
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-18-2014

Masquerade detection using Singular Value
Decomposition
Sweta Vikram Shah
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Information Security
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shah, Sweta Vikram, "Masquerade detection using Singular Value Decomposition" (2014). Master's Projects. 379.
DOI: https://doi.org/10.31979/etd.uuwj-d4z7
https://scholarworks.sjsu.edu/etd_projects/379

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SJSU ScholarWorks

https://core.ac.uk/display/70409124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/379?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Masquerade detection using Singular Value Decomposition

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Sweta Shah

©2014

Sweta Shah

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Masquerade detection using Singular Value Decomposition

by

Sweta Vikram Shah

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

 Dr. Sami khuri Department of Computer Science

 Dr. Thomas Austin Department of Computer Science

 Mr. Kunjan Kapadia NetApp Inc.

i

Acknowledgements

I am very thankful to my advisor Dr. Sami Khuri for his continuous guidance and support

throughout this project. Also I would like to thank the committee members Dr. Thomas

Austin and Mr. Kunjan Kapadia for monitoring the progress of the project and their valuable

time.

ii

Abstract

Information systems and networks are highly susceptible to attacks in the form of

intrusions. One such attack is by the masqueraders who impersonate legitimate users.

Masqueraders can be detected in anomaly based intrusion detection by identifying the

abnormalities in user behavior. This user behavior is logged in log files of different types. In

our research we use the score based technique of Singular Value Decomposition to address

the problem of masquerade detection on a unix based system. We have data collected in

the form of sequential unix commands ran by 50 users. SVD is a linear algebraic technique,

which has been previously used for applications like facial recognition. We present

experimental results and we analyze the effectiveness and efficiency of this SVD-based

masquerade detection.

iii

Table of Contents:

Sr.no Topic Page
Number

1. Introduction 1

2. Masquerade Detection 3

 2.1 Introduction 3

 2.2 Machine Learning Techniques 5

 2.3 Singular Value Decomposition 6

3 Literature Review 7

4. Singular Value Decomposition for Masquerade Detection 10

 4.1 Eigen Values and Eigen Vectors 10

 4.2 Singular Value Decomposition for Face Recognition 11

 4.3 Schonlau Dataset 13

 4.4 Algorithm for masquerade detection 18

5. Experiments 20

6. Comparison to other Techniques 25

7. Conclusion and Future Work 29

 List of References 30

 Appendix 32

iv

List of Figures

Title Page no.

1. Detecting attacks on a network.
4

2. Eigen vector x and Eigen value 10

3.Training Images 11

4. Eigen faces of the images 12

5. Projection of a known image 12

6. Projection of an unknown image 13

7.Scores for User 1 20

8. Scores for User 2 21

9. Scores for User 3 32

10. Scores for User 4 32

11. Scores for User 5 33

12. Scores for User 6 33

13. Scores for User 7 34

14. Scores for User 8 34

15. Scores for User 9 35

16. Scores for User 10 35

17. Scores for User 11 36

18. Scores for User 12 36

19. Scores for User 13 37

20. Scores for User 14
37

21. Scores for User 15
38

v

22. Scores for User 16
38

23. Scores for User 17
39

24. Scores for User 18 39

25. Scores for User 19
40

26. Scores for User 20
40

27. Scores for User 21
41

28. Scores for User 22
41

29. Scores for User 23
42

30. Scores for User 24 42

31 Scores for User 25
43

32. Scores for User 26
43

33. Scores for User 27 44

34. Scores for User 28 44

35. Scores for User 29 45

36. Scores for User 30 45

37. Scores for User 31 46

38. Scores for User 32 46

39. Scores for User 33 47

40. Scores for User 34 47

41. Scores for User 35 48

vi

42. Scores for User 36 48

43. Scores for User 37 49

44. Scores for User 38 49

45. Scores for User 39 50

46. Scores for User 40 50

47. Scores for User 41 51

48. Scores for User 42 51

49. Scores for User 43 52

50. Scores for User 44 52

51. Scores for User 45 53

52. Scores for User 46 53

53. Scores for User 47 54

54. Scores for User 48 54

55. Scores for User 49 55

56. Scores for User 50 55

57. ROC for other techniques 28

58. ROC for SVD 28

List of Tables

Title No.

1. False Positive/Negative statistics 22

2. Evaluation for Masquerade Free Files 22

3. Evaluation of Exact results 23

4. Performance statistics of other techniques 27

1

Chapter 1

Introduction

 Computer-system logs provide a glimpse into the states of a running system.

Instrumentation occasionally generates short messages that are collected in a system-

specific log. The content and format of logs can vary widely within different systems and

also with components within a system [1]. Log Analysis is done to achieve goals like

debugging, performance monitoring, fault detection, profiling and prediction. Log analysis

can be used to find problems, define operational profiles, and even pro-actively prevent

issues. Modern software-based systems collect information about their activity in logs. The

information in the logs can therefore be used to trace the authenticity of the system’s

activities. Logs can be in any form like single files, collections of files, databases, or streams

of data in a raw text format [2].

A strong logging infrastructure is essential for supporting the variety of applications

is described here. It requires at least two features: log generation and log storage. Most

general-purpose logs are raw or in an unstructured text format. The dataset used for this

research is from one of the statistical science publications [4] by Professor Matthias

Schonlau on intrusion detection in computer systems. This dataset provides UNIX command

line data of 50 users collected over a period of several months. The dataset has been

seeded with masqueraders, which have been used for the testing phase of our model.

The base for this research is to create a user profile indicating a genuine behavioral

pattern and then test the actual behavior against the legitimate pattern to detect the

abnormal behavior. The technique we use is Singular Value Decomposition (SVD), which is a

matrix factorization technique. This technique takes a highly variable and diverse input

matrix and reduces it to a smaller dimension, which will yet very well expose the

substructure of the original input matrix [9]. The SVD is trained by a set of legitimate

2

commands provided as input in the form of a matrix, which gets transformed to a resultant

matrix. This trained model is then used over the test data, which is a combination of both,

legitimate and masquerade activities. We have done our experiments on the Schonlau’s

masquerade detection dataset for 50 users and got good results.

Further, chapter 2 will highlight the extensive literature survey that was done to

support the research done. Chapter 3 talks about masquerade detection, the various

techniques that can be used to carry out detection and its relation to machine learning.

Chapter 4 explains the technique of Singular Value decomposition used for masquerade

detection, the dataset and the algorithm. Chapter 5 and 6 contain the experimental results,

its explanation and conclusion.

3

Chapter 2

Masquerade Detection

2.1 Introduction

In the modern world of computer security, a lot of effort has been put to prevent intrusions

or attacks to a computer system. Masqueraders often attack systems that solely depend on

password validations or login credentials. Once they have access to a user account they

perform malicious activities, which they are not authorized for.

A masquerader is someone who tries to act like a legitimate user and secretly perform

operations, which are unlikely to be performed by a normal, legitimate user. These attacks

are often seen happening within an organization and they remain hidden and are difficult to

find.

Intrusion detection performs vulnerability assessment to manage the security of computer

networks and systems. It gathers information from several sources that record and maintain

the system behavior on a timely basis and contain impressions of unusual or odd incidents.

In fig.1, A Network intrusion detection system is used to detect malicious activities by

trapping traffic at crucial points of a web application that travels in and out of the system.

This information is then analyzed to detect intruders in a system. These systems are easy to

deploy as they do not change or affect the overall infrastructure of the system. One of the

drawbacks is that a large amount of data is gathered over a period of time, which can get

hard to manage.

Intrusion detection functions include:

 Monitoring and analyzing both user and system activities

 Analyzing system configurations and vulnerabilities

 Assessing system and file integrity

 Ability to recognize patterns that are typical of attacks

 Analysis of abnormal activity patterns in system

 Tracking user policy violations [7]

4

Figure 1. Detecting attacks on a network. [8]

There are two techniques of intrusion detection namely anomaly based and signature based
intrusion detection.

 Anomaly based IDS: In an anomaly-based approach, the user profile or network traffic

of the system is compared to a baseline formed by prior analysis carried out by the

system. These baselines represent normal or acceptable states in a system. A massive or

considerable deviation from this baseline generates an alarm in the intrusion detection

system.

 Signature based IDS: In this technique, elements like user activity or network activities

are compared against a database of signatures, which represent malicious activities

recorded previously over the system. In case of a new attack, there will be a time gap

for that attack to be added to the signature database.

5

In this research, we consider the anomaly-based technique of intrusion detection by

maintaining user profiles with a baseline of valid user activity to which the actual data is

tested against. The SVD helps in detection of variance between the baseline and actual data

in the UNIX environment. We assume each user to have his, own peculiar style or behavior

in running UNIX commands.

2.2 Machine Learning techniques:

Machine Learning techniques are widely used in various applications like artificial

intelligence, bio-informatics, data mining etc. A machine gets trained from previous

experiences and then provides prediction or feedback on new situations that are unknown.

There are two learning approaches in machine learning.

1. Supervised learning:

In our approach, SVD technique falls under the bracket of supervised learning

where there is enough data available in advance that can be used to train a model for a

good user. Once the model has extracted enough information from the existing dataset,

it can be used to classify the valid user from the bad user (masquerader) in test data.

2. Unsupervised learning:

In unsupervised learning, we do not train a model in advance with available

datasets. It performs classification of data into clusters and those clusters are later

assigned class names. It’s an advantage in unsupervised learning, which can be used

when you do not have the data available in advance or are unaware of the data fields.

The results of unsupervised learning sometimes deviate from the human perception of a

particular field or cluster to be important. It might end up considering other classes as

important which are not expected.

6

2.3 Singular Value Decomposition

Singular Value Decomposition is a supervised machine learning technique, which has a very

popular application in facial recognition. Facial recognition is an important field of study

used for identifying criminals, digital image processing and so on. For facial recognition, the

face can be decomposed into small feature images known as the eigenfaces. The space

covered by these eigenfaces is known as facespace. SVD is a technique, which mainly

identifies and orders the dimensions along those datapoints, which exhibit most variation

[9]. On identifying the most variations, it is easily possible to generate a very good

approximation of the original dataset. That is one of the reason SVD is used for data

reduction.

7

Chapter 3

Literature Review

Intrusion detection aims at the timely discovery of any activity that jeopardizes the

integrity, availability, or the confidentiality of an IT system. Based on the activity it observes,

an intrusion detection system (IDS) may be either of three types: host, network, or

application [3]. A host IDS is usually set to audit the functionality of the underlying

operating system, as it executes system calls, but can also be set to watch critical resources.

Based on the classification scheme, an IDS is either misuse or anomaly. According to author

Garcia and K.A. Scotiabank the interest is in a problem, which is closely related to intrusion

detection. The problem, which we call postmortem intrusion detection, is defined as

follows: given a log file, find the point where the exploitation happened, if any. Thus, while

intrusion detection tries to detect intrusions as they happen, postmortem intrusion

detection monitors the system information that is offline with an intention to detect and

locate the execution of the attack [3].

 The postmortem IDS stated by author Garcia and K.A. Scotiabank use a novel

combination of k-means and hidden markov model, which Garcia et altogether calls the

KHMM. Since the IDS is a host based IDS, it also talks about T-stide. T-stide defines normal

behavior by means of short-range correlations in the execution of system calls of a process.

It is able to detect several common intrusions involving UNIX processes. T-stide uses a

sliding window protocol to explore the user activity on the system, looking for any

deviations from the profile of ordinary or expected system behavior [3].

The Garcia et al then suggests an approach to build an anomaly, learning-based,

host-based intrusion detection model, where the working hypothesis is that an attack takes

the form of an unusual sequence of system calls. In the test setup, the author assumes that

the system has been compromised by an attack and that this intrusion has left some

http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection

8

information somewhere [3]. The first step of the mechanism is reduction where a lot of

repetitive information is removed. Then, the approach uses a sliding window, which would

take a certain threshold of events from beginning each time, and feed it to a classification

system. The results of the classification system are compared with other techniques for

performance checks. The classification is carried out using the KHMM technique [3].

The use of event co-occurrence scheme to preprocess the data before performing

principal component analysis is one of the ways of intrusion detection. There are two steps

to decide an input data as normal or intrusive. The initial step is extraction of features of the

data. The second step is classification of the extracted features of the data. ECM (Event Co-

Occurrence Matrix) represents the causal relationship by converting a section of an event

sequence to an event co-occurrence matrix. An element of the co-occurrence matrix

represents the occurrence of pair of events in the event sequence within a scope size [5].

On feeding the ECM, the principal component analysis technique will generate an

eigen co-occurrence matrix which is the output of the learning phase. On projection of the

event co-occurrence matrix on the Eigen matrix, Y.Oyama obtains the feature vector. The

main feature of their implementation was the co-occurrence matrix representation of the

feature and the reduction using PCA [5].

Log Analysis is crucial and fundamental to System Administration in today’s world.

Logs provide with an insight on exactly what is happening with the system that is being

monitored. The article talks a lot about how as the systems vary the instrumentation that

writes the log also varies. It discusses the advancements and the challenges associated to

log analysis [1].

 The paper provides an idea of some of the most common applications of log analysis,

describes some of the log types which can be analyzed and the methods of analyzing them,

9

and describes some of the challenges associated with it [1]. First, is debugging, in which he

talks about some previous techniques like “printf” or “grep” commands that were used to

understand the flaws of the system. The simplest and most common use for a debug log is

to grep for a specific message. If a server operator assumes that a program crashed due to a

kind of a network failure, then he would try to look for a message in the server logs [1]. But

debugging gets difficult when we don’t know what to search for or the log messages

individually are misleading. Second, is performance monitoring, in which log analysis can

help us improve resource allocation, bottleneck situations and preparing resource usage

statistics for long term review.

Security is another very useful application where logs can help detect fraudulent activities.

Intrusion detection is the term that is used to describe this kind of log analysis. This

approach needs real time monitoring of the data that will help prevent such mishaps. Log

analysis for security may be signature based, in which the user tries to detect specific

behaviors that are known to be malicious; or anomaly based, in which the user looks for

shift from typical/normal or good behavior [1]. The other applications discussed are

prediction and reporting and profiling. User’s footprint over the Internet is a very valuable

piece of information and it can help detect shopping patterns, likes, and dislikes of the

consumer. Logs that monitor characteristics of tasks from a cluster’s workload can be used

for resource utilization profiling at large data centers that compute terabytes of data which

cannot afford any downtime [1].

The paper also speaks about how the machine learning techniques can be used for the

various applications dealing with log analysis. Machine-learning techniques, especially

anomaly detection, are normally used to monitor failure messages that can help root cause

issues in the system. Machine-learning tools usually require input data as numerical feature

vectors. It is a cumbersome task to convert free-text log messages into meaningful feature

vectors that can used to analysis of the system under concern [1].

10

Chapter 4

Singular Value Decomposition for Masquerade detection

4.1 Eigen Vectors and Eigen Values

An Eigen vector is a non zero value of a particular square matrix say A, such that the

multiplication of that vector x with A is equal to a scalar value multiplication of the vector.

The standard equation is as given below.

In Linear Algebra, if a vector satisfies the above equation, then x is considered to the eigen

vector of A and as the eigen value associated to the vector x. The figure given below

would explain the relation [19].

 Figure 2: Eigen vector x and Eigen value

In the diagram above we see, that matrix A stretches vector x where the direction of x does

not change but only the magnitude changes. Thus x is a vector of A. In our technique, the

user commands are parsed and placed in a matrix A, and the variation of data in the matrix

is placed in covariance matrix [19]. The eigen vectors and eigen values for these matrices is

calculated and these eigen vectors are then projected into a space called as the eigenspace.

11

More the value of the eigen vector, more important would be its corresponding eigen

vector in contributing to the variance of the dataset that we provided. Thus, SVD uses eigen

vector and eigen values to understand the high variance points in the data.

4.2 Singular Value Decomposition for Face Recognition

In Face Recognition, the images are expressed in terms of a covariance matrix and the eigen

vectors for these matrix are calculated. The eigen vectors which represent the variations in

the images are projected on a space called the face space. These vectors enclose this face

space. When an image is projected on to the face space, the original image can be

reconstructed using the eigen vectors [17]. In facial recognition technique after the column

vector is constructed with the pixels of individual image, we subtract the mean pixel value

of all the training input images at that position from the actual pixel value of all the images

which was being projected.

 Figure 3: Training Images [10]

12

The next figure contains the eigen faces for the training input set of images shown above.

These images are further used for projection.

Figure 4: Eigen faces of the images [10]

We would now look at the projection of images. When a known, legitimate image is

projected on the eigen space, the original image can be reconstructed. But when an

unknown, invalid image is projected on the eigen space, the original image cannot be

reconstructed. The next image shows the projection image for a known as well as an

unknown image on the eigen space [17].

Figure 5: Projection of a known image

13

Figure 6: Projection of an unknown image

4.3 Schonlau’s Dataset

The dataset consists of UNIX commands ran by 50 different users. For each user the dataset

consists of 15k commands. Genuine users run the first 5k commands and the remaining 10k

commands are seeded with masqueraders and our algorithm aims at identifying the

masqueraders from those 10k commands. The 10k commands are thought of as 100 blocks

of 100 commands each. The algorithm would try to locate the masqueraded block out of

the 100 blocks of commands.

After the first 5000 commands, the probability of a masquerader block starts with 1%. If a

block is a masquerader block, there is a probability of 80% that the next block too might be

a masquerader block. Up to 5% of the test data i.e. the 10k commands can be masquerader

blocks. The website also provides the location of masqueraders in the dataset to validate

the results of the masquerade detection algorithm. The file has 50 columns for 50 different

users, where each column has 100 values for 100 blocks of test data. The values in the

columns are in the form of 1’s and 0’s. 1 represents a masquerade block and 0 represents a

genuine user block.

14

Sample Dataset:

 Here is a sequence for legitimate user commands for User 3 of the dataset.

cpp
sh
xrdb
cpp
sh
xrdb
mkpts
env
csh
csh
csh
sh

 This is a sequence of commands by the masquerader who pretends to be User 3

 egrep
 egrep
 egrep
 java
 java
 make
 .java_wr
 expr
 expr
 dirname
 basename
 egrep
 egrep
 egrep
 egrep

The difference in the commands as well the sequence in which they are run would highlight
this block as a masquerade block in the results of our implementation.

15

 Example of SVD

SVD is based on linear algebraic expression which states that a rectangular matrix can be

broken down into three matrices – a diagonal matrix U, a diagonal matrix S and a transpose

of orthogonal matrix V.

Starting with a matrix A,

So, inorder to find U, we need transpose of A

Lets now find the eigen values and eigen vectors of the above matrix.

Forming an equation,

16

Rearranging the equation gives us,

Finally we get,

Now we would substitute the eigen values in the equation,

On substituting 12,

On substituting 10,

Thus the final matrix is where column one is eigen vector for value 12 and the second

column is for value 10:

On applying orthonormalization we get U as,

17

Similarly we need to find transpose of A x A for matrix V and follow the same steps. That

gives us,

The non-zero eigen values of U and V form the diagonal elements of the diagonal matrix S.

These valus are same for both U and V. We also add a zero column vector for proper

dimensions.

On multiplying all the three matrices we end up getting the original matrix A.

This example clearly illustrates how a matrix gets decomposed into matrices [9] using the

Singular Value Decomposition technique, which has been used for the user commands in

the context of our project.

18

4.4 Algorithm for masquerade detection

According to the dataset, the first 5K commands are legitimate, out of which we use the

first 2K commands for training the system and the remaining 3K commands to form a

threshold of genuine data. SVD would be applied to the training set of 2K commands.

1. The training set gets divided into 20 blocks of 100 commands each forming an input

matrix of 100 x 20. On applying SVD to this matrix, we get matrices for U, V and Sigma(S).

Matrix A is given by Matrix U multiplied by Matrix S (Sigma) multiplied by transpose (T) of

Matrix V. The size of each of them is 100 x 20, 20 x 20 and 20 x 20.

A = U S V
T

Where, A is 100 x 20

2. The matrix U contains vital information about the input matrix A. We need to project the

input matrix A on an Eigen space which is UT.

UT x A = Output of training phase [20 x 20]

3. The Threshold data set of 3k commands are divided into 30 blocks of 100 commands each

which is 100 x 30 in dimension. We now project the threshold dataset on the eigen space

(UT).

UT x B = Projection of Threshold data on the Eigen space [20 x 30]

4. Euclidean distance will be calculated between the threshold data projection and the

training output where every column of threshold set will be compared to every other

column of the training output and the minimum value would be selected. This results in

generating the distance between training data and threshold data in the form of 30 scores.

19

5. The test data set consisting of 10k commands are divided into 100 blocks of 100

commands each and are projected on the Eigen space just like the threshold dataset.

UT x T = Projection of test data on the Eigen space [20 x 100]

6. Euclidean distance will be calculated between the test data projection and the training

output where every column of test set will be compared to every other column of the

training output and the minimum value would be selected. This results in generating the

distance between training data and test data in the form of 100 scores.

7. The threshold dataset scores and the test dataset scores are then projected on a graph.

The threshold scores form a threshold indicating the boundary, which represents

commands from a legitimate user. The test data scores are projected to see instances

where they are far apart from the threshold data scores, which indicate the masquerade

blocks of data.

 The scores from the test data were then compared to Schonlau’s result validation

file, which provides the location of all the masqueraders in the test dataset. This helped to

verify the performance of the algorithm on the dataset. The experiments were run on all 50

users and results would be seen in the next section.

20

Chapter 5

Experiments

The charts contain the plotting of the threshold scores and the test data scores on a scatter

plot. The main observation on the chart would be to see points where the test data scores

are far apart form the threshold data scores.

Fig 6 shows results for evaluating masquerade out of set of legitimate commands. On

running the technique, the results contain 30 values that indicate the threshold and 100 values

that represent the test data scores. Series 2 represents a single value for the threshold, which

is an average of threshold values. This result indicates that none of the test data scores

surpass the threshold, which indicates there has not been a masquerade attack for User 1.

User 1

No. of scores

Figure 6: Scores for User 1

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

21

In fig 7 for User 2, the threshold value is 10.57 so all the test data points, which cross this

range, would be considered to be as masquerade data points. Block 61 and 62 in the chart are

far beyond the threshold and that is why these commands blocks of test data would be

considered as masquerade blocks. The test dataset of 10k commands get divided into 100

blocks of 100k commands each. The result indicates that block 61 and 62 are blocks of

commands ran by the masquerader.

User 2

 No. of scores

 Figure 7: Scores for User 2

0

5

10

15

20

25

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

22

 5000 blocks of commands with 100 commands in each block were tested as a part of the

Testing Phase. Each of those blocks was identified as a masquerade or a non-masquerade

block of commands. Some of the blocks were identified as false positive alarm or false

negative alarm. Table 1 indicates the total number of blocks in each category and the

users that exhibited those alarms.

 Analysis of results for 5000 blocks [False Positives, False Negatives/Error Free]:

Category Number of blocks (Sum of

blocks of users in a category)
Users

False Positives 13 6,37

False Negatives 754 2,7,10,15,16,24,25,26,34,36,42,45,
48

No False
Positives/Negatives

2133 27,29,31,32,33,35,38,39,40,41,43,
46,49,50

Table 1: False Positive/Negative statistics

Table 1 Specifies results for users, which had more intruder alarms than expected (False

positives), lesser alarms than expected (False negatives) and those, which had no false

positives or negatives. Rest of the command blocks (4233 blocks), were accurate and were

neither false positive/negative or may belong to the category of having no masquerades.

These include all the blocks that were identified as a masquerade or a non-masquerade

block in the complete testing phase and if that identification was valid.

 Statistics for masquerade free files:

 No. Out of total users (%) Error

Masquerade Free Files in the

dataset

21 42%

No

23

Masquerade Free Files

detected by the system

21 42%

Table 2: Evaluation for Masquerade Free Files

Table 2 indicates that our implementation of the technique could identify all the users,

which did not have any masqueraders attacking them exactly. Out of 50 users, there were

21 users with no masquerader commands.

 Statistics of error free results

 No. Of users Out of total users(%)

Exact results

(Results with no false or

missing alarms)

35

70%

Table 3: Evaluation of Exact results

Table 3 shows there were exactly 35 users for which the results had no false positives and

negatives. Based on the data in table 1 and table 2 exact results is the combined sum of

masquerade Free Files and no False Positives/Negatives data set. Table 3 also shows 70% of

total data is exact determination of the results. They are identified exact masquerader

blocks as per the result set on Schonlau’s page [11].

 System Setup for execution:

The code implementation for the SVD technique is done in Java using the Java SE

development Kit 7. JAMA library was used for all the matrix computations involved in the

technique. The code has been divided into two modules, the Trainining Model Phase and

the TestExecution phase. The training model processes the training dataset and the test

execution is done on the threshold dataset and the test dataset. The system configuration is

as follows.

24

Operating System: MacOS X version 10.9.3

Processor: 2.6GHz Intel Core i7

Memory: 16GB

Program runtime for 1 User: 2101 milliseconds (35.01 seconds)

25

Chapter 6

Comparison other techniques

The statistical science research paper implemented by Prof. Schonlau [4] and other

scientists has compared several other techniques on the same dataset. There is also a well-

defined comparison of these different statistical approaches. Each of these techniques have

their own thresholds on the basis on which the false positives and negatives get calculated.

The techniques are as follows:

1. Uniqueness
2. Bayes one-step Markov
3. Hybrid multistep Markov
4. Compression
5. Sequence match
6. IPAM

The best performing techniques were the Bayes one-step and Hybrid multistep technique.

Bayes one-step Markov:

It is based on one-step transitions from one command to the next. It uses a Bayes factor

statistic to test the null hypothesis that the observed one-step command transition

probabilities [20].

Hybrid multistep Markov:

It is a combination of markov chain and the independence model. Whenever Markov

models become unusable on the dataset, in such cases a model of probabilities is used.

Uniqueness:The uniqueness approach is based on the idea that commands not previously

seen in the training. Data may indicate an attempted masquerade. Moreover, the fewer

26

users that are known to use that command, the more indicative that command is of a

masquerade [20].

Compression:

This technique creates a mapping of training set and the testing set to the amount of

compression possible. The differentiating factor would be the fact that data different form

the restricted set of training set would not compress as well as the training set [20].

IPAM (Incremental probabilistic action modeling):

This technique depends on one step command change probabilities estimated using the

training dataset. This model keeps updating itself with modifications to the training step

updating the overall analysis [20].

Sequence Match:

In this technique, a similarity measure is computed between the recent commands and the

existing user’s profile. The user’s profile too is a sequence of 10 commands used by the user

in the past. The similarity measure is a match comparison between the user profile and the

new set of commands [20].

27

Statistics of each technique:

Method False Alarms(%) Missing Alarms(%)

Uniqueness 1.4 60.6

Bayes one-step Markov 6.7 30.7

Hybrid multistep Markov 3.2 50.7

Compression 5.0 65.8

Sequence-Match 3.7 63.2

IPAM 2.7 58.9

SVD 4.0 26

Table 4: Performance statistics of other technique [20]

 Table 4 above shows the performance of other intrusion detection techniques

compared to Singular value detection (SVD). As per the table 4 above, 4% is false alarms and

26% for the missing alarms for SVD. This technique looks strong when looked at the data on

missing alarms. The highlighted technique (SVD) in the table comes from the experiment

performed in this project.

As per their research, Hybrid multistep did the best followed by Bayes one step Markov and

then comes Uniqueness. One of their observations in the results was that as the false alarm

rate went down, the missing alarm rate went up. SVD thus proves to be better than Bayes

one-step Markov, but poorer to Compression as far as false alarms are considered. In case of

missing alarms, it is better than all the other techniques but slightly less efficient than Bayes

one-step markov [20].

28

ROC curves:

 Figure 57: ROC for other technique [20]

Figure 58: ROC for SVD

29

Chapter 7

Conclusions and Future Work

Other machine learning techniques have been used in the past to carry out masquerade

detection on user data. Our technique helps at user profile building, where per user analysis

helps us to identify masqueraders for that particular user. This approach can help in the

protection of a huge system where there are different users using a system. The admin can

use the application to identify intrusions for a specific user at specific time instances. Our

implementation works well on large datasets with huge variety in the dataset. It identifies

crucial data points to create a small yet effective representation of the original dataset. We

have done experiments on 50 different user’s dataset to validate the technique’s

performance. The technique works fast and efficiently.

One of the future improvements that can be done to this technique is adding the factor of

conceptual drift to this technique. Conceptual drift is a concern in every machine learning

technique, where every change in user behavior should not be considered as masquerade

intrusion. Optimizations can be made to adapt to this change in user behavior, where there

can be a distinguishing factor between user behavioral change and intruder actions. One of

the approaches to achieve this can be done by updating the training model frequently using

a certain kind of feedback mechanism on regular intervals. This help the system adapt to

new changes in the user profile.

Another improvement that could be done is real time dashboards that run the application

on the log files in real time. Whenever there is a spike in the commands being tested on the

SVD machine, alerts can be generated to warn the admin of the centralized or shared

system.

30

List of References

[1] Adam Oliner, Archana Ganapathi, and Wei Xu in 2012. Advances and challenges in log
analysis.Commun. ACM 55, 2 (February 2012), 55-61. DOI=10.1145/2076450.2076466
http://doi.acm.org/10.1145/2076450.2076466

[2] Meiyappan Nagappan. 2010. Analysis of execution log files. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2 (ICSE '10), Vol. 2.
ACM, New York, NY, USA, 409-412. DOI=10.1145/1810295.1810405
http://doi.acm.org/10.1145/1810295.1810405

 [3] Garcia, K.A. Scotiabank, R Monroy . Trejo, C Mex-Perera in Nov 2012 analyzes Log Files
for Postmortem Intrusion Detection, Systems, Man, and Cybernetics in Part C: Applications
and Reviews, IEEE Transactions

[4] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and Y. Vardi in 2001
presented a paper on computer intrusion for Detecting masquerades.

[5] M. Oka, Gar, and K. Kato in 2004 presents on Eigen co-occurrence matrix method for
masquerade detection. In Publications of the Japan Society for SoftwareScience and
Technology

[6] Large Scale click stream and transaction log mining in practice in October 6-9,2013.

 http://cci.drexel.edu/bigdata/bigdata2013/IEEE.BigData.Tutorial.2.slides.pdf

[7] Intrusion Detection, SearchMidmarketSecurity in May 2007.

http://searchmidmarketsecurity.techtarget.com/definition/intrusion-detection

[8] Meyer Roger in 26 January 2008 detected attacks on web applications from log files,

Sans Institute InfoSec Reading Room

 [9] Kirk Baker in January 2013 illustrated Singular Value Decomposition Tutorial by

http://www.ling.ohiostate.edu/~kbaker/pub/Singular_Value_Decomposition_Tutorial.pdf

[10] Original Training images and their Eigen faces by Santiago Serrano at Drexel University

http://www.pages.drexel.edu/~sis26/Eigenface%20Tutorial.htm

[11] Matthias Schonlau dated 2003 presented a file for Masquerading User data

 http://www.schonlau.net/

[12] Weisstein, W Eric in October 2014 presented Singular Value Decomposition from

MathWorld—AwolframWebResource.

http://mathworld.wolfram.com/SingularValueDecomposition.html

http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/articleDetails.jsp?tp=&arnumber=6392466&queryText%3DAnalyzing+Log+Files+for+Postmortem+Intrusion+Detection
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/RecentIssue.jsp?punumber=5326
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/xpl/RecentIssue.jsp?punumber=5326
http://cci.drexel.edu/bigdata/bigdata2013/IEEE.BigData.Tutorial.2.slides.pdf
http://searchmidmarketsecurity.techtarget.com/definition/intrusion-detection
http://www.ling.ohiostate.edu/~kbaker/pub/Singular_Value_Decomposition_Tutorial.pdf
http://www.pages.drexel.edu/~sis26/Eigenface%20Tutorial.htm
http://www.schonlau.net/
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/SingularValueDecomposition.html

31

[13] JAMA, Java Matrix Package live paper latest updated November 23, 2012

http://math.nist.gov/javanumerics/jama/

[14] Tutorial on Eigen values, Eigen vectors and Eigen spaces at Georgia Tech University

http://people.math.gatech.edu/~xchen/teach/lin_alg/Eigen.pdf

[15] Zhanchun Li, Zhitang Li, Bin Liu in Nov 2006 wrote a paper on Masquerade Detection

System Based on Correlation Eigen Matrix and Support Vector Machine on Computational

Intelligence and Security, 2006

[16] Han-Ching Wu, Huang, S.-H.S in Nov 2008 presented on User Behavior Analysis in

Masquerade Detection Using Principal Component Analysis, Intelligent Systems Design and

Applications, 2008. ISDA '08.

[17] Jidigam, Ranjith Kumar, Metamorphic Detection Using Singular Value Decomposition

(2013).

[18] Rawat Sanjay, Pujari Arun.K, Gulati V.P. in Jan 2006 wrote on the use of Singular value

decomposition for Fast Intrusion detection system, Science Direct, Electronic Notes in

Theoretical Computer Science 142 (2006) 215–228, 3 January 2006,

[19] Golub, Gene F, van der Vorst, Henk A in 2000 presented on Eigenvalue computation in

the 20th century, Journal of Computational and Applied Mathematics

[20] Schonlau, Matthias, DuMouchel, Ju William , Wen-Hua Karr, F Alan , Martin Theusan,

Vardi, Yehuda in 2001 presented on Computer Intrusion and Detecting Masquerades.

http://projecteuclid.org/euclid.ss/998929476.

http://math.nist.gov/javanumerics/jama/
http://projecteuclid.org/euclid.ss/998929476

32

Appendix

Results from User 3 to User 50

User 3

No. of scores

 User 4

No. of scores

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u

n
t o

f sco
re

33

 User 5

No. of scores

User 6

No. of scores

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Series1

Series2

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

34

User 7

No. of scores

User 8

No. of scores

0

50

100

150

200

250

300

0 20 40 60 80 100 120

Series1

Series2

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

35

 User 9

No. of scores

 User 10

No. of scores

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

36

User 11

No. of scores

User 12

No. of scores

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Series1

Series2

0

50

100

150

200

250

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

37

 User 13

No. of scores

User 14

No. of scores

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Series1

Series2

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

38

 User 15

No. of scores

User 16

No. of scores

0

50

100

150

200

250

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

39

User 17

No. of scores

 User 18

No. of scores

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

40

User 19

No. of scores

User 20

No. of scores

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Series1

Series2

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

41

 User 21

No. of scores

User 22

No. of scores

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

Series1

Series2

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

42

 User 23

No. of scores

User 24

No. of scores

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

43

User 25

No. of scores

User 26

No. of scores

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

44

User 27

No. of scores

User 28

No. of scores

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Series1

Series2

0

5

10

15

20

25

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

45

User 29

No. of scores

User 30

No. of scores

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

Series1

Series2

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

46

User 31

No. of scores

User 32

No. of scores

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120

Series1

Series2

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

47

User 33

No. of scores

User 34

No. of scores

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

Series1

Series2

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

48

User 35

No. of scores

User 36

No. of scores

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

49

User 37

No. of scores

User 38

No. of scores

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

50

User 39

No. of scores

User 40

No. of scores

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Series1

Series2

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

51

User 41

No. of scores

User 42

No. of scores

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

52

User 43

No. of scores

User 44

No. of scores

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

53

User 45

No. of scores

User 46

No. of scores

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

54

User 47

No. of scores

User 48

No. of scores

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Series1

Series2

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Series1

Series2
C

o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

55

User 49

No. of scores

User 50

No. of scores

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Series1

Series2

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Series1

Series2

C
o
u
n
t o

f sco
re

C
o
u
n
t o

f sco
re

56

	San Jose State University
	SJSU ScholarWorks
	Fall 12-18-2014

	Masquerade detection using Singular Value Decomposition
	Sweta Vikram Shah
	Recommended Citation

	tmp.1419377047.pdf.ObBtW

