3,756 research outputs found

    Production and Playback of Human Figure Motion 3D Virtual Environments

    Get PDF
    We describe a system for off-line production and real-time playback of motion for articulated human figures in 3D virtual environments. The key notions are (1) the logical storage of full body motion in posture graphs, which provides a simple motion access method for playback, and (2) mapping the motions of higher DOF figures using slaving to provide human models at several levels of detail, both in geometry and articulation, for later playback. We present our system in a context of a simple problem: Animating human figures in a distributed simulation, using DIS protocols for communication the human state information. We also discuss several related techniques for real-time animation of articulated figures in visual simulation

    Navigating Immersive and Interactive VR Environments With Connected 360° Panoramas

    Get PDF
    Emerging research is expanding the idea of using 360-degree spherical panoramas of real-world environments for use in 360 VR experiences beyond video and image viewing. However, most of these experiences are strictly guided, with few opportunities for interaction or exploration. There is a desire to develop experiences with cohesive virtual environments created with 360 VR that allow for choice in navigation, versus scripted experiences with limited interaction. Unlike standard VR with the freedom of synthetic graphics, there are challenges in designing appropriate user interfaces (UIs) for 360 VR navigation within the limitations of fixed assets. To tackle this gap, we designed RealNodes, a software system that presents an interactive and explorable 360 VR environment. We also developed four visual guidance UIs for 360 VR navigation. The results of a pilot study showed that choice of UI had a significant effect on task completion times, showing one of our methods, Arrow, was best. Arrow also exhibited positive but non-significant trends in average measures with preference, user engagement, and simulator-sickness. RealNodes, the UI designs, and the pilot study results contribute preliminary information that inspire future investigation of how to design effective explorable scenarios in 360 VR and visual guidance metaphors for navigation in applications using 360 VR environments

    A multi-modal dance corpus for research into real-time interaction between humans in online virtual environments

    Get PDF
    We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology are locally available to them, can learn choerographies with teacher guidance in an online virtual ballet studio. As the data corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers perform a number of fixed choreographies, which are both graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. Although the data corpus is tailored specifically for an online dance class application scenario, the data is free to download and used for any research and development purposes

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    MoveBox: Democratizing MoCap for the Microsoft Rocketbox Avatar Library

    Get PDF
    This paper presents MoveBox an open sourced toolbox for animating motion captured (MoCap) movements onto the Microsoft Rocketbox library of avatars. Motion capture is performed using a single depth sensor, such as Azure Kinect or Windows Kinect V2. Motion capture is performed in real-time using a single depth sensor, such as Azure Kinect or Windows Kinect V2, or extracted from existing RGB videos offline leveraging deep-learning computer vision techniques. Our toolbox enables real-time animation of the user’s avatar by converting the transformations between systems that have different joints and hierarchies. Additional features of the toolbox include recording, playback and looping animations, as well as basic audio lip sync, blinking and resizing of avatars as well as finger and hand animations. Our main contribution is both in the creation of this open source tool as well as the validation on different devices and discussion of MoveBox’s capabilities by end users

    Graphics Insertions into Real Video for Market Research

    Get PDF

    Full Body Acting Rehearsal in a Networked Virtual Environment-A Case Study

    Get PDF
    In order to rehearse for a play or a scene from a movie, it is generally required that the actors are physically present at the same time in the same place. In this paper we present an example and experience of a full body motion shared virtual environment (SVE) for rehearsal. The system allows actors and directors to meet in an SVE in order to rehearse scenes for a play or a movie, that is, to perform some dialogue and blocking (positions, movements, and displacements of actors in the scene) rehearsal through a full body interactive virtual reality (VR) system. The system combines immersive VR rendering techniques as well as network capabilities together with full body tracking. Two actors and a director rehearsed from separate locations. One actor and the director were in London (located in separate rooms) while the second actor was in Barcelona. The Barcelona actor used a wide field-of-view head-tracked head-mounted display, and wore a body suit for real-time motion capture and display. The London actor was in a Cave system, with head and partial body tracking. Each actor was presented to the other as an avatar in the shared virtual environment, and the director could see the whole scenario on a desktop display, and intervene by voice commands. A video stream in a window displayed in the virtual environment also represented the director. The London participant was a professional actor, who afterward commented on the utility of the system for acting rehearsal. It was concluded that full body tracking and corresponding real-time display of all the actors' movements would be a critical requirement, and that blocking was possible down to the level of detail of gestures. Details of the implementation, actors, and director experiences are provided
    corecore