19,984 research outputs found

    Profile minimization on products of graphs

    Get PDF
    AbstractThe profile minimization problem arose from the study of sparse matrix technique. In terms of graphs, the problem is to determine the profile of a graph G which is defined asP(G)=minf∑v∈V(G)maxx∈N[v](f(v)-f(x)),where f runs over all bijections from V(G) to {1,2,…,|V(G)|} and N[v]={v}∪{x∈V(G):xv∈E(G)}. The main result of this paper is to determine the profiles of Km×Kn, Ks,t×Kn and Pm×Kn

    Matrix Completion on Graphs

    Get PDF
    The problem of finding the missing values of a matrix given a few of its entries, called matrix completion, has gathered a lot of attention in the recent years. Although the problem under the standard low rank assumption is NP-hard, Cand\`es and Recht showed that it can be exactly relaxed if the number of observed entries is sufficiently large. In this work, we introduce a novel matrix completion model that makes use of proximity information about rows and columns by assuming they form communities. This assumption makes sense in several real-world problems like in recommender systems, where there are communities of people sharing preferences, while products form clusters that receive similar ratings. Our main goal is thus to find a low-rank solution that is structured by the proximities of rows and columns encoded by graphs. We borrow ideas from manifold learning to constrain our solution to be smooth on these graphs, in order to implicitly force row and column proximities. Our matrix recovery model is formulated as a convex non-smooth optimization problem, for which a well-posed iterative scheme is provided. We study and evaluate the proposed matrix completion on synthetic and real data, showing that the proposed structured low-rank recovery model outperforms the standard matrix completion model in many situations.Comment: Version of NIPS 2014 workshop "Out of the Box: Robustness in High Dimension

    Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data

    Full text link
    As data are increasingly modeled as graphs for expressing complex relationships, the tree pattern query on graph-structured data becomes an important type of queries in real-world applications. Most practical query languages, such as XQuery and SPARQL, support logical expressions using logical-AND/OR/NOT operators to define structural constraints of tree patterns. In this paper, (1) we propose generalized tree pattern queries (GTPQs) over graph-structured data, which fully support propositional logic of structural constraints. (2) We make a thorough study of fundamental problems including satisfiability, containment and minimization, and analyze the computational complexity and the decision procedures of these problems. (3) We propose a compact graph representation of intermediate results and a pruning approach to reduce the size of intermediate results and the number of join operations -- two factors that often impair the efficiency of traditional algorithms for evaluating tree pattern queries. (4) We present an efficient algorithm for evaluating GTPQs using 3-hop as the underlying reachability index. (5) Experiments on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our algorithm, from several times to orders of magnitude faster than state-of-the-art algorithms in terms of evaluation time, even for traditional tree pattern queries with only conjunctive operations.Comment: 16 page

    Convex recovery from interferometric measurements

    Get PDF
    This note formulates a deterministic recovery result for vectors xx from quadratic measurements of the form (Ax)i(Ax)j‾(Ax)_i \overline{(Ax)_j} for some left-invertible AA. Recovery is exact, or stable in the noisy case, when the couples (i,j)(i,j) are chosen as edges of a well-connected graph. One possible way of obtaining the solution is as a feasible point of a simple semidefinite program. Furthermore, we show how the proportionality constant in the error estimate depends on the spectral gap of a data-weighted graph Laplacian. Such quadratic measurements have found applications in phase retrieval, angular synchronization, and more recently interferometric waveform inversion
    • …
    corecore