8,060 research outputs found

    An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities

    Full text link
    We describe an extension of Earley's parser for stochastic context-free grammars that computes the following quantities given a stochastic context-free grammar and an input string: a) probabilities of successive prefixes being generated by the grammar; b) probabilities of substrings being generated by the nonterminals, including the entire string being generated by the grammar; c) most likely (Viterbi) parse of the string; d) posterior expected number of applications of each grammar production, as required for reestimating rule probabilities. (a) and (b) are computed incrementally in a single left-to-right pass over the input. Our algorithm compares favorably to standard bottom-up parsing methods for SCFGs in that it works efficiently on sparse grammars by making use of Earley's top-down control structure. It can process any context-free rule format without conversion to some normal form, and combines computations for (a) through (d) in a single algorithm. Finally, the algorithm has simple extensions for processing partially bracketed inputs, and for finding partial parses and their likelihoods on ungrammatical inputs.Comment: 45 pages. Slightly shortened version to appear in Computational Linguistics 2

    Evaluating two methods for Treebank grammar compaction

    Get PDF
    Treebanks, such as the Penn Treebank, provide a basis for the automatic creation of broad coverage grammars. In the simplest case, rules can simply be ‘read off’ the parse-annotations of the corpus, producing either a simple or probabilistic context-free grammar. Such grammars, however, can be very large, presenting problems for the subsequent computational costs of parsing under the grammar. In this paper, we explore ways by which a treebank grammar can be reduced in size or ‘compacted’, which involve the use of two kinds of technique: (i) thresholding of rules by their number of occurrences; and (ii) a method of rule-parsing, which has both probabilistic and non-probabilistic variants. Our results show that by a combined use of these two techniques, a probabilistic context-free grammar can be reduced in size by 62% without any loss in parsing performance, and by 71% to give a gain in recall, but some loss in precision

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results
    • …
    corecore