
Poster Abstract: If You Have Time, Save Energy with Pull

David Hasenfratz, Andreas Meier, Matthias Woehrle, Marco Zimmerling, Lothar Thiele
Computer Engineering and Networks Lab, ETH Zurich, Switzerland

hdavid@ee.ethz.ch {a.meier,woehrle,zimmerling,thiele}@tik.ee.ethz.ch

Abstract
We analyze push and pull for data collection in wireless

sensor networks. Most applications to date use the traditional
push approach, where nodes transmit sensed data immedi-
ately to the sink. Using a pull approach, nodes store the
data in their local flash memory, and only engage in commu-
nication during dedicated collection phases. We show how
one can transform an existing push-based collection protocol
into a pull-based one, and compare the power consumption
of both approaches on a 35-node testbed. Our results show
that substantial energy gains are possible with pull, provided
that the application can tolerate a long latency.

1 Introduction
Data collection is the mainstream application scenario in

wireless sensor networks (WSNs), where sensor nodes col-
lect and forward data to a base station for further processing
and analysis. Since the nodes are usually battery-powered,
energy efficiency is a major requirement for long-term data
collection. While latency plays only a minor role in data col-
lection, a data yield close to 100% is typically expected.

In this paper, we analyze two different approaches for
energy-efficient data collection in WSNs: push and pull.
Using the push approach, nodes immediately transmit the
sensed data to the sink. This requires the nodes to be con-
tinuously active to maintain up-to-date routing paths. The
pull approach instead operates in two alternating phases, as
illustrated in Figure 1. During regular sleep phases the nodes
do not transmit sensed data but store these in the local flash
memory. At the beginning of each data collection phase, the
sink wakes up the network, whereupon the nodes transmit all
data backlogged in the preceding sleep phase. Afterwards,
the sink puts the network back to sleep.

The major advantage of push is the lower latency. Its
downside is the energy overhead to maintain up-to-date rout-
ing paths. This is not required in the pull approach, which
allows the nodes to limit their activity to a minimum in the
sleep phase to save energy. These savings are paid by i) con-
trol overhead incurred by the central administration, ii) en-
ergy overhead due to flash data storage and routing path ini-
tialization before each data collection phase, and iii) higher
latency as determined by the pull interval tpull .

Copyright is held by the author/owner(s).
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
ACM 978-1-4503-0344-6

Data collection phaseSleep phase

Time

· · · · · ·

tpull tpull

Figure 1. Basic structure of pull-based data collection.

Most data collection applications use push, even though
the application requirements would allow for pull (e.g., no
latency requirement). Dutta et al. [3] present first insights
into a pull-based approach. We build on these promising re-
sults by comparing the energy consumptions of push and pull
based on testbed experiments. We also show how one can
modify an existing, push-based data collection protocol to
make it work like a pull-based one. These modifications are
applicable to any push-based protocol running on top of any
medium access control (MAC) protocol based on low power
listening. We demonstrate the feasibility of our techniques
with a basic implementation of the Collection Tree Proto-
col (CTP) [4] running on top of the X-MAC [1] protocol.
2 Making it Work

To transform a push-based data collection protocol such
as CTP into a pull-based one, we start by splitting its opera-
tion in two distinct phases: a sleep phase and a data collec-
tion phase. These phases must satisfy the following condi-
tions:
• Sleep phase: Nodes do not communicate while waiting

for the sink to initiate the data collection phase. Sensed
data is stored locally in flash memory.

• Data collection phase: Nodes first initialize the routing
paths as done when starting the push-based data collec-
tion. As soon as routing paths are available, nodes start
to transmit backlogged data.

In a second step, we leverage the beacons periodically
broadcast by the routing protocol to exchange routing infor-
mation for the central administration of pull. Specifically, we
extend these beacons with phase IDs to distinguish the two
protocol phases. To trigger a phase change, the sink sets the
appropriate phase ID in its beacons.

The energy consumption in the sleep phase is heavily dic-
tated by the idle listening of the MAC protocol. While a long
MAC wake-up interval Tw saves energy in the sleep phase, it
limits the available bandwidth in the data collection phase.
To overcome this limitation, we propose to use two different



1 min 10 min 100 min
0

1

2

3

4

5

6

Pull interval (log scale)

P
o

w
e

r 
c
o

n
s
u

m
p

ti
o

n
 [

m
W

]

 

 

Push: average

Push: maximum

Pull: average

Pull: maximum

Figure 2. Power consumption comparison of the push
and pull approach for varying pull intervals.

wake-up intervals: T s
w in the sleep phase and T c

w in the data
collection phase. The longer T s

w saves energy by achieving a
low duty cycle in the sleep phase. The shorter T c

w provides
sufficient bandwidth in the data collection phase.

For a fair comparison between push and pull with re-
spect to energy, we perform two additional modifications to
achieve close to 100% data yield for both approaches:
• A data packet is only deleted from the sender’s buffer

after the reception of a data packet acknowledgment.

• If the receiver’s forwarding buffer [4] is full, it replies
with an explicit “not acknowledged” message. This
forces the sender to back off before sending the data
packet again, and hence works as a back-pressure flow-
control mechanism.

3 Experimental Comparison
We compare the power consumptions (i.e., microcon-

troller, radio transceiver, and flash) of push and pull on a
35-node testbed. The nodes are Tmote Sky [5] devices dis-
tributed in several offices on one floor, running the Contiki
operating system [2]. Nodes generate data with a sampling
interval of 45 seconds. One node acts as an always-listening
sink, i.e., its radio is always on. We do not consider the
power consumption of the sink as it has an unlimited energy
supply. We receive with both approaches in all experiments
100% of the generated packets, due to the reliability modifi-
cations described in Section 2.

We first analyze the power consumption of pull for inter-
vals tpull ranging from 100 seconds to 60 minutes and com-
pare these with push. This is shown in Figure 2. We look at
the average and maximum power consumption. Average de-
notes the average power consumption of all nodes and maxi-
mum is the maximum power consumption among all nodes.

Every data collection phase incurs an energy overhead for
waking up the network and putting it back to sleep. The
fewer data collection phases are performed, i.e., the longer
the pull interval, the lower the total energy consumption. Pull
uses less energy than push with pull intervals above 5 min-
utes. For example, with a pull interval of 60 minutes, the
average and the maximum power consumptions of pull are
50% and 40% below those of push.

The distribution of power consumption for the pull ap-
proach with a pull interval of 60 minutes is depicted in Fig-

Sleep Data collection
0

2

4

6

Protocol phases

P
o

w
e

r 
c
o

n
s
u

m
p

ti
o

n
 [

m
W

]

 

 

Flash

Data transmission

Idle listening

MCU

Figure 3. Average power consumption of pull in the sleep
and the data collection phases.

ure 3. It shows the average power consumptions of the mi-
crocontroller (MCU), the radio (for idle listening and data
transmission), and the flash in the two phases. Nodes con-
sume 90% less power in the sleep phase compared to the
data collection phase, because there is no data transmission
and especially due to the longer MAC wake-up interval. No-
tably, the power used by the flash is negligible in both phases.
4 Conclusions

Even using a simple pull approach achieves an energy
gain of almost a factor of two. The energy overhead due
to recurring initialization phases is amortized if the pull in-
terval is above a couple of minutes. This is because the
energy saved in the sleep phases is much larger. With re-
spect to energy consumption it is favorable to have as few
collection phases as possible. The maximum pull interval is
bounded by the latency requirement and the available flash
storage. The increasing amount of available flash storage
relaxes the storage requirement. For example, having just
1 MB flash storage and sampling 100 Bytes of data once per
minute would require to collect data only once a week. Fur-
thermore, the pull approach provides a wide range of power
optimization opportunities [3], such as efficient data stream
transmissions and effective data compression due to the large
amount of available data.
5 Acknowledgements

The work presented here was supported by the National
Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant num-
ber 5005-67322.
6 References
[1] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: A short

preamble MAC protocol for duty-cycled wireless sensor networks. In
Proc. of SenSys ’06.

[2] A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a lightweight and flex-
ible operating system for tiny networked sensors. In Proc. of LCN ’04.

[3] P. Dutta, D. Culler, and S. Shenker. Procrastination might lead to a
longer and more useful life. In Proc. of HotNets-VI ’07.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proc. of SenSys ’09.

[5] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. In Proc. of IPSN ’05.


