Profile minimization on products of graphs ${ }^{2}$

Yu-Ping Tsao ${ }^{\text {a, }}$, Gerard J. Chang ${ }^{\text {c, }}{ }^{\text {d }}$
${ }^{\text {a }}$ China University of Technology, Taiwan
${ }^{\mathrm{b}}$ Department of Applied Mathematics, China University of Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
${ }^{\mathrm{c}}$ Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
${ }^{\mathrm{d}}$ National Center for Theoretical Sciences, Taipei Office, Taiwan

Received 26 October 2004; received in revised form 18 January 2006; accepted 25 January 2006
Available online 11 April 2006

Abstract

The profile minimization problem arose from the study of sparse matrix technique. In terms of graphs, the problem is to determine the profile of a graph G which is defined as

$$
P(G)=\min _{f} \sum_{v \in V(G)} \max _{x \in N[v]}(f(v)-f(x))
$$

where f runs over all bijections from $V(G)$ to $\{1,2, \ldots,|V(G)|\}$ and $N[v]=\{v\} \cup\{x \in V(G): x v \in E(G)\}$. The main result of this paper is to determine the profiles of $K_{m} \times K_{n}, K_{S, t} \times K_{n}$ and $P_{m} \times K_{n}$.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Profile; Product; Complete graph; Complete bipartite graph; Path

1. Introduction

All graphs in this paper are simple, i.e., finite, undirected, loopless and without multiple edges. For a graph G, we use $V(G)$ to denote the set of vertices of G and $E(G)$ the set of edges. The profile minimization problem arose from the study of sparse matrix technique. It can be defined in terms of graphs as follows.

A proper numbering of a graph G of n vertices is a $1-1$ mapping $f: V(G) \rightarrow\{1,2, \ldots, n\}$. Given a proper numbering f, the profile width of a vertex v in G is

$$
w_{f}(v)=\max _{x \in N[v]}(f(v)-f(x))
$$

where $N[v]=\{v\} \cup\{x \in V(G): x v \in E(G)\}$. The profile of a proper numbering f of G is

$$
P_{f}(G)=\sum_{v \in V(G)} w_{f}(v)
$$

[^0]and the profile of G is
$$
P(G)=\min \left\{P_{f}(G): f \text { is a proper numbering of } G\right\} .
$$

A profile numbering of G is a proper numbering f such that $P_{f}(G)=P(G)$.
The profile minimization problem is equivalent to the interval graph completion problem described as below. Recall that an interval graph is a graph whose vertices correspond to closed intervals in the real line, and two vertices are adjacent if and only if their corresponding intervals intersect. It is well-known that a graph G is an interval graph if and only if there exists an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of $V(G)$ such that

$$
i<j<k \text { and } v_{i} v_{k} \in E(G) \text { imply } v_{j} v_{k} \in E(G) .
$$

We call this ordering an interval ordering of G. This property can be re-stated as: a graph G of n vertices is an interval graph if and only if there is a proper numbering f such that

$$
\begin{equation*}
f(x)<f(y)<f(z) \text { and } x z \in E(G) \text { imply } y z \in E(G) . \tag{1}
\end{equation*}
$$

We call this property the interval property, which will be used frequently in this paper. This property leads to the perfect elimination property which is also useful in this paper:

$$
\begin{equation*}
f(x)<f(y) \text { with } x y \in E(G) \text { and } f(x)<f(z) \text { with } x z \in E(G) \text { imply } y z \in E(G) . \tag{2}
\end{equation*}
$$

The perfect elimination property in turn implies the chordality property which is also useful in this paper:
Every cycle of length greater than three has at least one chord.
Having the interval property (1) in mind, it is then easy to see that for any proper numbering f of G, the graph G_{f} defined by the following is an interval super-graph of G with $\left|E\left(G_{f}\right)\right|=P_{f}(G)$:

$$
V\left(G_{f}\right)=V(G) \quad \text { and } \quad E\left(G_{f}\right)=\{y z: f(x) \leqslant f(y)<f(z), x z \in E(G)\} .
$$

In other words, we have:
Proposition 1 (Lin and Yuan [10]). The profile minimization problem is the same as the interval graph completion problem. Namely,

$$
P(G)=\min \{|E(H)|: H \text { is an interval super-graph of } G\} .
$$

The profile minimization problem has been extensively studied in the literature [2-16], for a good survey see [9]. From an algorithmic point of view, the problem is known to be NP-complete (see [1]). While many approximation algorithms for profiles of various graphs have been developed, [5,6] gave a polynomial-time algorithm for finding profiles of trees. Among the non-algorithmic results for profiles, we are most interested in those graphs which are obtained from graph operations. The classes of graphs in this line include Cartesian product of certain graphs [11,13], sum of two graphs [10], composition of certain graphs [7], and corona of certain graphs [7].

Fig. 1. The graph $P_{3} \times P_{6}$.

The purpose of this paper is to study the profiles of product of graphs. The product (or tensor product) of two graphs G and H is the graph $G \times H$ with the vertex set $V(G) \times V(H)$ such that (x, y) is adjacent to $\left(x^{\prime}, y^{\prime}\right)$ in $G \times H$ if $x x^{\prime} \in E(G)$ and $y y^{\prime} \in E(H)$. Notice that $G \times H$ has $|V(G)||V(H)|$ vertices and $2|E(G) \| E(H)|$ edges.

For convenience, suppose $V(G)=\left\{x_{i}: 1 \leqslant i \leqslant|V(G)|\right\}$ and $V(H)=\left\{y_{j}: 1 \leqslant j \leqslant|V(H)|\right\}$, we may write $\left(x_{i}, y_{j}\right)$ as $v_{i, j}$ and let $R_{i}=\left\{v_{i, j}: 1 \leqslant j \leqslant|V(H)|\right\}$ and $C_{j}=\left\{v_{i, j}: 1 \leqslant i \leqslant|V(G)|\right\}$ represent the i th row and the j th column of $V(G) \times V(H)$, respectively. See Fig. 1 for the example $P_{3} \times P_{6}$.
The main result of this paper is to determine the profiles of $K_{m} \times K_{n}, K_{s, t} \times K_{n}$ and $P_{m} \times K_{n}$.

2. Profile of $K_{\boldsymbol{m}} \times \boldsymbol{K}_{\boldsymbol{n}}$

This section establishes the profile of $K_{m} \times K_{n}$.
Theorem 2. If $m=1$ or $n \geqslant \max \{m, 4\}$, then $P\left(K_{m} \times K_{n}\right)=\frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right)$.
Proof. As the case of $m=1$ is obvious, we may assume that $m \geqslant 2$ and $n \geqslant \max \{m, 4\}$.
First, consider a proper numbering g of $K_{m} \times K_{n}$ satisfying

$$
g\left(v_{i, j}\right)= \begin{cases}j & \text { for } i=1 \text { and } 1 \leqslant j \leqslant n-1, \\ m n & \text { for } i=1 \text { and } j=n, \\ i+n-2 & \text { for } 2 \leqslant i \leqslant m \text { and } j=n,\end{cases}
$$

while the other vertices are assigned numbers arbitrarily, see Fig. 2 for g of $K_{5} \times K_{9}$ in which the edges are not drawn for simplicity.

The profile width of vertex $v_{i, j}$ is

$$
w_{g}\left(v_{i, j}\right)= \begin{cases}0 & \text { for } i=1 \text { and } 1 \leqslant j \leqslant n-1, \\ m n-n-m+1 & \text { for } i=1 \text { and } j=n, \\ g\left(v_{i, j}\right)-2 & \text { for } 2 \leqslant i \leqslant m \text { and } j=1, \\ g\left(v_{i, j}\right)-1 & \text { for } 2 \leqslant i \leqslant m \text { and } 2 \leqslant j \leqslant n\end{cases}
$$

Therefore,

$$
\begin{aligned}
P\left(K_{m} \times K_{n}\right) & \leqslant P_{g}\left(K_{m} \times K_{n}\right) \\
& =(m n-n-m+1)+\sum_{k=n}^{m n-1}(k-1)-(m-1) \\
& =\frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right) .
\end{aligned}
$$

Next, we shall prove that $P\left(K_{m} \times K_{n}\right) \geqslant \frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right)$. Choose a profile numbering f of $K_{m} \times K_{n}$. Notice that $P\left(K_{m} \times K_{n}\right)=\left|E\left(\left(K_{m} \times K_{n}\right)_{f}\right)\right|$. Without loss of generality, we may assume that $f\left(v_{1,1}\right)=1$. For positive integers a and b, let $e_{a, b}=2\binom{a}{2}\binom{b}{2}+(a-1)\binom{b}{2}+(b-2)\binom{a}{2}+2\binom{a-1}{2}$. We consider the following three cases.

Fig. 2. A proper numbering g of $K_{5} \times K_{9}$.

Case 1: $f^{-1}(2) \in R_{1}$, say $f\left(v_{1, j}\right)=j$ for $1 \leqslant j \leqslant r$ but $f\left(v_{s, t}\right)=r+1$ with $s \neq 1$ for some $r \geqslant 2$.
We shall count the number of edges in $\left(K_{m} \times K_{n}\right)_{f}$. Notice that besides the edges in $K_{m} \times K_{n}$, extra edges are due to the following cliques in $\left(K_{m} \times K_{n}\right)_{f}$ which are independent sets in $K_{m} \times K_{n}$.

Each row R_{i} with $2 \leqslant i \leqslant m$ is a clique in $\left(K_{m} \times K_{n}\right)_{f}$, since for $v_{i, p}, v_{i, q} \in R_{i}$ with $f\left(v_{i, p}\right)<f\left(v_{i, q}\right)$, we can choose $k \in\{1,2\}-\{q\}$, such that $f\left(v_{1, k}\right)=k<f\left(v_{i, p}\right)<f\left(v_{i, q}\right)$ and $v_{1, k} v_{i, q} \in E\left(K_{m} \times K_{n}\right) \subseteq E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$, which imply $v_{i, p} v_{i, q} \in E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$. Notice that we use the interval property (1) in this implication. As the property will be used frequently, we shall not mention it every time.

Each column C_{j} with $2 \leqslant j \leqslant r$ is a clique in $\left(K_{m} \times K_{n}\right)_{f}$, since for $v_{p, j}, v_{q, j} \in C_{j}$ with $f\left(v_{p, j}\right)<f\left(v_{q, j}\right)$, we have $q \geqslant 2$, and so $f\left(v_{1,1}\right)=1<f\left(v_{p, j}\right)<f\left(v_{q, j}\right)$ and $v_{1,1} v_{q, j} \in E\left(K_{m} \times K_{n}\right) \subseteq E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$, which imply $v_{p, j} v_{q, j} \in E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$.
For the case $r+1 \leqslant n$, any column C_{j} with $j \geqslant r+1$ but $j \neq t$ is a clique in $\left(K_{m} \times K_{n}\right)_{f}$, since for $v_{p, j}, v_{q, j} \in C_{j}$ with $f\left(v_{p, j}\right)<f\left(v_{q, j}\right)$, we can choose $x=v_{1,1}$ (when $q \neq 1$) or $v_{s, t}$ (when $q=1$), such that $f(x)<f\left(v_{p, j}\right)<f\left(v_{q, j}\right)$ and $x v_{q, j} \in E\left(K_{m} \times K_{n}\right) \subseteq E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$, which imply $v_{p, j} v_{q, j} \in E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$.

Similarly, $C_{j}-\left\{v_{1, j}\right\}$ is cliques in $\left(K_{m} \times K_{n}\right)_{f}$ for $1 \leqslant j \leqslant n$. In particular, this is true for $j=1, t$.
Therefore, totally the graph $\left(K_{m} \times K_{n}\right)_{f}$ has at least $e_{m, n}=2\binom{m}{2}\binom{n}{2}+(m-1)\binom{n}{2}+(n-2)\binom{m}{2}+2\binom{m-1}{2}=$ $\frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right)$ edges, which gives that $P\left(K_{m} \times K_{n}\right) \geqslant \frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right)$.
Case 2: $f^{-1}(2) \in C_{1}$.
Since $n \geqslant m$ and $n+m \geqslant 5$, we have $e_{n, m}-e_{m, n}=\binom{m}{2}-\binom{n}{2}+2\binom{n-1}{2}-2\binom{m-1}{2}=\frac{1}{2}(n+m-5)(n-m) \geqslant 0$. By an argument similar as Case $1, P\left(K_{m} \times K_{n}\right) \geqslant e_{n, m} \geqslant e_{m, n}=\frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right)$.

Case 3: $f^{-1}(2) \notin R_{1} \cup C_{1}$, say $f\left(v_{2,2}\right)=2$.
By an argument similar as Case $1, R_{1}-\left\{v_{1,1}, v_{1,2}\right\}, R_{2}-\left\{v_{2,1}\right\}, R_{i}$ for $3 \leqslant i \leqslant m, C_{1}-\left\{v_{1,1}, v_{2,1}\right\}, C_{2}-\left\{v_{1,2}\right\}, C_{j}$ for $3 \leqslant j \leqslant n$ are all cliques in $\left(K_{m} \times K_{n}\right)_{f}$. Let $f^{-1}(3)=v_{s, t}$. Then, either $v_{s, t} \notin R_{1} \cup C_{2}$ or $v_{s, t} \notin R_{2} \cup C_{1}$. We may assume $v_{s, t} \notin R_{1} \cup C_{2}$. Suppose $3 \leqslant q \leqslant n$. For the case $f\left(v_{1,2}\right)<f\left(v_{1, q}\right)$, we have $f\left(v_{2,2}\right)=2<f\left(v_{1,2}\right)<f\left(v_{1, q}\right)$ and $v_{2,2} v_{1, q} \in E\left(K_{m} \times K_{n}\right) \subseteq E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$ implying $v_{1,2} v_{1, q} \in E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$. For the case $f\left(v_{1,2}\right)>f\left(v_{1, q}\right)$, we have $f\left(v_{s, t}\right)=3<f\left(v_{1, q}\right)<f\left(v_{1,2}\right)$ and $v_{s, t} v_{1,2} \in E\left(K_{m} \times K_{n}\right) \subseteq E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$ implying $v_{1, q} v_{1,2} \in E\left(\left(K_{m} \times\right.\right.$ $\left.\left.K_{n}\right)_{f}\right)$. So, in any case, $v_{1,2} v_{1, q} \in E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$. Similarly, $v_{1,2} v_{p, 2} \in E\left(\left(K_{m} \times K_{n}\right)_{f}\right)$ for $3 \leqslant p \leqslant m$. There are totally $n+m-4$ such edges. So $\left(K_{m} \times K_{n}\right)_{f}$ has at least $2\binom{m}{2}\binom{n}{2}+\binom{n-2}{2}+\binom{n-1}{2}+(m-2)\binom{n}{2}+\binom{m-2}{2}+$ $\binom{m-1}{2}+(n-2)\binom{m}{2}+(n+m-4)$ edges. As $n \geqslant 4$, this number is greater than $e_{m, n}$ by $(n-1)(n-4) / 2 \geqslant 0$ edges. Again, we have $P\left(K_{m} \times K_{n}\right) \geqslant \frac{1}{2}(m-1)\left(m n^{2}+n^{2}-n-4\right)$.

The other cases remain are: $P\left(K_{2} \times K_{2}\right)=2, P\left(K_{2} \times K_{3}\right)=9$ and $P\left(K_{3} \times K_{3}\right)=28$.

3. Profile of $\boldsymbol{K}_{s, t} \times \boldsymbol{K}_{\boldsymbol{n}}$

This section determines the profile of $K_{s, t} \times K_{n}$.
The notations we use in this section are the same as above except now we let $m=s+t$ and $V\left(K_{s, t}\right)=S \cup T$, where $S=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ and $T=\left\{x_{s+1}, x_{s+2}, \ldots, x_{s+t}\right\}$. We also let $S_{j}=\left\{v_{i, j}: x_{i} \in S\right\}$ and $T_{j}=\left\{v_{i, j}: x_{i} \in T\right\}$ for $1 \leqslant j \leqslant n$. Notice that $C_{j}=S_{j} \cup T_{j}$.

Theorem 3. If $r=\min \{s, t\}$ and $n \geqslant 4$, then $P\left(K_{s, t} \times K_{n}\right)=\binom{n r}{2}+\left(n^{2}-2\right) s t$.
Proof. To prove $P\left(K_{s, t} \times K_{n}\right) \leqslant\binom{ n r}{2}+\left(n^{2}-2\right) s t$, without loss of generality we may assume that $r=t$. Consider the proper numbering g of $K_{s, t} \times K_{n}$ defined by

$$
g\left(v_{i, j}\right)= \begin{cases}i+(j-1) s & \text { for } 1 \leqslant i \leqslant s \text { and } 1 \leqslant j \leqslant n-1, \\ i+(n-1) s+t & \text { for } 1 \leqslant i \leqslant s \text { and } j=n, \\ i+j t+(n-1) s & \text { for } s+1 \leqslant i \leqslant s+t \text { and } 1 \leqslant j \leqslant n-1, \\ i+(n-2) s & \text { for } s+1 \leqslant i \leqslant s+t \text { and } j=n\end{cases}
$$

See Fig. 3 for g of $K_{4,3} \times K_{9}$ in which the edges are not drawn for simplicity.

Fig. 3. A proper numbering g of $K_{4,3} \times K_{9}$.

Notice that two vertices are adjacent in $K_{s, t} \times K_{n}$ if and only if one is in S_{j} and the other in $T_{j^{\prime}}$ for some $j \neq j^{\prime}$. As no vertex in S_{i} is adjacent to a vertex with smaller numbering in $K_{s, t} \times K_{n}, S \times V\left(K_{n}\right)$ is an independent set in $\left(K_{s, t} \times K_{n}\right)_{g}$.
For any two vertices $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ in $T \times K_{n}$ with $g\left(v_{i, j}\right)<g\left(v_{i^{\prime}, j^{\prime}}\right)$, we may choose k from $\{1,2\}$ such that $k \neq j^{\prime}$. So, $g\left(v_{1, k}\right)<g\left(v_{i, j}\right)<g\left(v_{i^{\prime}, j^{\prime}}\right)$ and $v_{1, k} v_{i^{\prime}, j^{\prime}} \in E\left(K_{s, t} \times K_{n}\right) \subseteq E\left(\left(K_{s, t} \times K_{n}\right)_{g}\right)$ imply that $v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{g}\right)$. This proves that $T \times V\left(K_{n}\right)$ is a clique in $\left(K_{s, t} \times K_{n}\right)_{g}$, which gives $\binom{n t}{2}$ edges.

For any $v_{i, j} \in S_{j}$ and $v_{i^{\prime}, j} \in T_{j}$ with $2 \leqslant j \leqslant n-1$, we have $g\left(v_{1,1}\right)<g\left(v_{i, j}\right)<g\left(v_{i^{\prime}, j}\right)$ and $v_{1,1} v_{i^{\prime}, j} \in E\left(K_{s, t} \times\right.$ $\left.K_{n}\right) \subseteq E\left(\left(K_{s, t} \times K_{n}\right)_{g}\right)$ implying that $v_{i, j} v_{i^{\prime}, j} \in E\left(\left(K_{s, t} \times K_{n}\right)_{g}\right)$. It is also the case that no vertex in S_{j} is adjacent to a vertex in T_{j} in $\left(K_{s, t} \times K_{n}\right)_{g}$ for $j=1$ or n. So, vertices in S_{j} are adjacent to vertices in $T_{j^{\prime}}$ in $\left(K_{s, t} \times K_{n}\right)_{g}$ for all j and j^{\prime} except $j=j^{\prime} \in\{1, n\}$. These give $\left(n^{2}-2\right) s t$ edges.

Therefore, $P\left(K_{s, t} \times K_{n}\right) \leqslant\left|E\left(\left(K_{s, t} \times K_{n}\right)_{g}\right)\right|=\binom{n t}{2}+\left(n^{2}-2\right) s t=\binom{n r}{2}+\left(n^{2}-2\right) s t$.
Next, we shall prove that $P\left(K_{s, t} \times K_{n}\right) \geqslant\binom{ n r}{2}+\left(n^{2}-2\right) s t$. Choose a profile numbering f of $K_{s, t} \times K_{n}$. Without loss of generality, assume that $f\left(v_{1,1}\right)=1$. Let $f\left(v_{a, b}\right)=\min \left\{f\left(v_{i, j}\right): v_{i, j} \in T_{2} \cup \cdots \cup T_{n}\right\}$.

For any vertices $v_{i, j} \in S_{j}$ and $v_{i^{\prime}, j^{\prime}} \in T_{j^{\prime}}$, by the definition, $v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(K_{s, t} \times K_{n}\right) \subseteq E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$ if $j \neq j^{\prime}$. Suppose $j=j^{\prime} \notin\{1, b\}$. If $f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)$, then $f\left(v_{1,1}\right)<f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)$ and $v_{1,1} v_{i^{\prime} j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$ imply that $v_{i, j} v_{i^{\prime} j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$. If $f\left(v_{i, j}\right)>f\left(v_{i^{\prime}, j^{\prime}}\right)$, then $f\left(v_{a, b}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)<f\left(v_{i, j}\right)$ and $v_{a, b} v_{i, j} \in E\left(\left(K_{s, t} \times\right.\right.$ $\left.\left.K_{n}\right)_{f}\right)$ imply that $v_{i, j} v_{i^{\prime} j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$. So, vertices in S_{j} are adjacent to vertices in $T_{j^{\prime}}$ for all j and j^{\prime} except $j=j^{\prime} \in\{1, b\}$. These give $\left(n^{2}-2\right) s t$ edges.

Consider any two vertices $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ in $T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ such that $f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)$. For $j^{\prime} \geqslant 2$, we have $f\left(v_{1,1}\right)<f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)$ and $v_{1,1} v_{i^{\prime}, j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$ implying $v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$. So, $T_{2} \cup T_{3} \cup$ $\cdots \cup T_{n}$ is a clique in $\left(K_{s, t} \times K_{n}\right)_{f}$. This gives $\binom{(n-1) t}{2}$ edges. If $T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ is a clique, then these give $\binom{n t}{2} \geqslant\binom{ n r}{2}$ edges. Therefore, $P\left(K_{s, t} \times K_{n}\right) \geqslant\binom{ n r}{2}+\left(n^{2}-2\right) s t$. Now, we may assume that there are two non-adjacent vertices $v_{p, q}$ and $v_{p^{\prime}, q^{\prime}}$ in $T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ with $f\left(v_{p, q}\right)<f\left(v_{p^{\prime}, q^{\prime}}\right)$ and $q^{\prime}=1$.

For any two vertices $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ in $S_{2} \cup S_{3} \cup \cdots \cup S_{n}$ such that $f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)$. If $f\left(v_{p, q}\right)>f\left(v_{i, j}\right)$, then $f\left(v_{i, j}\right)<f\left(v_{p, q}\right)<f\left(v_{p^{\prime}, q^{\prime}}\right)$ and $v_{i, j} v_{p^{\prime}, q^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$ imply $v_{p, q} v_{p^{\prime}, q^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$, a contradiction. Therefore, it is always the case that $f\left(v_{p, q}\right)<f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right)$. Except for the case when $q=j^{\prime}=b$, we have $v_{p, q} v_{i^{\prime}, j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$, which together with the above inequalities gives that $v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(\left(K_{s, t} \times K_{n}\right)_{f}\right)$.

Now, if $q \neq b$, we have that $S_{2} \cup S_{3} \cup \cdots \cup S_{n}$ is a clique. This gives $\binom{(n-1) s}{2}$ edges. And so $P\left(K_{s, t} \times K_{n}\right) \geqslant\binom{(n-1) s}{2}+$ $\binom{(n-1) t}{2}+\left(n^{2}-2\right) s t \geqslant 2\binom{(n-1) r}{2}+\left(n^{2}-2\right) s t \geqslant\binom{ n r}{2}+\left(n^{2}-2\right) s t$ as $n \geqslant 4$. Hence we may assume that if $v_{p, q}$ and $v_{p^{\prime}, q^{\prime}}$ are non-adjacent in $T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ with $f\left(v_{p, q}\right)<f\left(v_{p^{\prime}, q^{\prime}}\right)$, then $q=b$ and $q^{\prime}=1$. In this case, $S_{2} \cup S_{3} \cup \cdots \cup S_{b-1} \cup S_{b+1} \cup S_{b+2} \cup \cdots \cup S_{n}$ is a clique and $T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ is a clique except that vertices in T_{1}
are not necessarily adjacent to vertices in T_{b}. This gives $P\left(K_{s, t} \times K_{n}\right) \geqslant\binom{(n-2) s}{2}+\binom{n t}{2}-t^{2}+\left(n^{2}-2\right) s t$. Notice that $\binom{n t}{2}-t^{2}=\left(\left(n^{2}-2\right) t^{2}-n t\right) / 2 \geqslant\left(\left(n^{2}-2\right) r^{2}-n r\right) / 2$ as $t \geqslant r$. Thus, $P\left(K_{s, t} \times K_{n}\right) \geqslant\binom{(n-2) r}{2}+\left(\left(n^{2}-2\right) r^{2}-\right.$ $n r) / 2+\left(n^{2}-2\right) s t \geqslant\binom{ n r}{2}+\left(n^{2}-2\right) s t$.

4. Profile of $\boldsymbol{P}_{\boldsymbol{m}} \times \boldsymbol{K}_{\boldsymbol{n}}$

Finally, we study the profile of $P_{m} \times K_{n}$.
The results in the previous sections cover the case for $P_{1} \times K_{n}=K_{1} \times K_{n}, P_{2} \times K_{n}=K_{2} \times K_{n}=K_{1,1} \times K_{n}$ and $P_{3} \times K_{n}=K_{1,2} \times K_{n}$. In the following, we consider only for $m \geqslant 4$.

Theorem 4. If $m, n \geqslant 4$, then $P\left(P_{m} \times K_{n}\right)=(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$.
Proof. For $P\left(P_{m} \times K_{n}\right) \leqslant(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$, consider the proper numbering g of $P_{m} \times K_{n}$ defined by

$$
g\left(v_{i, j}\right)= \begin{cases}(i-1) n+j & \text { for } 1 \leqslant i \leqslant m-2 \text { and } 1 \leqslant j \leqslant n, \\ (m-1) n+j & \text { for } i=m-1 \text { and } 1 \leqslant j \leqslant n-1, \\ (m-1) n & \text { for } i=m-1 \text { and } j=n, \\ (m-2) n+j & \text { for } i=m \text { and } 1 \leqslant j \leqslant n-1, \\ m n & \text { for } i=m \text { and } j=n,\end{cases}
$$

see Fig. 4 for g of $P_{5} \times K_{9}$ in which the edges are not drawn for simplicity.
The profile width of vertex $v_{i, j}$ is

$$
w_{g}\left(v_{i, j}\right)= \begin{cases}0 & \text { for } i=1 \text { and } 1 \leqslant j \leqslant n, \\ n-1 & \text { for } 2 \leqslant i \leqslant m-2 \text { and } j=1, \\ n-1+j & \text { for } 2 \leqslant i \leqslant m-2 \text { and } 2 \leqslant j \leqslant n, \\ 2 n-1 & \text { for } i=m-1 \text { and } j=1, \\ 2 n-1+j & \text { for } i=m-1 \text { and } 2 \leqslant j \leqslant n-1, \\ 2 n-1 & \text { for } i=m-1 \text { and } j=n, \\ 0 & \text { for } i=m \text { and } 1 \leqslant j \leqslant n-1, \\ n-1 & \text { for } i=m \text { and } j=n .\end{cases}
$$

Therefore,

$$
\sum_{j=1}^{n} w_{g}\left(v_{i, j}\right)= \begin{cases}0 & \text { for } i=1 \\ \binom{n}{2}+\left(n^{2}-1\right) & \text { for } 2 \leqslant i \leqslant m-2 \\ \binom{n}{2}+\left(2 n^{2}-n-1\right) & \text { for } i=m-1 \\ n-1 & \text { for } i=m\end{cases}
$$

and so $P\left(K_{m} \times K_{n}\right) \leqslant P_{g}\left(K_{m} \times K_{n}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{g}\left(v_{i, j}\right)=(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$.

Fig. 4. A proper numbering g of $P_{5} \times K 9$.

To prove that $P\left(K_{m} \times K_{n}\right) \geqslant(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$, choose a profile numbering f of $P_{m} \times K_{n}$. We use the following notation:

Let $a_{i}=\min _{v_{i, j} \in R_{i}} f\left(v_{i, j}\right)$ and $f\left(v_{i, b_{i}}\right)=a_{i}$ for $1 \leqslant i \leqslant m$.
Let $A=\left\{i: 2 \leqslant i \leqslant m-1\right.$ and R_{i} is not a clique in $\left.\left(P_{m} \times K_{n}\right)_{f}\right\}$ and $p=|A|$.
Let $B=\left\{i: 2 \leqslant i \leqslant m-1\right.$ and $\left.a_{i}<\min \left\{a_{i-1}, a_{i+1}\right\}\right\}$ and $q=|B|$.
Let $\Lambda_{i, i^{\prime}}=\left\{v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right): 1 \leqslant j, j^{\prime} \leqslant n\right\}$ and $\lambda_{i, i^{\prime}}=\left|\Lambda_{i, i^{\prime}}\right|$ for $1 \leqslant i, i^{\prime} \leqslant m$.
Let $\Lambda_{i, i^{\prime}}^{=}=\left\{v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right): 1 \leqslant j=j^{\prime} \leqslant n\right\}$ and $\lambda_{i, i^{\prime}}^{=}=\left|\Lambda_{i, i^{\prime}}^{=}\right|$for $1 \leqslant i, i^{\prime} \leqslant m$.
Let $\Lambda_{i, i^{\prime}}^{\leqslant}=\left\{v_{i, j} v_{i^{\prime}, j^{\prime}} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right): 1 \leqslant j \leqslant j^{\prime} \leqslant n\right\}$ and $\lambda_{i, i^{\prime}}^{\leqslant}=\left|\Lambda_{i, i^{\prime}}^{\leqslant}\right|$for $1 \leqslant i, i^{\prime} \leqslant m$.
Claim 1. Suppose $\left|i-i^{\prime}\right|=1$. Then $\lambda_{i, i^{\prime}}^{=} \geqslant n-2$ and so $\lambda_{i, i^{\prime}} \geqslant n^{2}-2$. Furthermore, if $b_{i}=b_{i^{\prime}}$, or $f\left(v_{i, b_{i^{\prime}}}\right)<f\left(v_{i^{\prime}, b_{i^{\prime}}}\right)$, or R_{i} is a clique in $\left(P_{m} \times K_{n}\right)_{f}$ with $a_{i}<a_{i^{\prime}}$, then $\lambda_{i, i^{\prime}}^{=} \geqslant n-1$ and so $\lambda_{i, i^{\prime}} \geqslant n^{2}-1$.

Proof of Claim 1. Consider any $j \notin\left\{b_{i}, b_{i^{\prime}}\right\}$. If $f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j}\right)$, then $f\left(v_{i, b_{i}}\right)<f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j}\right)$ and $v_{i, b_{i}} v_{i^{\prime}, j} \in$ $E\left(P_{m} \times K_{n}\right) \subseteq E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ imply $v_{i, j} v_{i^{\prime}, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$. If $f\left(v_{i, j}\right)>f\left(v_{i^{\prime}, j}\right)$, then $f\left(v_{i^{\prime}, b_{i^{\prime}}}\right)$ $<f\left(v_{i^{\prime}, j}\right)<f\left(v_{i, j}\right)$ and $v_{i^{\prime}, b_{i} i^{\prime}} v_{i, j} \in E\left(P_{m} \times K_{n}\right) \subseteq E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ imply $v_{i^{\prime}, j} v_{i, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$. In any case, $v_{i, j} v_{i^{\prime}, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ for $j \notin\left\{b_{i}, b_{i^{\prime}}\right\}$, which give $\lambda_{i, i^{\prime}}^{=} \geqslant n-2$. There are already other $n(n-1)$ edges between R_{i} and $R_{i^{\prime}}$ in $E\left(P_{m} \times K_{n}\right)$, so we have $\lambda_{i, i^{\prime}} \geqslant n^{2}-2$.

For the case $b_{i}=b_{i^{\prime}}$, there are at least $n-1$ edges $v_{i, j} v_{i^{\prime}, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ for $j \notin\left\{b_{i}, b_{i^{\prime}}\right\}$. So, $\lambda_{i, i^{\prime}}^{=} \geqslant n-1$ and $\lambda_{i, i^{\prime}} \geqslant n^{2}-1$.

Now suppose $b_{i} \neq b_{i^{\prime}}$. For the case $f\left(v_{i, b_{i^{\prime}}}\right)<f\left(v_{i^{\prime}, b_{i^{\prime}}}\right)$, besides the $n-2$ edges $v_{i, j} v_{i^{\prime}, j}$ for $j \notin\left\{b_{i}, b_{i^{\prime}}\right\}$, we also have the edge $v_{i, b_{i^{\prime}}} v_{i^{\prime}, b_{i^{\prime}}}$, since $f\left(v_{i, b_{i}}\right)<f\left(v_{i, b_{i^{\prime}}}\right)<f\left(v_{i^{\prime}, b_{i^{\prime}}}\right)$ and $v_{i, b_{i}} v_{i^{\prime}, b_{i^{\prime}}} \in E\left(P_{m} \times K_{n}\right) \subseteq E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$

 case, $v_{i, j} v_{i^{\prime}, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ for $j \neq b_{i}$, which gives $\lambda_{i, i^{\prime}}^{=} \geqslant n-1$ and $\lambda_{i, i^{\prime}} \geqslant n^{2}-1$.

Claim 2. If $i \in A$, then $\lambda_{i-1, i+1}^{\leqslant} \geqslant\binom{ n-1}{2} \geqslant 3$.
Proof of Claim 2. As R_{i} is not a clique in $\left(P_{m} \times K_{n}\right)_{f}$, we may choose $c \neq d$ such that $v_{i, c} v_{i, d} \notin E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$. Consider any $j, j^{\prime} \notin\{c, d\}$ with $1 \leqslant j \leqslant j^{\prime} \leqslant n$. In the 4 -cycle ($v_{i, c}, v_{i-1, j}, v_{i, d}, v_{i+1, j^{\prime}}, v_{i, c}$), we have $v_{i, c} v_{i, d} \notin E\left(\left(P_{m} \times\right.\right.$ $\left.K_{n}\right)_{f}$) implying $v_{i-1, j} v_{i+1, j^{\prime}} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ by the chordality property (3). This gives that $\lambda_{i-1, i+1}^{\leqslant} \geqslant(1+2+$ $\cdots+(n-2))=\binom{n-1}{2} \geqslant 3$.

Claim 3. If $i \in B$, then $\lambda_{i-1, i+1}^{\leqslant} \geqslant\binom{ n}{2} \geqslant 6$.
Proof of Claim 3. For any $j, j^{\prime} \notin\left\{b_{i}\right\}$ with $1 \leqslant j \leqslant j^{\prime} \leqslant n$, since $f\left(v_{i, b_{i}}\right)=a_{i}<a_{i-1} \leqslant f\left(v_{i-1, j}\right)$ with $v_{i, b_{i}} v_{i-1, j} \in$ $E\left(P_{m} \times K_{n}\right) \subseteq E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ and $f\left(v_{i, b_{i}}\right)=a_{i}<a_{i+1} \leqslant f\left(v_{i+1, j^{\prime}}\right)$ with $v_{i, b_{i}} v_{i+1, j^{\prime}} \in E\left(P_{m} \times K_{n}\right) \subseteq E\left(\left(P_{m} \times\right.\right.$ $\left.K_{n}\right)_{f}$), by perfect elimination property (2), $v_{i-1, j} v_{i+1, j^{\prime}} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$. These give $\lambda_{i-1, i+1}^{\leqslant} \geqslant 1+2+\cdots+(n-$ 1) $=\binom{n}{2} \geqslant 6$.

Having these three claims in mind, we are ready to prove the theorem. As $n \geqslant 4$, there is a bijection from $\{\{j, k\}: 1 \leqslant j<k \leqslant n\}$ to itself such that $\{j, k\}$ is disjoint from its image $\left\{j^{\prime}, k^{\prime}\right\}$. This can be done by setting $\left\{j^{\prime}, k^{\prime}\right\}=\{(j+\delta) \bmod n,(k+\delta) \bmod n\}$, where $\delta=2$ when j and k are consecutive under modula n, and $\delta=1$ otherwise. We may assume that $j^{\prime}>k^{\prime}$ for our convenience. Consider the following $(m-2)\binom{n}{2}$ disjoint sets:

$$
S_{i, j, k}=\left\{v_{i, j} v_{i, k}, v_{i-1, j^{\prime}} v_{i+1, k^{\prime}}\right\}
$$

where $2 \leqslant i \leqslant m-2$ and $1 \leqslant j<k \leqslant n$. In the 4 -cycle ($v_{i, j}, v_{i-1, j^{\prime}}, v_{i, k}, v_{i+1, k^{\prime}}, v_{i, j}$) (see Fig. 5), at least one of the edge in $S_{i, j, k}$ must exist. These give totally at least $(m-2)\binom{n}{2}$ edges.

Among the $m-2$ rows $R_{2}, R_{3}, \ldots, R_{m-1}$, there are p rows that are not cliques in $\left(P_{m} \times K_{n}\right)_{f}$ and the other $m-2-p$ rows are cliques. Among the $m-2-p$ clique rows, let there be p^{\prime} consecutive pairs, that is, cliques R_{i} and $R_{i^{\prime}}$ with

Fig. 5. The 4-cycle $\left(v_{i, j}, v_{i-1, j^{\prime}}, v_{i, k}, v_{i+1, k^{\prime}}, v_{i, j}\right)$.
$\left|i-i^{\prime}\right|=1$. By Claim $1, \lambda_{i, i^{\prime}} \geqslant n^{2}-1$ for these p^{\prime} pairs and $\lambda_{i, i^{\prime}} \geqslant n^{2}-2$ for the remaining $m-1-p^{\prime}$ pairs of i and i^{\prime} with $\left|i-i^{\prime}\right|=1$. These give totally at least $p^{\prime}\left(n^{2}-1\right)+\left(m-1-p^{\prime}\right)\left(n^{2}-2\right)=(m-1)\left(n^{2}-1\right)+\left(p^{\prime}+1-m\right)$ edges.

By Claim 3, there are at least $6 q$ extra edges from the sets $\Lambda_{i-1, i+1}^{\leqslant}$for $i \in B$. By Claim 2, there are at least $3(p-q)$ extra edges from the sets $\Lambda_{i-1, i+1}^{\leqslant}$for $i \in A \backslash B$. These give at least $3 p+3 q$ extra edges. So, we have

$$
P\left(P_{m} \times K_{n}\right) \geqslant(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)+\left(p^{\prime}+1-m+3 p+3 q\right)
$$

In particular, $P\left(P_{m} \times K_{n}\right) \geqslant(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$ when $p^{\prime}+1-m+3 p+3 q \geqslant 0$. So, now assume that $p^{\prime}+1-m+3 p+3 q \leqslant-1$ or $p^{\prime} \leqslant m-3 p-3 q-2$.

Notice that there are p non-clique rows R_{i} with $2 \leqslant i \leqslant m-1$. These rows separate the other rows into $p+1$ runs. Each run with α clique rows in $R_{2}, R_{3}, \ldots, R_{m-1}$ has $\max \{0, \alpha-1\} \geqslant \alpha-1$ consecutive pairs of cliques. Therefore, $p^{\prime} \geqslant m-2-p-(p+1)=m-2 p-3$ with equality holds if and only if $\alpha \geqslant 1$ for each run of clique rows. Or equivalently, any two rows in $A \cup\left\{R_{1}, R_{m}\right\}$ are not consecutive, which implies that $3 \leqslant i \leqslant m-2$ for $i \in A$.

Now, $m-2 p-3 \leqslant p^{\prime} \leqslant m-3 p-3 q-2$ imply that $p+3 q \leqslant 1$. This is possible only when $p \leqslant 1$ and $q=0$. Suppose $p=1$, say $A=\left\{R_{i}\right\}$. Then, the above inequalities are in fact equalities, i.e., $m-2 p-3=p^{\prime}$ and so $3 \leqslant i \leqslant m-2$. Therefore, R_{i-1} and R_{i+1} are clique rows. As $q=0$, we have $i \notin B$ and so either $a_{i-1}<a_{i}$ or $a_{i+1}<a_{i}$. By Claim 1, either $\lambda_{i-1, i}^{=} \geqslant n-1$ or $\lambda_{i, i+1}^{=} \geqslant n-1$. So in the above calculation, we in fact have $p^{\prime}+1$, rather than p^{\prime}, consecutive pairs of i and i^{\prime} with $\lambda_{i, i^{\prime}} \geqslant n^{2}-1$. Thus,

$$
P\left(P_{m} \times K_{n}\right) \geqslant(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)+\left(p^{\prime}+2-m+3 p+3 q\right)
$$

where $p^{\prime}+2-m+3 p+3 q \geqslant(m-2 p-3)+2-m+3 p+3 q=p+3 q-1=0$ and so again $P\left(P_{m} \times K_{n}\right) \geqslant$ $(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$.

Now we may suppose that $p=q=0$. In other words, $R_{2}, R_{3}, \ldots, R_{m-1}$ are cliques and

$$
\begin{equation*}
a_{1}<a_{2}<\cdots<a_{r-1}<a_{r} \quad \text { and } \quad a_{r}>a_{r+1}>a_{r+2}>\cdots>a_{m} \tag{4}
\end{equation*}
$$

for some r. By Claim 1, we have

$$
\lambda_{1,2} \geqslant n^{2}-2, \quad \lambda_{i, i+1} \geqslant n^{2}-1 \text { for } 2 \leqslant i \leqslant m-2, \quad \lambda_{m-1, m} \geqslant n^{2}-2
$$

These together with the $m-2$ clique rows gives at least $(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)-2$ edges. In the following, two extra edges, one with an end vertex in R_{1} and the other with an end vertex in R_{m}, are to be found to make $P\left(P_{m} \times K_{n}\right) \geqslant(m-2)\binom{n}{2}+(m-1)\left(n^{2}-1\right)$. Assume, by symmetric, there is no such extra edge with a vertex in R_{1} which we call an R_{1}-edge, we shall either get a contradiction or find two other extra edges.

First, we may assume that $b_{1} \neq b_{2}$ and $a_{1}<a_{2}$ and $f\left(v_{1, b_{2}}\right)>f\left(v_{2, b_{2}}\right)$, for otherwise Claim 1 gives that $\lambda_{1,2} \geqslant n^{2}-1$ rather than only $\lambda_{1,2} \geqslant n^{2}-2$ which give an extra R_{1}-edge, a contradiction. Notice that the two non-edges between R_{1} and R_{2} are $v_{1, b_{1}} v_{2, b_{1}}$ and $v_{1, b_{2}} v_{2, b_{2}}$.

We claim that in fact $a_{1}=1$. Suppose to the contrary that $a_{1}>1$. By (4), we have $a_{m}=1$. This together with $a_{m}<a_{1}<a_{2} \leqslant a_{r}$ implies that there is some i such that $a_{r} \geqslant a_{i-1}>a_{1}>a_{i} \geqslant a_{m}=1$. Then, for each $j \neq b_{i}$, we have $f\left(v_{i, b_{i}}\right)<f\left(v_{1, b_{1}}\right)<f\left(v_{i-1, j}\right)$ and $v_{i, b_{i}} v_{i-1, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ implying $v_{1, b_{1}} v_{i-1, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, which gives $n-1$ extra R_{1}-edges, a contradiction. Thus, $a_{1}=1$.

As $a_{1}=1$ and $f\left(v_{1, b_{2}}\right)>a_{2}$, without loss of generality, we may assume that $f\left(v_{1, j}\right)=j$ for $1 \leqslant j \leqslant \ell-1$ but $f^{-1}(\ell)=v_{i^{*}, j^{*}} \notin R_{1}$, where $\ell \leqslant n$. Notice that we assume $b_{1}=1$ now. By the inequalities in (4), we have $\ell=a_{m}$
or $\ell=a_{2}$. For the case $\ell=a_{m}$, for any $j \neq 1$, we have $f\left(v_{1,1}\right)=1<\ell=a_{m}=f\left(v_{m, b_{m}}\right)<f\left(v_{2, j}\right)$ and $v_{1,1} v_{2, j} \in$ $E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, implying $v_{m, b_{m}} v_{2, j^{\prime}} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, which are $n-1 \geqslant 2$ extra edges as desired. For the case $\ell=a_{2}$, we may assume that $b_{2}=n$. If $\ell<n$, then for any $j<n$, we have $f\left(v_{2, n}\right)<f\left(v_{1, \ell}\right)$ with $v_{2, n} v_{1, \ell} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ and $f\left(v_{2, n}\right)<f\left(v_{3, j}\right)$ with $v_{2, n} v_{3, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, implying $v_{1, \ell} v_{3, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ by the perfect elimination property (2). This gives $n-1 \geqslant 2$ extra edges as desired. So, we may assume that $\ell=n$.

Next, $f\left(v_{1, n}\right)>f\left(v_{3,1}\right)$, for otherwise, $f\left(v_{1, n}\right)<f\left(v_{3,1}\right)$ gives that $f\left(v_{2, n}\right)<f\left(v_{1, n}\right)<f\left(v_{3,1}\right)$, this together with $v_{2, n} v_{3,1} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ implying $v_{1, n} v_{3,1} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, which is an extra R_{1}-edge, a contradiction. Similarly, for each j with $2 \leqslant j \leqslant n-1$ we have $f\left(v_{2, j}\right)>f\left(v_{3,1}\right)$, for otherwise, $f\left(v_{2, j}\right)<f\left(v_{3,1}\right)$ gives that $f\left(v_{2, j}\right)<f\left(v_{3,1}\right)<f\left(v_{1, n}\right)$, this together with $v_{2, j} v_{1, n} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ implying $v_{3,1} v_{1, n} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, which is an extra R_{1}-edge, a contradiction. Also, $f\left(v_{4,2}\right)>f\left(v_{3,1}\right)$, for otherwise, $f\left(v_{4,2}\right)<f\left(v_{3,1}\right)$ gives that for each j with $2 \leqslant j \leqslant n-1$, we have $f\left(v_{1,1}\right)<f\left(v_{4,2}\right)<f\left(v_{3,1}\right)<f\left(v_{2, j}\right)$, this together with $v_{1,1} v_{2, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$ implying $v_{4,2} v_{2, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, which are $n-2 \geqslant 2$ extra edges as desired. Now, for each j with $2 \leqslant j \leqslant n-1$, we have $f\left(v_{3,1}\right)<f\left(v_{2, j}\right)$ with $v_{3,1} v_{2, j} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, and $f\left(v_{3,1}\right)<f\left(v_{4,2}\right)$ with $v_{3,1} v_{4,2} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, implying $v_{2, j} v_{4,2} \in E\left(\left(P_{m} \times K_{n}\right)_{f}\right)$, which are $n-2 \geqslant 2$ extra edges as desired.

5. Conclusion

In this paper, we determine the profiles of $K_{m} \times K_{n}, K_{s, t} \times K_{n}$ and $P_{n} \times K_{n}$. It is desirable to find the profile of $G \times H$ for general graphs G and H, or at least for a general G with $H=K_{n}$.

Acknowledgments

The authors thank the referees for many constructive suggestions.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[2] N.E. Gibbs, W.G. Poole Jr., P.K. Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 13 (1976) 235-251.
[3] Y. Guan, K. Williams, Profile minimization problem on triangulated triangles, Computer Science Department Technical Report, TR/98-02, Western Michigan University, 1998.
[4] B.U. Koo, B.C. Lee, An efficient profile reduction algorithm based on the frontal ordering scheme and the graph theory, Comput. Structures 44 (6) (1992) 1339-1347.
[5] D. Kuo, The profile minimization problem in graphs, Master Thesis, Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, 1991.
[6] D. Kuo, G.J. Chang, The profile minimization problem in trees, SIAM J. Comput. 23 (1) (1994) 71-81.
[7] Y.-L. Lai, Bandwidth, edgesum and profile of graphs, Ph.D. Thesis, Department of Computer Science, Western Michigan University, 1997.
[8] Y.-L. Lai, Exact profile values of some graph compositions, Taiwanese J. Math. 6 (1) (2002) 127-134.
[9] Y.-L. Lai, K. Williams, A survey of solved problems and applications on bandwidth, edgesum and profile of graphs, J. Graph Theory 31 (1999) 75-94.
[10] Y. Lin, J. Yuan, Profile minimization problem for matrices and graphs, Acta Math. Appl. Sinica, English-Series, Yingyong Shuxue-Xuebas 10 (1) (1994) 107-112.
[11] Y. Lin, J. Yuan, Minimum profile of grid networks, J. Systems Sci. Math. Sci. 7 (1) (1994) 56-66.
[12] J.C. Luo, Algorithms for reducing the bandwidth and profile of a sparse matrix, Comput. \& Structures 44 (3) (1992) $535-548$.
[13] J. Mai, Profiles of some condensable graphs, J. Systems Sci. Math. Sci. 16 (1996) 141-148.
[14] W.F. Smyth, Algorithms for the reduction of matrix bandwidth and profile, J. Comput. Appl. Math. 12,13 (1985) 551-561.
[15] R.A. Snay, Reducing the profile of sparse symmetric matrices, Bull. Geodesique 50 (1976) 341-352.
[16] M. Wiegers, B. Monien, Bandwidth and profile minimization, Lecture Notes in Comput. Sci. 344 (1988) 378-392.

[^0]: Supported in part by the National Science Council under Grant NSC93-2115-M002-003.
 E-mail address: gjchang@math.ntu.edu.tw (G.J. Chang).

