
This is a repository copy of Evaluating two methods for Treebank grammar compaction.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1631/

Article:

Krotov, A., Hepple, M., Gaizauskas, R. et al. (1 more author) (1999) Evaluating two
methods for Treebank grammar compaction. Natural Language Engineering, 5 (4). pp.
377-394. ISSN 1351-3249

https://doi.org/10.1017/S1351324900002308

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Natural Language Engineering 5 (4): 377–394. Printed in the United Kingdom

c© 1999 Cambridge University Press

377

Evaluating two methods for

Treebank grammar compaction

ALEXANDER KROTOV, MARK HEPPLE,

ROBERT GAIZAUSKAS and YORICK WILKS
Department of Computer Science, University of Sheffield,

Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

{alexk, hepple, robertg, yorick}@dcs.shef.ac.uk

(Received 18 February 1998; revised 3 March 2000)

Abstract

Treebanks, such as the Penn Treebank, provide a basis for the automatic creation of broad
coverage grammars. In the simplest case, rules can simply be ‘read off’ the parse-annotations of
the corpus, producing either a simple or probabilistic context-free grammar. Such grammars,
however, can be very large, presenting problems for the subsequent computational costs of
parsing under the grammar. In this paper, we explore ways by which a treebank grammar
can be reduced in size or ‘compacted’, which involve the use of two kinds of technique: (i)
thresholding of rules by their number of occurrences; and (ii) a method of rule-parsing, which
has both probabilistic and non-probabilistic variants. Our results show that by a combined
use of these two techniques, a probabilistic context-free grammar can be reduced in size by
62% without any loss in parsing performance, and by 71% to give a gain in recall, but some
loss in precision.

1 Introduction

The past decade has seen the rise of corpus-based, ‘empirical’ methods within

computational linguistics. Such methods standardly involve a training phase during

which data is collected from a corpus for subsequent use in processing, and in some

cases the volume of information extracted during training can be very large. This fact

can have serious resource consequences subsequently, i.e. both in terms of the space

required to store the data, and also the cost in time for mobilising a large amount of

information during processing. In this context, the issue arises of how the collected

data might filtered or pruned, or in any way reduced or compressed, as a route to

easing the resource problems mentioned. This paper addresses this issue in relation

to the area of parsing based on so-called treebank grammars, i.e. grammars derived

from parse-annotated corpora or ‘treebanks’, such as the Penn Treebank (PTB)

(Marcus et al., 1993). Several approaches have been used for deriving grammars

from treebanks, but in the simplest case, the rules of the grammar can simply be

‘read off’ the parse trees in the corpus, with each local subtree providing the left and

378 A. Krotov and others

right hand sides of a rule. Such an approach will yield a simple context-free grammar

(CFG), or with some additional book-keeping, a probabilistic CFG (PCFG). Even

for such simple grammatical models, the size of the grammar collected can be very

large, e.g. more than 17 000 rules in our own experiments (Gaizauskas, 1995) on

PTB II (the second release of the PTB), so clearly the possibility that the collected

grammar can be pruned or compacted to any significant extent is very attractive,

provided that any loss in parsing performance is within acceptable bounds. Even

more intriguing is the possibility that suitable pruning of the grammar might produce

an increase in parsing performance, alongside any other computational benefits.

In what follows, we will note some previous work within the treebank parsing

area, before going on to describe our own experiments on extracting grammars from

the PTB. Here we report the worrying observation that the rate of acquisition of

‘new rules’ continues with very little reduction throughout processing of the entire

treebank, suggesting perhaps that the resulting rule set is far from complete. We

suggest a possible explanation of this rule growth phenomenon in terms of partial

(i.e. incomplete) bracket assignment during annotation. We will then discuss the task

of compacting a treebank grammar, and report the results of our own experiments,

which are based on the use of two techniques: (i) thresholding of rules by the

number of times they have occurred; and (ii) a method of rule-parsing, which has

both probabilistic and non-probabilistic variants.1 The extent of compaction that

can be achieved depends upon our requirements for what should not be lost during

compaction. For example, if we require only the preservation of a CFG’s string set

(i.e. so that initial and compacted grammars are weakly-equivalent CFGs) then a

treebank grammar can be reduced to a small fraction of its initial size – ∼10%

in our experiments. If, however, we want to compact a PCFG so that initial and

compacted grammars return equally probable results for the most-probable parse

of any sentence, then the extent of compaction will be much less – around a 62%

reduction in grammar size in our experiments. By weakening this ‘equal probability’

requirement, we have been able to produce greater extents of compaction, without

substantial loss of parsing performance (as measured by precision and recall).

These results, we believe, weigh in favour of the potential practical utility of

treebank grammars. Although we have chosen to work with a comparatively simple

grammar formalism – nonlexicalised PCFG – for our explorations of treebank

grammar compaction, we are hopeful that our general approach will adapt to some

of the other approaches that have been used in treebank parsing, such as lexicalised

PCFG and other formalisms.

2 Treebank grammars and parsing

The previous work on treebank grammars that bears most immediate comparison

to our own is that of Charniak (1996). Charniak extracted a PCFG having almost

1 The results of our work on grammar compaction at an earlier stage were presented in
Krotov, Hepple, Gaizauskas and Wilks (1997, 1998). This paper extends these previously
reported results and provides a more complete explication of our methods.

Evaluating two methods for Treebank grammar compaction 379

16 000 rules from the PTB II.2 Rules are assigned probabilities according to the

equation in (1) (where | r | is the occurrence count for rule r in the trees of the

training corpus, and λ(r) returns the non-terminal that r expands):

p(r) =
| r |

Σr′∈{r′′ | λ(r′′)=λ(r)} | r′ |
(1)

The probability of any parse under such a PCFG is simply the product of the rule

probabilities for each rule occurrence in the parse. This grammar was evaluated by

computing the most-probable parse of the sentences (all of length ≤ 40) in a test

set, and comparing this parse (the ‘response’) to their treebank parse (the ‘key’).

Standard metrics for evaluating parses are precision: the proportion (%) of response

constituents that are also present in the key (and are hence ‘correct’), and recall : the

proportion of constituents in the key that are also present in the response (and hence

were found). These metrics both have labelled and unlabelled variants, where the

former requires constituents in response and key to have the same syntactic category

to be considered the same, whereas the latter does not. Charniak (1996) reports

unlabelled precision and recall figures of around 80% for his grammar. Charniak

(1997a) discusses a number of statistical treebank grammar models, including a

simple PCFG one such as that above, for which somewhat lower labelled precision

and recall figures are reported (around 71% and 75%, respectively).

These results are by no means the best in treebank parsing. Much better figures,

i.e. labelled precision/recall of around 87–88%, are reported for lexicalised statistical

approaches, which employ statistics on the behaviour of individual words (such as

Magerman (1995), Collins (1996) and Charniak (1997a)). See Charniak (1997b) for

a review of work in this area. Other non-lexicalised approaches include Thompson,

Mooney and Tang (1997), in which very domain-specific text is addressed, and

Schabes, Roth and Osborne (1993), which considers only binary-branching rules.

Shirai, Tokunaga and Tanaka (1995) extract a grammar for Japanese from the EDR

corpus, and report figures for unlabelled precision/recall of 75/85%. Addressing

the issue of how phrase structure should be represented for Korean, Lee, Kim,

Han and Kim (1997) extract a grammar from a corpus of 10 000 manually parse-

annotated Korean sentences. Johnson (1998) addresses the impact of different tree

representations upon the performance of a treebank derived PCFG, and describes

a simple node relabelling transformation that improves the labelled precision/recall

figures for a PTB II derived PCFG by around 8%.

Another approach within treebank parsing is Data-Oriented Parsing (DOP) (Bod

1992, 1993; Bonnema, Bod and Scha 1997), which collects statistics on the occurrence

frequency of all tree fragments within a corpus, derives any sentence by assembling

such fragments, and scores any parse in terms of the sum of the probabilities of all

2 The trees of the training corpus were subject to some limited manipulation before their
rules were extracted, i.e. empty categories were ignored, two additional tags for auxiliaries
were used to distinguish them from other verbs.

380 A. Krotov and others

of its derivations (and hence this model presents significant problems in terms of

computational overhead3).

For our investigations, we have chosen to work with a simple nonlexicalised PCFG,

after the fashion of Charniak (1996), rather than some of the other approaches

described above, to allow us to focus on the basic idea of treebank grammar

compaction. However, we are hopeful that our general approach will adapt to some

of the other approaches, and so provide a basis for more efficient practical treebank

parsing in general.

3 Grammar extraction and rule set growth

The method we used for extracting the grammar from the corpus is very much as

for Charniak (1996), i.e. after some limited, automated, preparation of the trees in

the corpus, the rules are simply read of the trees, with rule probabilities assigned

as by the equation given in the previous section. There were, however, some minor

differences to Charniak’s method as regards the prior manipulation of corpus trees.

Firstly, unlike Charniak, we have not introduced additional lexical tags to distinguish

auxiliaries from other verbs. Secondly, we have eliminated unary projections within

trees where both mother and daughter node bear nonlexical categories, moving the

daughter tree up to occupy the position of the mother node. Our tree manipulation

method is precisely stated as follows (see Gaizauskas (1995) for further exposition):

1. Eliminate all hyphen/equals-attached suffix tags (used to specify grammatical

function, semantic role, co-indexation, etc.).

2. Delete all null elements (signaled by label -NONE-) and also any nonterminal

nodes that are caused to have no children by such deletion.

3. Any node with a single child that bears a non-lexical tag (whether it is so due

to deletion of null elements or not) is deleted, with the child taking its place

in the next higher level constituent.

For example, the tree fragment in (2a) would become (2b) by deletion of suffixes,

and then (2c) by deletion of null structure, and finally (2d) by deletion of unary

structure. The resulting tree yields the rules shown in (2e).

(2) a. (PP (IN without)

(S-NOM

(NP-SBJ (-NONE- *-1))

(VP (VBG missing)

(NP (DT a) (NN beat)))))

b. (PP (IN without)

(S

(NP (-NONE- *))

(VP (VBG missing)

(NP (DT a) (NN beat)))))

c. (PP (IN without)

(S

(VP (VBG missing)

(NP (DT a) (NN beat)))))

d. (PP (IN without)

(VP (VBG missing)

(NP (DT a) (NN beat))))

3 In Bonnema et al. (1997), for example, a very domain-specific corpus such as ATIS is used,
tree depth is restricted, and the sentences parsed are very short (average length 4.74 words).

Evaluating two methods for Treebank grammar compaction 381

e. PP → IN VP

VP → VBG NP

NP → DT NN

Perhaps the most contentious aspect of the tree manipulation process described

above is the elimination of unary structure. This move was initially made with a

view to avoiding problems that unary rules can present for parsing, but we believe

that an examination of the unary rules that would otherwise be admitted provides

adequate justification for the manoeuvre. We find that the move avoids the inclusion

of 66 unary rules, of which just two rules (NP → QP and NP → NP) account for

∼73% of the occurrences. Of the 23 categories that can rewrite via unary rules to

other non-lexical categories, 12 can rewrite to ≥ 20 others, and 10 can rewrite to

themselves (i.e. they participate in cycles), the latter set including all major categories

in terms of both number of rules and number of rule occurrences (S, NP, VP, PP,

ADJP, SBAR), with the sole exception of ADVP. The presence of categories which

mutually rewrite suggests a grammar that is descriptively flawed, since anything

derivable from one is derivable from the other, i.e. they serve no discriminating

function with respect to each other. It is perhaps not surprising that such a problem

arises, given that the formalism of the extracted grammar, with its atomic-categoried

context-free rules, fails to encode non-local dependencies, such as that between the

bottom of a unary rewrite sequence and the upper-level context in which it appears.

The method used in removing unary structure (i.e. replacing a parent node with

its child) attempts to partially compensate for this limitation by generating trees in

which the bottom structure of a unary rewrite is placed directly into the upper-level

context, i.e. directly anchoring the consequences of the rewrite sequence to the higher

level context which licensed it.

This grammar extraction method was applied to the Wall Street Journal portion

of the PTB II, which comprises 2312 files, containing 49 208 sentences, consisting

of 1 253 013 tokens. The resulting grammar contains 17 534 rules.4 An immediate

question to ask of such a grammar is how close it is to being complete, at least

for this domain, i.e. does it contain all, or nearly all, the rules needed to analyse

Wall Street Journal English? Given the size of the corpus, it seems unlikely that

every last rule has been discovered, but we might hope that most of them have.

To investigate this question, we examined the ‘accession rate’ for new grammar

rules, i.e. the rate at which new rules are discovered as new texts are processed.

One might expect that as more texts are processed, the number of new rules added

per text will be smaller, i.e. as some asymptotic limit is approached. However, in

the results we obtained, plotted in Figure 1, rule accession proceeds at a healthy

4 See Gaizauskas (1995) for a detailed analysis of characteristics of the corpus (e.g. the
distribution of sentences by length, and of tree occurrences by depth) and of the extracted
rule set (e.g. the distribution of rules and rule occurrences by left-hand side category, or by
length of right-hand side).

382 A. Krotov and others

0

5000

10000

15000

20000

0 20 40 60 80 100

N
um

be
r o

f R
ul

es

Percentage of corpus

Fig. 1. Rule set growth for Penn Treebank II.

rate throughout processing of the entire corpus, with no suggestion of a limit being

approached.5

Why should the set of rules continue to grow in this way? One possibility is that

natural languages do not have finite rule sets. Another is that the full grammar for

this domain is finite but much larger than the rule set so far produced, requiring a

much larger tree-banked corpus than is now available for its extraction. In either of

these cases, the outlook would be bleak for achieving near-complete grammars from

treebanks, particularly given the resource demands of producing parse-annotated

text.

A third possibility is suggested by the presence in the extracted grammar of rules

such as (3) (where CC tags coordinating conjunctions), which is suspicious from a

linguistic point of view. We would expect that the text from which it was extracted

should more properly have been analysed using rules (4,5), i.e. as a coordination of

two simpler NPs.

NP → DT NN CC DT NN(3)

NP → NP CC NP(4)

NP → DT NN(5)

It is possible that this example reflects a widespread phenomenon of partial bracket-

ting within the PTB. Such incomplete structures might arise during parse-annotation

of texts, with annotators adding brackets where they are confident that some string

forms a given constituent, but leaving others out where they are less confident of the

constituent structure. This would result in the extracted rule set containing many

rules that are ‘flatter’ than they should be, corresponding to what should properly

5 As we reported in Krotov, Gaizauskas and Wilks (1994), a similar result was observed for
PTB I. In that case, we extracted 2700+ rules from 45 000+ part-of-speech tokens of input.
Again, there was no sign of a limit being approached for rule accession.

Evaluating two methods for Treebank grammar compaction 383

be the result of using several grammar rules, but instead showing only the top node

and leaf nodes of some unspecified tree structure. For the example above, a tree

structure that should properly have been annotated as (6a) has instead received only

the partial analysis (6b), yielding the flatter ‘partial-structure’ rule (3).

a.

NP

DT NN

NP

DT NN

CC

NP b.

CCNNDT DT NN

NP
(6)

Even assuming some reasonable limit on the length of rule righthand sides, the

number of partial-structure rules that could be derived from even a relatively small

‘genuine’ underlying grammar is potentially enormous. Hence it could be that the

continuing rule set growth shown in Figure 1 is more a matter of the continued

accumulation of unnecessary ‘partial-structure’ rules rather than of ‘genuine’ rules.

This idea of ‘partial-structure’ is immediately suggestive of a route by which such

unwanted rules could be identified: rule-parsing. For the example above, the rule (3)

can be parsed using the rules (4,5), as the structure (6a) demonstrates.

Whether or not it is correct that partial bracketting is widespread with the PTB,

and plays a significant role in relation to the continued rule growth, the idea of

rule-parsing can be justified and applied to the task of rule elimination in a number

of different ways, as we shall discuss in the next section.

4 Approaches to grammar compaction

We shall explore two approaches by which treebank grammars may be reduced

in size, or compacted as we call it, by the elimination of rules: thresholding, and

rule-parsing.

The method of thresholding simply involves discarding rules that have occurred

less than some threshold number of times. This method was used by Charniak

(1996), who tried discarding all the rules that had appeared only once in the training

corpus. For the grammar we have extracted from PTB II, we have tested the result

of applying a range of different threshold levels, as reported in the next section.

The method of rule-parsing involves determining whether a rule should be dis-

carded or not on the basis of the parses of the rule itself that can be constructed

using the other rules of the grammar. This approach is suggested by the idea of

there being partial bracketting within the treebank, as discussed in the previous

section. Unfortunately, although a partial-structure rule should be parsable using

other ‘genuine’ rules of the grammar (assuming they are present), it does not follow

that every rule which is so parsable is a partial-structure rule that should be elim-

inated. This point is easily seen in relation to the example of the following three

(linguistically plausible) rules. The first rule can be parsed using the other two, i.e.

under the structure in (10a), but it is not a ‘partial-structure’ rule, i.e. there are cases

384 A. Krotov and others

where the flatter structure (10b) it allows is linguistically correct.

VP → VB NP PP(7)

VP → VB NP(8)

NP → NP PP(9)

a.

NP

NP PP

VP

VB

b. VP

PPNPVB

(10)

Furthermore, although the phenomenon of partial bracketting clearly is present

within the PTB, the extent to which it is present, and hence the extent of its

impact on the extracted grammar, is something that we are not in a position to

quantify. Fortunately, the use of rule-parsing does not rely on the correctness of our

hypothesis regarding partial bracketting, but can be justified in other ways.

A useful case to consider is that of data compression techniques, which divide

into lossless vs. lossy methods. For lossless methods, the output at decompression

is identical to the initial input, i.e. no information is lost. Lossy methods, however,

achieve a reduction in the amount of data to be stored by discarding information,

so that the output is only an approximation of the input. Such methods can be

viewed as employing a model which determines the information that is discarded or

preserved in compression. Another characteristic of lossy methods is that they allow

a choice of compression ratio, i.e. so that the user can vary a setting on a ‘dial’ to

specify a desired balance between the volume of data to be stored and the fidelity

of the output as an approximation of the input.

Rule-parsing could be used in various ways in identifying rules to be eliminated

from an initial treebank grammar. To determine precisely how rule-parsing should

be used requires a decision as to what is to be preserved under compaction (c.f. the

‘model’ of a lossy compression method). For example, if we decided that compaction

should preserve the set of all CFG parse trees that can be assigned to any sentence,

then, in fact, no rules could be removed from the initial grammar. (The fact that

each rule is drawn from at least one tree in the training corpus demonstrates that it

is associated with a non-empty tree set.) If instead, however, we required only that

compaction should preserve the set of strings (or part-of-speech sequences) that can

be parsed (i.e. assigned at least one parse tree), then we should be able to eliminate

any rule that can be parsed using other rules of the grammar. For example, consider

a sentence having a parse P which employs a rule R, which can itself be assigned a

parse T using only other rules (6= R) of the grammar. Substituting every occurrence

of R in P with the tree T yields a parse of the initial sentence not employing R at

all, and so eliminating R from the grammar does not result in any loss of coverage.

This approach to compaction by rule-parsing, what we call the ‘naive’ method, is

explored in section 6.

An alternative ‘model’ for compaction, and one which is far more promising for

Evaluating two methods for Treebank grammar compaction 385

practical utility than the naive method, arises for PCFG treebank grammars. If the

intended use of such a PCFG in practical parsing is in generating just the most-

probable parse of a sentence (or where there are several equally probable parses, one

of them), then a natural requirement to make of compaction is that it should preserve

maximal parse probability, i.e. so that for any sentence, the ‘best’ (most-probable)

parse returned under the compacted grammar is of equal probability to (if perhaps

not identical with) the best parse returned for the sentence under the uncompacted

grammar. In this case, a rule R can be eliminated from the grammar just in case its

best parse T using other rules of the grammar has probability equal to or greater

than the rule’s own probability, since replacing a use of R with T in some larger

parse will never reduce the latter’s probability. The consequence of eliminating rules

in this way will be that the most-probable parses possible for any sentence under

the compacted grammar will be a non-empty subset of the most-probable parses

allowed by the uncompacted grammar. This approach to compaction by rule-parsing

is explored in section 7.

5 Compaction by thresholding

The method of thresholding involves discarding rules under some criterion which

is based on the number of times that any rule occurred in the training corpus.

Perhaps the simplest model of thresholding is to eliminate any rule that occurred

no more than n times, for some n > 0. However, other models are possible. For

example, Gaizauskas (1995) suggests an approach whereby the most infrequently

occurring rules within any category are eliminated until the remaining rules account

for not fewer than n% of the rule occurrences for that category, e.g. so that the

infrequently used NP rules would be removed until those that remain accounted

for, say, 95% of NP occurrences. Gaizauskas applied this method to an initial

grammar of around 17 500 rules (extracted very much as for the grammar discussed

in section 3), and reports that a 95% threshold reduced the initial grammar to 2144

rules, whilst thresholds of 90%, 80% and 70% resulted in grammars of 872, 240

and 112 rules, respectively.6 However, no parsing performance figures are available

for these grammars.

In this section, we focus on the use of the simple model of thresholding as

an approach to treebank grammar compaction, i.e. the method whereby any rule

occurring not more than some threshold number of times is removed. This method

was previously tried by Charniak (1996), who compared the performance of his full

treebank grammar (discussed in section 2) with the subset grammar consisting of

only those rules that had appeared more than once in his training corpus, of which

there were around 6800. He found the effects of the reduction to be small, i.e. no

change in unlabelled recall, and a small reduction in unlabelled precision (from 82%

to 81.6%).

6 It should be noted that the method also involved the removal of rules that became
‘unreachable’ as a consequence of other rules being eliminated, i.e. all the rules under a
given category C would be removed if no other rules remained having C on the right-hand
side.

386 A. Krotov and others

We were interested in determining the effect of using a range of different threshold

levels. For these experiments, we used training and test corpora similar to the ones

used by Collins (1996). The training corpus contains text from sections 02–21 of

the Wall Street Journal portion of the PTB II. The test sample consists of the

sentences of section 23 that are of length ≤ 40, which number 2245 in total. From

the training corpus, a PCFG comprising 15420 rules was extracted. Various reduced

grammars were produced by using different thresholds, applied in the obvious way

(e.g. applying a threshold of 2 means that rules occurring two times or less were

discarded). Table 1 shows the thresholds that were used, the size of the resulting

grammars, and the parsing performance results for each. Evaluation was made on the

basis of the most-probable parse with top category S returned for each sentence,7

and scored using the evalb program developed by Satoshi Sekine and Michael

Collins. The PTB trees used for keys in evaluation were also subjected to the tree

manipulation process described in section 3,8 so that the structures used in scoring

were of a comparable character to those from which the grammar was extracted. In

addition to unlabelled and labelled precision and recall, the results include scores

for some of the other metrics that have been widely used in parsing evaluation,

which are concerned with so-called crossing brackets, where bracketted sequences

(irrespective of label) in response and key overlap but neither is contained in the

other (so each dominates some terminal elements that the other does not). These

metrics are: crossing brackets (CB: number of response constituents that cross any

key constituents), zero crossing brackets (0CB: proportion of sentences whose parse

(response) crosses no brackets in the key), two crossing brackets (2CB: proportion

of sentences whose parse crosses no more than two brackets in the key).

The results in Table 1 show a quite surprising degree of resilience for the parsing

performance on the sentences parsed in testing in the face of increasingly severe

compaction under thresholding. Even with a threshold of 100, producing a grammar

size reduction of 97%, the figure for labelled recall falls by very little, less than 1%

as compared to the initial grammar, whilst labelled precision suffers somewhat more,

falling by nearly 7% but remaining above the 70% mark. The damaging effect of

this compaction is shown, however, by the loss of coverage, i.e. by the test sentences

that fail to receive a parse, which for the 100 threshold grammar account for nearly

one in three of the test set. Looking at the less severe cases of thresholding, we

find that a threshold of 1 produces an effect roughly in line with that reported

7 The obvious alternative here would be to use the most-probable parse returned by the
parser, irrespective of the category appearing at the top of the parse tree, in effect allowing
the PCFG itself to decide whether the input should be considered a sentence or noun phrase
or whatever. We found that selecting the most-probable parse with category S appearing
as its top node for evaluation gave significantly better parsing performance results. An
improvement of around 3% on average in both labelled and unlabelled precision and recall
scores is seen pretty much across the board for the grammars discussed in the paper.

8 Recall that the tree manipulation process has the effect of partially flattening trees, by
elimination of unary projections. The alternative approach of scoring directly against the
unmodified PTB trees would result in the grammar being penalised for failing to reproduce
structure that was not there in the trees from which the grammar was derived. We have
found that scoring against unmodified keys makes little difference for precision, but results
in recall scores that are somewhat lower, by around 4%.

Evaluating two methods for Treebank grammar compaction 387

Table 1. Compaction by thresholding and parsing performance

Threshold Size Reduction UR UP LR LP CB 0CB 2CB No-parse

(N) (N) (%) (%) (%) (%) (%) (N) (%) (%) (%)

0 15 420 0 77.19 80.67 74.08 77.43 2.13 37.97 66.40 0.04
1 6517 58 77.52 80.20 74.42 76.99 2.18 37.71 65.77 0.2
2 4508 71 77.43 79.62 74.27 76.36 2.24 37.63 65.71 0.2
3 3675 76 77.18 79.11 74.02 75.87 2.31 36.86 64.26 0.7
5 2736 82 77.05 78.45 73.94 75.29 2.39 36.17 62.97 1.1

10 1776 88 76.95 77.39 73.60 74.02 2.49 34.00 61.84 2.4
15 1418 91 76.93 76.89 73.55 73.51 2.55 34.08 61.06 3.9
20 1209 92 76.41 75.61 72.82 72.06 2.68 33.80 60.54 4.7
30 933 94 76.07 74.87 72.70 71.55 2.84 32.89 58.03 8.7
50 660 96 76.62 74.35 73.40 71.22 2.84 32.69 57.12 16.5
70 540 96 76.83 74.54 73.86 71.66 2.78 32.85 58.02 25.8

100 443 97 76.82 73.53 73.63 70.67 2.92 31.44 56.21 29.3

by Charniak (1996), i.e. a substantial reduction in grammar size (58%) with very

little change in parsing performance or loss of coverage. For subsequent thresholds,

greater loss of coverage is observed, although increasing quite gradually at first.

Even at threshold 5, which produces a grammar size reduction of 82%, the loss of

coverage is just over 1%. At this threshold, we observe only a small decrease in

labelled recall (0.1%), and a somewhat larger but still reasonably modest decrease

in labelled precision (2.1%). These results suggest that even the simple technique of

thresholding can play a role that is greater than previously expected in the task of

deriving practically useful grammars from treebanks.

6 Compaction by rule-parsing: naive method

If we require compaction to preserve only the set of strings, or part-of-speech

sequences, that can be parsed, then we can eliminate any rule that can be parsed

using other rules of the grammar, as justified in section 4. The algorithm we use for

such ‘naive’ compaction is as follows:

Input: A context-free grammar G

Let GC := G

For Each phrase structure rule R in G

If R can be parsed using GC − {R} Then GC := GC − {R}

Output: The compacted grammar GC

Thus, a loop is followed whereby each rule R of the grammar is addressed in turn.

If R can be parsed using the other rules (which have not already been eliminated),

then R is deleted (and the grammar without R used subsequently), and otherwise

R is kept in the grammar. The rules that remain when all rules have been checked

constitute the compacted grammar.

388 A. Krotov and others

A variant of this kind of approach to compaction was previously tried by Shirai

et al. (1995), in deriving a treebank grammar for Japanese. Although the grammar

they derive is a PCFG, the rule probabilities are not used by their compaction

algorithm. The most notable difference of their method to our own is that their

algorithm does not employ full context-free parsing in determining the redundancy

of rules, but instead considers only direct composition of rules (so that, in effect,

only parse trees of depth 2 are addressed).

An interesting question to ask of our naive compaction method is whether the

result of compaction is independent of the order in which the rules are addressed. In

general, the result is order dependent, as is shown by the following rules, of which

(13) and (14) can each be used to parse the other, so that whichever is addressed

first will be eliminated, whilst the other will remain.

B → C(11)

C → B(12)

A → B B(13)

A → C C(14)

Order-independence can be shown to hold for grammars that contain no epsilon

(‘empty’) rules and no unary rules of the form nonterminal → nonterminal. The tree

manipulation process used as part of our grammar extraction method, which was

described in section 3, ensures that the treebank grammars produced satisfy this

requirement, and so order dependence is not an issue for the results reported in this

paper. We will return to the question of order-independence, both for the grammars

we have extracted and more generally, at the end of this section.

We applied the naive compaction method to the set of rules extracted from

the entire Wall Street Journal portion of the PTB II (as described in section 3).

The results are striking: the initial set of 17 534 rules reduce to only 1667 rules,

a greater than 90% reduction. To investigate the relation between rule set growth

and compaction, we conducted an experiment involving a staged compaction of the

grammar. The corpus was split into 10% chunks (by number of files) and the rule

sets extracted from each. To begin the staged compaction, the rule set of the first

10% was compacted. Then the rules for the next 10% were added and the resulting

set again compacted, and so on again for each further portion. The results of this

experiment are shown in Figure 2. After 50% of the corpus has been processed,

the compacted grammar size starts to go down as well as up, ending up smaller at

100% of the corpus than it was at 50%. This suggests that ‘new rules’ being added

during staged compaction either are immediately eliminated or make possible the

elimination of rules already present.

Although it is interesting to observe the extent of grammar compaction that is

possible under the naive algorithm, the question remains as to the utility of the

grammar that results. The only straightforward way to make this evaluation is

on the usual ‘most-probable parse’ basis, i.e. by exploiting the rule probabilities

collected during grammar extraction, even though the compaction algorithm treats

Evaluating two methods for Treebank grammar compaction 389

0

500

1000

1500

2000

0 20 40 60 80 100

N
um

be
r o

f R
ul

es

Percentage of corpus

Fig. 2. Compacted grammar size under staged compaction.

Table 2. Naive compaction and parsing performance

Grammar Size Reduction UR UP LR LP CB 0CB 2CB

(N) (%) (%) (%) (%) (%) (N) (%) (%)

Initial 6517 0 77.52 80.20 74.42 76.99 2.18 37.71 65.77
Compacted 1218 81 44.84 26.73 32.44 19.34 9.05 7.05 15.22

the grammar as a CFG. Our results on this question involve not the 17 534 rules

discussed immediately above, but rather the thresholded grammar of 6517 rules

discussed in the previous section, which was derived from sections 02–21 of the Wall

Street Journal portion of the PTB II, with rules appearing only once removed.9 This

grammar reduces to just 1218 rules under naive compaction. Parsing performance

figures for the two grammars, tested as before on section 23 of the corpus, are given

in Table 2, under the usual barrage of metrics. It is clear that naive compaction has

had a very damaging effect upon parsing performance. This is really not surprising,

given that the compaction method pays no attention to the probabilities that play

a crucial role in evaluation. In the next section, we will discuss rule-parsing based

compaction that does exploit rule probabilities.

We return now to the issue of order-independence for the rule-parsing based

compaction algorithm described above. For the specific grammar that we have

9 The full grammar of 17 534 rules would be unsuitable for the immediate purpose of parsing
evaluation as it is derived from the entire Wall Street Journal portion of the PTB II, and so
does not provide for a separation of training and testing data. The unthresholded grammar
of 15 420 rules extracted as described in section 5 would be free of this problem. However,
the thresholded grammar of 6517 rules was chosen in preference to the unthresholded
grammar because it fairly nearly preserves the latter’s parsing performance and coverage,
but its smaller size is such as to considerably reduce the computational expensive of the
experiments performed.

390 A. Krotov and others

extracted, order-independence of compaction does hold, as we shall demonstrate

in the next paragraph. In the general case, however, order-independence will not

hold, i.e. different orders of selecting rules under the compaction algorithm are

liable to result in different final compacted rule sets, as was illustrated by the

example involving rules (11–14) above. This fact in no way precludes the use

of rule-parsing based compaction, but in this general case, we might expect the

compaction algorithm to be used in conjunction with some predecided criterion

for determining the order of rule selection. A number of alternatives immediately

present themselves, i.e. rules might be ordered in terms of increasing, or decreasing,

frequency of occurrence in the training data, or in terms of the length of their right-

hand sides. It remains an open question as to whether any such ordering method

will in general result in better parsing performance than any of its alternatives.

We claimed above that order-independence of compaction under the rule-parsing

algorithm does hold for the treebank grammars that we have extracted, as a

consequence of the tree manipulation process that is part of our extraction method.

We shall now briefly present a proof of this claim. The crucial fact that makes this

proof possible is that, due to the tree manipulation process, the grammars we derive

contain no epsilon rules (i.e. rules with ‘empty’ right-hand sides) and no unary rules

of the form nonterminal → nonterminal. The absence of such rules in a grammar G

allows us to establish a lemma that any parse under G of a rule R ∈ G cannot use

R itself, unless the parse is trivial, i.e. consists only of R. There are two cases to be

addressed for this lemma: (i) a parse consisting of a use of R plus some unary rules

cannot be a parse of R, since the latter all take the form nonterminal → terminal, (ii)

any other non-trivial parse involving R additionally includes a use of a branching

rule (i.e. with right-hand side length >1), so the parse must have more leaf nodes

than R has right-hand side categories, and hence cannot be a parse of R. This lemma

allows a straightforward demonstration of order-independence in compaction. Recall

that the elimination of a rule during compaction leaves the coverage unchanged.

Consider two grammars G1 and G2 which are alternative intermediate stages (i.e.

under different ordering of rule selection) in the course of compacting a grammar

G that contains no unary or epsilon rules. Assume both grammars contain a rule

R, which can be eliminated from G1 but not from G2, i.e. R has a parse under

G1 − {R}, but not G2 − {R}. Since G1 and G2 have the same coverage (the same as

G), the rules of G1 − {R} used to parse R must themselves be parsable (trivially or

non-trivially) under G2. It follows (by combining those parses together) that R has

a parse under G2 which (by the lemma) cannot contain R, and so is a parse under

G2 − {R}, i.e. R can be eliminated from G2, contradicting our assumption. Hence, R

can be eliminated either from both G1 and G2, or from neither, and so the order in

which rules are addressed in compaction is irrelevant to the ultimate eliminability

of any given rule, and hence also to the overall result of compaction.

7 Compaction by rule-parsing: probabilistic method

When our treebank grammar is a PCFG, a natural requirement to make of com-

paction is that it should preserve maximal parse probability, i.e. so that the ‘best’

Evaluating two methods for Treebank grammar compaction 391

parses of any string under initial and compacted grammars are of equal probability.

Given this requirement, a rule R can be eliminated from a grammar G just in case

its best parse under G − {R} is at least as probable as R itself.

We noted in section 4 that lossy methods of data compression allow for a choice

of compression ratio, i.e. specifying a balance between data reduction and the degree

of approximation. A compaction approach exploiting rule probabilities is straight-

forwardly adapted to allow a similar degree of freedom, by basing our criterion for

rule elimination on the ratio of the probabilities of a rule’s best parse and the rule

itself (i.e. dividing the former by the latter10). In these terms, a compaction method

that preserves maximal parse probability is implemented by requiring that the ratio’s

value must be ≥ 1 for a rule to be eliminated. By lowering this threshold ratio to val-

ues that are increasingly below 1 (but > 0), we can progressively increase the extent of

compaction (i.e. since more rules will be eliminated), but at the expense of the goal of

preserving maximal parse probability, which is progressively less well approximated.

A slightly different way of implementing what is essentially the same idea is to

compute the best-parse/rule probability ratio for each rule, and to use this ratio to

rank the rules, with lower-valued ratios giving higher rank. Different ‘compression

ratios’ can then be achieved by eliminating a greater or lesser proportion of the

lower ranked rules. In terms of the basic criterion of preserving the PCFG’s maximal

parse probability behaviour, rules whose best-parse/rule probability ratio is ≥ 1 can

always be eliminated. Rules for which the best-parse/rule probability ratio is 0 are

ones that have no parse under the rest of the grammar, so let us assume that these

rules will always be retained. Given these two bounding cases of what is always

retained and what is always eliminated, we can specify a ‘setting’ for the compression

ratio in terms of the proportion of the intervening rules that are retained, i.e. the

rules whose best-parse/rule probability ratio r is such that 0 < r < 1. Thus, with a

‘ranked compaction’ setting of 0% (‘0%RC’), all of these intervening rules (i.e. with

0 < r < 1) are discarded, so only the rules that have no parse under the other rules

of the grammar are retained. Hence this setting is equivalent to naive compaction.

On the other hand, a ranked compaction setting of 100% (‘100%RC’) will mean

that all of the intervening rules are retained, and so the criterion of preserving the

PCFG’s maximal parse probability behaviour is not compromised.

For our experiments on probabilistic compaction, we used the same initial gram-

mar and testing method as we did for our experiments on naive compaction, i.e. the

thresholded grammar of 6517 rules derived from sections 02–21 of the Wall Street

Journal portion of the PTB II, with rules appearing only once removed, and with

testing again on section 23 of the corpus.11 Table 3 shows the results of these exper-

10 Where a rule cannot be parsed using the other rules of the grammar, a maximal parse
probability of zero is assigned. Hence, dividing the parse probability by the rule probability,
rather than vice versa, avoids the problem of zero valued denominators.

11 As before, this thresholded grammar was chosen in preference to the unthresholded
grammar to ease the computational expense of the experiments made. The unspecified
No-Parse scores for each of the compacted grammars in Table 3 are all 0.2%, as for
the initial thresholded grammar, since probabilistic compaction, like naive compaction,
preserves coverage.

392 A. Krotov and others

Table 3. Probabilistic compaction and parsing performance

Grammar Size Reduction UR UP LR LP CB 0CB 2CB

(%-ranked) (N) (%) (%) (%) (%) (%) (N) (%) (%)

Initial 6517 0 77.52 80.20 74.42 76.99 2.18 37.71 65.77
100 5917 9 77.65 80.23 74.54 77.02 2.18 38.06 65.68
90 5447 16 78.38 78.77 75.19 75.56 2.34 36.99 63.41
80 4977 24 79.03 76.72 75.72 73.51 2.52 35.65 60.37
70 4507 31 78.38 74.74 75.07 71.58 2.70 34.63 59.04
60 4037 38 77.01 71.30 73.51 68.06 3.01 31.91 54.84
40 3098 52 72.44 60.90 68.73 57.79 3.91 26.64 46.32
20 2158 67 65.11 49.60 59.81 45.57 5.46 19.86 35.07
0 1218 81 44.84 26.73 32.44 19.34 9.05 7.05 15.22

iments, including the extent of grammar reduction for different ‘ranked compaction’

settings, and the parsing performance figures for the resulting rule sets. For a ranked

compaction setting of 100%, which achieves a grammar size reduction of 9%, the

parsing performance is essentially unchanged from that of the initial grammar, as we

would expect.12 Looking particularly at the figures for labelled precision and recall,

we observe that decreasing the ranked compaction setting in 10% steps produces

a relatively slow decline in precision, but produces at first an increase in recall.

Only at 60%RC does the recall fall below its value for the 100%RC grammar. This

observation of increasing recall scores is somewhat surprising. The explanation for

this change is presumably that the elimination of rules by rule-parsing will tend

to produce test parses with more structure, i.e. which are less flat. It might then

be that compaction by rule-parsing actually improves the grammar by elimination

of partial-structure rules. However, it could instead just be that, in the usual trade

off between recall and precision, rule elimination slightly tips the balance in favour

of recall. The 70%RC grammar, which is the smallest grammar whose recall is

not less than that of the 100%RC grammar, achieves a grammar size reduction of

31%. Since the simple thresholding used in generating the initial rule set used here

produced a 58% reduction, the overall combined reduction rates for the 100%RC

and 70%RC grammars are 62% and 71%, respectively.

We conducted a further set of experiments concerned with investigating the effect

on a treebank grammar, and its compacted variants, of the presence in the corpus

of the ‘categories’ X and FRAG. According to the PTB annotator’s guide (Bies et al.,

1995), these labels are used where the annotator is uncertain of the structure that

should be assigned, so it is not clear that it makes sense for them to be included

in a treebank grammar, if the grammar is to be viewed as a representation of

grammatical knowledge (rather than of grammatical ignorance). The label X is used

12 Johnson (1998), citing Krotov et al. (1997), applies the idea of eliminating rules whose
best-parse under the rest of the grammar is at least as probable as the rule itself to a
PCFG derived from the PTB. This method corresponds to the ‘100% ranked compaction’
case in the present scheme. The method achieves a size reduction of just under 9% for his
grammar.

Evaluating two methods for Treebank grammar compaction 393

Table 4. Effect of removing X and FRAG

Grammar Size Reduction UR UP LR LP CB 0CB 2CB

(%-ranked) (N) (%) (%) (%) (%) (%) (N) (%) (%)

Initial 6430 0 77.72 80.43 74.74 77.34 2.17 37.85 66.07
100 5831 9 77.84 80.45 74.86 77.37 2.16 37.76 66.07
90 5365 17 78.49 78.89 75.42 75.81 2.33 36.66 63.38
80 4899 24 79.43 77.12 76.23 74.01 2.47 35.80 60.56
70 4432 31 78.40 74.75 75.19 71.70 2.72 34.06 58.50
60 3966 38 77.00 71.29 73.63 68.17 3.04 31.46 54.49
0 1169 82 44.84 26.76 33.18 19.80 9.17 6.84 14.50

to mark ‘unknown, uncertain, or unbracketable’ material. The label FRAG is used for

‘clause-like’ fragments (from which, in fact, so much may be absent that only a unit

of some non-clause category remains, such as NP or ADJP). For these experiments, we

eliminated all rules containing the two labels from the 6517 rule grammar, leaving

a rule set of size 6430. We also ignored any test corpus parses that included the

labels, which reduced the sample size from 2245 to 2197 sentences. The results for

this grammar and test set are presented in Table 4, as well as for the grammar’s

variants under ranked compaction. The results indicate a slight improvement in

parsing performance for the initial grammar, which is, for the most part, maintained

under compaction.

8 Conclusion

The automatic extraction of grammar rules from parse-annotated corpora, such as

the Penn Treebank, provides an attractive route to the creation of broad-coverage

grammars. Such grammars can be very large, however, presenting obvious problems

for their subsequent practical use in parsing. This concern has lead us to investigate

ways in which such treebank grammars can be reduced in size, or ‘compacted’. The

experiments on grammar compaction reported in this paper have addressed the use

of methods involving rule-parsing and thresholding. Our results indicate that these

methods can achieve a substantial reduction in grammar size with little or no loss

in parsing performance. Although we have chosen to work with the formalism of

nonlexicalised PCFG, we are hopeful that our general approach will adapt to other

approaches that have been used in treebank parsing, such as lexicalised PCFG.

Any significant improvement of the efficiency of parsing using treebank grammars,

achieved by compaction or otherwise, will contribute to the likelihood that they will

find real use in practical application.

Acknowledgements

We thank two anonymous referees for their valuable comments on the paper.

394 A. Krotov and others

References

Bies, A., Ferguson, M., Katz, K. and MacIntyre, R. (1995) Bracketing Guidelines for Treebank

II Style Penn Treebank Project. Available at:
ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual.

Bod, R. (1992) A computational model of language performance: Data Oriented Parsing.
Proceedings of COLING’92, pp. 855–859. Nantes, France.

Bod, R. (1993) Using an annotated corpus as a stochastic grammar. Proceedings of European

Chapter of the Association for Computational Linguistics ’93, Utrecht, The Netherlands.
Bonnema, R., Bod, R. and Scha, R. (1997) A DOP model for semantic interpretation.

Proceedings of European Chapter of the Association for Computational Linguistics, pp. 159–
167.

Charniak, E. (1996) Tree-bank grammars. Proceedings 13th National Conference on Artificial

Intelligence (AAAI-96), pp. 1031–1036. MIT Press.
Charniak, E. (1997a) Statistical parsing with a context-free grammar and word statistics.

Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97). MIT
Press.

Charniak, E. (1997b) Statistical techniques for natural language parsing. AI Magazine. 18(4):
33–44.

Collins, M. (1996) A new statistical parser based on bigram lexical dependencies. Proceedings

of the 34th Annual Meeting of the Association for Computational Linguistics, pp. 184–191.
Gaizauskas, R. (1995) Investigations into the grammar underlying the Penn Treebank II.

Research Memorandum CS-95-25, University of Sheffield.
Johnson, M. (1998) PCFG models of linguistic tree representations. Computational Linguistics,

24(4): 613–632.
Krotov, A., Gaizauskas, R. and Wilks, Y. (1994) Acquiring a stochastic context-free grammar

from the Penn Treebank. Proceedings of Third Conference on the Cognitive Science of

Natural Language Processing, pp. 79–86. Dublin, Ireland.
Krotov, A., Hepple, M., Gaizauskas, R. and Wilks, Y. (1997) Compacting the Penn Treebank

grammar. Technical Report CS-97-04, Department of Computer Science, University of
Sheffield.

Krotov, A., Hepple, M., Gaizauskas, R. and Wilks, Y. (1998) Compacting the Penn Treebank
grammar. Proceedings 36th Annual Meeting of the Association for Computational Linguistics

and 17th International Conference on Computational Linguistics, pp. 699–703.
Lee, K. J., Kim, J.-H., Han, Y. S. and Kim, G. C. (1997) Restricted representation of phrase

structure grammar for building a tree-annotated corpus of Korean. Natural Language

Engineering 3: 215–230.
Magerman, D. (1995) Statistical decision-tree models for parsing. Proceedings 33rd Annual

Meeting of the Association for Computational Linguistics, pp. 276–283.
Marcus, M., Santorini, B. and Marcinkiewicz, M. A. (1993) Building a large annotated corpus

of English: The Penn Treebank. Computational Linguistics 19(2): 313–330.
Schabes, Y., Roth, M. and Osborne, R. (1993) Parsing the Wall Street Journal with the inside-

outside algorithm. Proceedings Sixth Conference of the European Association for Computa-

tional Linguistics, pp. 341–347.
Shirai, K., Tokunaga, T. and Tanaka, H. (1995) Automatic extraction of Japanese gram-

mar from a bracketed corpus. Proceedings of Natural Language Processing Pacific Rim

Symposium, pp. 211–216. Korea.
Thompson, C. A., Mooney, R. J. and Tang, L. R. (1997) Learning to parse natural lan-

guage database queries into logical form. Proceedings of the ML-97 workshop on Automata

Induction, Grammatical Inference and Language Acquisition.

