2,910 research outputs found

    Microgrid - The microthreaded many-core architecture

    Full text link
    Traditional processors use the von Neumann execution model, some other processors in the past have used the dataflow execution model. A combination of von Neuman model and dataflow model is also tried in the past and the resultant model is referred as hybrid dataflow execution model. We describe a hybrid dataflow model known as the microthreading. It provides constructs for creation, synchronization and communication between threads in an intermediate language. The microthreading model is an abstract programming and machine model for many-core architecture. A particular instance of this model is named as the microthreaded architecture or the Microgrid. This architecture implements all the concurrency constructs of the microthreading model in the hardware with the management of these constructs in the hardware.Comment: 30 pages, 16 figure

    A Case Study in Coordination Programming: Performance Evaluation of S-Net vs Intel's Concurrent Collections

    Get PDF
    We present a programming methodology and runtime performance case study comparing the declarative data flow coordination language S-Net with Intel's Concurrent Collections (CnC). As a coordination language S-Net achieves a near-complete separation of concerns between sequential software components implemented in a separate algorithmic language and their parallel orchestration in an asynchronous data flow streaming network. We investigate the merits of S-Net and CnC with the help of a relevant and non-trivial linear algebra problem: tiled Cholesky decomposition. We describe two alternative S-Net implementations of tiled Cholesky factorization and compare them with two CnC implementations, one with explicit performance tuning and one without, that have previously been used to illustrate Intel CnC. Our experiments on a 48-core machine demonstrate that S-Net manages to outperform CnC on this problem.Comment: 9 pages, 8 figures, 1 table, accepted for PLC 2014 worksho

    SL: a "quick and dirty" but working intermediate language for SVP systems

    Get PDF
    The CSA group at the University of Amsterdam has developed SVP, a framework to manage and program many-core and hardware multithreaded processors. In this article, we introduce the intermediate language SL, a common vehicle to program SVP platforms. SL is designed as an extension to the standard C language (ISO C99/C11). It includes primitive constructs to bulk create threads, bulk synchronize on termination of threads, and communicate using word-sized dataflow channels between threads. It is intended for use as target language for higher-level parallelizing compilers. SL is a research vehicle; as of this writing, it is the only interface language to program a main SVP platform, the new Microgrid chip architecture. This article provides an overview of the language, to complement a detailed specification available separately.Comment: 22 pages, 3 figures, 18 listings, 1 tabl
    • …
    corecore