the experiment 

performed in this project. 

As per their research, Hybrid multistep did the best followed by Bayes one step Markov and 

then comes Uniqueness. One of their observations in the results was that as the false alarm 

rate went down, the missing alarm rate went up. SVD thus proves to be better than Bayes 

one-step Markov, but poorer to Compression as far as false alarms are considered. In case of 

missing alarms, it is better than all the other techniques but slightly less efficient than Bayes 

one-step markov [20]. 
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ROC curves: 

 

                                          Figure 57: ROC for other technique [20] 

 
Figure 58: ROC for SVD 
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Chapter 7 

Conclusions and Future Work 

Other machine learning techniques have been used in the past to carry out masquerade 

detection on user data. Our technique helps at user profile building, where per user analysis 

helps us to identify masqueraders for that particular user. This approach can help in the 

protection of a huge system where there are different users using a system. The admin can 

use the application to identify intrusions for a specific user at specific time instances. Our 

implementation works well on large datasets with huge variety in the dataset. It identifies 

crucial data points to create a small yet effective representation of the original dataset. We 

have done experiments on 50 different user’s dataset to validate the technique’s 

performance. The technique works fast and efficiently.  

One of the future improvements that can be done to this technique is adding the factor of 

conceptual drift to this technique. Conceptual drift is a concern in every machine learning 

technique, where every change in user behavior should not be considered as masquerade 

intrusion. Optimizations can be made to adapt to this change in user behavior, where there 

can be a distinguishing factor between user behavioral change and intruder actions. One of 

the approaches to achieve this can be done by updating the training model frequently using 

a certain kind of feedback mechanism on regular intervals. This help the system adapt to 

new changes in the user profile. 

Another improvement that could be done is real time dashboards that run the application 

on the log files in real time. Whenever there is a spike in the commands being tested on the 

SVD machine, alerts can be generated to warn the admin of the centralized or shared 

system. 
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Appendix 

Results from User 3 to User 50   
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