9 research outputs found

    Talk More Listen Less: Energy-Efficient Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery is a fundamental service for initialization and managing network dynamics in wireless sensor networks and mobile sensing applications. In this paper, we present a novel design principle named Talk More Listen Less (TMLL) to reduce idle-listening in neighbor discovery protocols by learning the fact that more beacons lead to fewer wakeups. We propose an extended neighbor discovery model for analyzing wakeup schedules in which beacons are not necessarily placed in the wakeup slots. Furthermore, we are the first to consider channel occupancy rate in discovery protocols by introducing a new metric to trade off among duty-cycle, latency and channel occupancy rate. Guided by the TMLL principle, we have designed Nihao, a family of energy-efficient asynchronous neighbor discovery protocols for symmetric and asymmetric cases. We compared Nihao with existing state of the art protocols via analysis and real-world testbed experiments. The result shows that Nihao significantly outperforms the others both in theory and practice.Comment: 9 pages, 14 figures, published in IEEE INFOCOM 201

    Poster Abstract: If You Have Time, Save Energy with Pull

    Get PDF
    Abstract We analyze push and pull for data collection in wireless sensor networks. Most applications to date use the traditional push approach, where nodes transmit sensed data immediately to the sink. Using a pull approach, nodes store the data in their local flash memory, and only engage in communication during dedicated collection phases. We show how one can transform an existing push-based collection protocol into a pull-based one, and compare the power consumption of both approaches on a 35-node testbed. Our results show that substantial energy gains are possible with pull, provided that the application can tolerate a long latency

    WIRELESS SENSOR NODE WITH LOW-POWER SENSING

    Get PDF
    Wireless sensor network consists of a large number of simply sensor nodes that collect information from the external environment by sensors, process the information, and communicate with other neighboring nodes in the network. Usually sensor nodes operate with exhaustible batteries unattended. Since manual replacement or recharging the batteries is not an easy, desirable and always possible task, the power consumption becomes a very important issue in the development of these networks. The total power consumption of a node is a result of all steps of operation: sensing, data processing and radio transmission. In this work we focus on the impact of sensing hardware on the total power consumption of a sensor node. Firstly, we describe the structure of sensor node architecture, identify its key energy consumption sources, and introduce an energy model for the sensing subsystem as building block of a node. Secondly, with aim to reduce energy consumption of a node we propose implementation of two power-saving techniques: duty-cycling and power-gating. Duty-cycling is effective at system level. It is used for switching a node between active and sleep mode (with duty-cycle factor of 1% reduction of in dynamic energy consumption is achieved). Power-gating is implemented at circuit level with goal to decrease a power loss due to leakage current (in our design, a reduction of dynamic and static energy consumption of off-chip sensor elements as constituents of sensing hardware within a node of is achieved). Our MATLAB simulation results suggest that in total for a sensing hardware thanks to involving of duty-cycling and power-gating secures a three order of magnitude reduction ( ) in energy consumption can be achieved compared to a node architecture in which the implementation of  both energy saving techniques are omitted

    1 Introduction Procrastination Might Lead to a Longer and More Useful Life

    No full text
    Energy-efficiency has pervaded nearly every aspect of wireless sensor network (“sensornet”) research, including platforms [20, 16], sensor data acquisition [15], operatin

    Hierarchical Routing in Low-Power Wireless Networks

    Get PDF
    Steen, M.R. van [Promotor
    corecore