30,744 research outputs found

    Production matrices for geometric graphs

    Get PDF
    We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot numbers, and Fibonacci numbers arise in a natural way, and also new formulas are obtained, such as a formula for the number of non-crossing geometric graphs with root vertex of given degree. The characteristic polynomials of some of these production matrices are also presented. The proofs make use of generating trees and Riordan arrays.Postprint (updated version

    Characteristic polynomials of production matrices for geometric graphs

    Get PDF
    An n×n production matrix for a class of geometric graphs has the property that the numbers of these geometric graphs on up to n vertices can be read off from the powers of the matrix. Recently, we obtained such production matrices for non-crossing geometric graphs on point sets in convex position [Huemer, C., A. Pilz, C. Seara, and R.I. Silveira, Production matrices for geometric graphs, Electronic Notes in Discrete Mathematics 54 (2016) 301–306]. In this note, we determine the characteristic polynomials of these matrices. Then, the Cayley-Hamilton theorem implies relations among the numbers of geometric graphs with different numbers of vertices. Further, relations between characteristic polynomials of production matrices for geometric graphs and Fibonacci numbers are revealed.This project has received funding from the European Union’s Horizon 89 2020 research and innovation programme under the Marie Sk lodowska- 90 Curie grant agreement No 734922. 91 C. H., C. S., and R. I. S. were partially supported by projects MINECO MTM2015- 92 63791-R and Gen. Cat. DGR2014SGR46. R. I. S. was also supported by MINECO 93 through the Ramon y Cajal programPostprint (published version

    New results on production matrices for geometric graphs

    Get PDF
    We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another way of counting the number of such objects. For instance, a formula for the number of connected geometric graphs with given root degree, drawn on a set of n points in convex position in the plane, is presented. Further, we find the characteristic polynomials and we provide a characterization of the eigenvectors of the production matrices.Postprint (author's final draft

    Evaluation of the mean cycle time in stochastic discrete event dynamic systems

    Full text link
    We consider stochastic discrete event dynamic systems that have time evolution represented with two-dimensional state vectors through a vector equation that is linear in terms of an idempotent semiring. The state transitions are governed by second-order random matrices that are assumed to be independent and identically distributed. The problem of interest is to evaluate the mean growth rate of state vector, which is also referred to as the mean cycle time of the system, under various assumptions on the matrix entries. We give an overview of early results including a solution for systems determined by matrices with independent entries having a common exponential distribution. It is shown how to extend the result to the cases when the entries have different exponential distributions and when some of the entries are replaced by zero. Finally, the mean cycle time is calculated for systems with matrices that have one random entry, whereas the other entries in the matrices can be arbitrary nonnegative and zero constants. The random entry is always assumed to have exponential distribution except for one case of a matrix with zero row when the particular form of the matrix makes it possible to obtain a solution that does not rely on exponential distribution assumptions.Comment: The 6th International Conference on Queueing Theory and Network Applications (QTNA'11), Aug. 23-26, 2011, Seoul, Korea; ACM, New York, ISBN 978-1-4503-0758-

    On the max-algebraic core of a nonnegative matrix

    Get PDF
    The max-algebraic core of a nonnegative matrix is the intersection of column spans of all max-algebraic matrix powers. Here we investigate the action of a matrix on its core. Being closely related to ultimate periodicity of matrix powers, this study leads us to new modifications and geometric characterizations of robust, orbit periodic and weakly stable matrices.Comment: 27 page
    • …
    corecore