
A Case Study in Coordination Programming:
Performance Evaluation of S-Net vs Concurrent Collections

Pavel Zaichenkov∗§, Bert Gijsbers†‡, Clemens Grelck‡, Olga Tveretina∗, Alex Shafarenko∗
∗ Compiler Technology and Computer Architecture Group, University of Hertfordshire, United Kingdom

{p.zaichenkov,o.tveretina,a.shafarenko}@ctca.eu
† Programming Languages Group, Ghent University, Belgium

bert.gijsbers@ugent.be
‡ Informatics Institute, University of Amsterdam, The Netherlands

{b.gijsbers,c.grelck}@uva.nl
§ Moscow Institute of Physics and Technology, Russia

Abstract—We present a programming methodology and
runtime performance case study comparing the declarative
data flow coordination language S-NET with Intel’s Concurrent
Collections (CnC). As a coordination language S-NET achieves
a near-complete separation of concerns between sequential
software components implemented in a separate algorithmic
language and their parallel orchestration in an asynchronous
data flow streaming network.

We investigate the merits of S-NET and CnC with the
help of a relevant and non-trivial linear algebra problem:
tiled Cholesky decomposition. We describe two alternative
S-NET implementations of tiled Cholesky factorization and
compare them with two CnC implementations, one with explicit
performance tuning and one without, that have previously been
used to illustrate Intel CnC. Our experiments on a 48-core
machine demonstrate that S-NET manages to outperform CnC
on this problem.

Keywords-performance measurement; coordination pro-
gramming; stream processing; concurrent collections; parallel
programming; language design

I. INTRODUCTION

The main challenges in the design of concurrent programs
are the correct sequencing of interactions between compu-
tational threads, and the control of shared resources. Two
research directions have been pursued to address these chal-
lenges: 1) new programming models and parallel program-
ming language abstractions; 2) specification of concurrent
behavior and automatic generation of concurrent code. In
the latter direction, concurrent control code is generated
automatically based on a specification. Habermann’s path
expressions is an example of an early work in this direction
[1], [2].

Yet a third way is to use a coordination language for the
part of the program that manages concurrent components.
The components are the building-block algorithms that the
overall algorithm uses in order to produce the required
results. Each component is concurrency agnostic while
the overall algorithm is, in fact, a concurrent composition
of the building blocks. In the coordination language one

specifies the relations between components: what data is
communicated between them and where synchronization
takes place. A macro-dataflow coordination language, such
as S-NET [3], [4], emphasizes communication between the
components as it contains a complete set of wiring primitives
that promote a view of an application as a streaming network
of asynchronous components.

The first such attempt at coordination, albeit in a
concurrency-centric, rather than communication-centric fla-
vor, was by Gelernter and Carriero [5], who defined a
concurrency/synchronization control language Linda as a
set of primitives to be used with conventional imperative
languages as pseudo-intrinsic functions. Further attempts
brought into focus the matters of software engineering (in
particular abstraction, encapsulation and inheritance) and the
concept of compositionality, i.e. the ability of the concurrent
glue to seamlessly integrate the components into a single
program.

The coordination language S-NET takes the above issues
on board. It uses streams as a glue with which it con-
nects components into a single application. The way the
components are connected depends on data types, which
play a dual role in S-NET: they ensure that the correct
collection of objects is received by each of the components
in every act of communication, but they also help to route
messages to their destinations through a very small and
simple set of wiring patterns called combinators. Structuring
the application into a hierarchical network helps to apply
these simple tools systematically. The initial design is refined
by progressively revealing the structure of subnetworks until
the design process stops at individual components.

This paper reports on a new performance study of the lan-
guage. As an example application we choose tiled Cholesky
decomposition, a linear algebra algorithm that lends itself
easily to parallelization for a multi-core system. It decom-
poses a Hermitian, positive-definite matrix into the product
of a lower triangular matrix and its conjugate transpose. For
such matrices, the algorithm is roughly twice as efficient

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55868267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as the more general LU decomposition. Here we use a tiled
version of the procedure originally described by Buttari et al.
[6]. The choice was motivated by the fact that the algorithm
is well used in computational linear algebra as well as having
a sufficiently complex and varied internal structure, which
would benefit from component coordination as a method
of concurrent implementation. Furthermore, tiled Cholesky
factorization has repeatedly been used to illustrate the merits
of Intel’s Concurrent Collections (CnC), and various CnC
implementations have been made available. This ensures a
reasonably fair performance comparison.

Contribution. We compare the performance of S-NET
with that of Intel’s Concurrent Collections (CnC) [7]. The
choice of CnC for comparison is motivated by the fact that
CnC follows a similar dataflow approach (with some control
flow facilities as well) as S-NET. CnC is implemented as a
C++ library (but further implementations exist), rather than
a fully fledged coordination language. It is quickly gathering
momentum in both industrial and academic research. S-NET,
in contrast, emphasizes modular parallel program design by
means of strict separation of domain-specific programming
from concurrency engineering. Various S-NET applications
have been built by our industrial partners, including Thales
Research, SAP and Philips Healthcare [8], [9].

Our second contribution is a declarative specification
of a dataflow algorithm for tiled Cholesky decomposition
in S-NET. This specification avoids two acts of barrier
synchronization, which occur in the imperative version of the
algorithm. Our measurements show a superior performance
of this declarative version over other three implementations
we investigated.

II. RELATED WORK

A coordination language describes communication be-
tween independent single-threaded computational processes.
It is responsible for managing asynchronous components as
well as for supporting synchronization and communication
among them [5]. The coordination language is unaware
of activities inside components, and thus can be added to
almost any language.

A separation of concerns is an important property of
coordination languages. If coordination is separated from
computation, these activities can be implemented in different
languages. The separation of concerns facilitates differ-
ent roles for different programmers. Domain experts can
concentrate on a domain-specific problem while parallel
programming experts take care of concurrency aspects. The
separation of concerns facilitates economy and flexibility as
well. Components become more generic and thus can be
reused in different contexts.

Linda is the first coordination language [10]. Communi-
cation between independent processes is performed using
shared memory referred to as tuple space (elements of the
memory are tuples, not bytes). Elements of tuple space are

accessed by logical name. Therefore, the only information
the processes share is a protocol on element tags. The
separation of concerns in Linda is not complete because
synchronization is located in the computational part of a
program.

Kahn’s model of Process Networks (KPN) introduces
streams represented as sequential data channels with infinite
capacity to glue independent processes into a network [11].
The KPN model is a clean coordination model because
coordination does not interfere with the computations inside
network vertices. S-NET can be seen a refinement of the
KPN model:it takes engineering aspects, such as memory
limitations into consideration. Separation of concerns in S-
NET is quite clean as components are completely unaware
of the context and synchronization is not interfering with
computational activity.

Both S-NET and CnC use coordination glue to combine
separate components together. CnC has been significantly
influenced by Linda [12], whereas S-NET is based on the
KPN model. We are going to show that both approaches
work reasonably well to achieve excellent performance on
a shared-memory parallel platform.

III. OVERVIEW OF S-NET

A. The Parallel Component Technology

Decomposition and encapsulation are general software
engineering principles not limited to parallel computing.
Problem decomposition results in a representation of an
application as a set of black-box components, whose func-
tionality is defined in terms of the interface description, with
some glue code that holds the components together in a way
that ensures the expected system behavior.

The only requirement to be satisfied by an S-NET box
implementation is the absence of persistent internal state.
Stateful components could neither be moved or cloned in a
multicore system, since the new copy would have to rely on
the previous state, which is internal, and hence unavailable.
However, state is somehow required in order to be able to
merge messages from different channels. Thus, state may
only be expressed as a dedicated language construct at the
coordination level. Therefore, state in S-NET is always fully
explicit.

The consequence is to structure and manage state transi-
tions in the component world in the same way as control
flow is structured and managed in ordinary programming.
User-defined components become pure functions that map a
tuple of parameters onto a similar collection of results.

As soon as the latter is produced, the internal state should
effectively be destroyed. Such components are easy to reason
about and debug, they are inherently mobile, and usable as
a black box in a parallel computing environment – but there
is also a price to pay. The glue environment has to provide
sufficient scaffolding to support an evolving state (or local
states!) of the computation. In other words, it will need to

hold the effective state of one or more components for them
and present it back to the components’ inputs in combination
with any data to be processed.

B. The S-NET Language

The language S-NET supports coordination programming
by instantiation of components as boxes and connecting
them by anonymous data streams [4]. An S-NET application
is represented as a network between the input and the
output, which are two external streams connecting the whole
application with its environment. In the following we briefly
revisit the main concepts of the language.

The box concept. A component is instantiated as a
Single-Input, Single-Output (SISO) box. The box has a
limited life cycle: it accepts one item from the input stream,
does some processing and yields zero or more items to the
output stream, after which it destroys its internal state and
waits for the next input item to arrive. Components are
written in a box language, using the S-NET communication
API. C and SAC [13] are currently supported as box
languages.

Synchronization. In S-NET the only component which
can store and combine state is the synchrocell. For example,
the expression [|{r}, {s}|] synchronizes precisely two mes-
sages: one whose type contains at least a field r, another
with at least s. All other messages remain untouched and
are forwarded further. The semantics of the synchrocell is
sequential and does not involve any data transformation,
hence concurrency and mobility concerns do not apply.

The streaming data concept. All boxes accept records
as units of their input. A record in S-NET is a set of fields
and tags. Both fields and tags have names and values. Field
values cannot be examined in S-NET: they are references
to data which are private to the box language. Tags are
standardized as integers and their values are available in
both the box language and the S-NET language. Records are
non-recursive in the sense that it is not possible to define an
unlimited linked structure, such as a list.

Every user-defined component contains a program unit
(a function or similar) written in a box language, and a
type signature written in S-NET that defines the type of
records (in terms of their field/tag name sets) that the box
accepts and, in a similar way, the types of any output
records that may be produced. Streams between boxes are
sequences of records. Even though all boxes are SISO, the
data relationships between them are not one-to-one, since
streams can be split and merged using combinators.

Combinators. These are second-order functions that en-
sure compositionality of SISO networks. First of all there are
serial and parallel combinators, A..B and A|B, respectively.
The serial combinator “..” (Figure 1(a)) connects the output
of operand A to the input of operand B, with the input
of A and the output of B becoming those of the resulting
network. The parallel combinator “|” combines its operands

(a) (b)

(c) (d)

(e)

Figure 1. Illustration of network combinators used in Cholesky decom-
position implementation for S-NET: serial combinator (serial composition)
(a), parallel combinator (parallel composition) (b), feedback combinator
(feedback loop) (c), star combinator (dynamic replication) (d) and split
combinator (parallel replication) (e).

in parallel, see Figure 1(b). Incoming records are sent to the
operand network that best matches its type [3]. Type specifi-
cations for complex networks are inferred automatically by
the S-NET compiler.

The feedback combinator examines the output records of
an operand network and redirects those records that match
a pattern back into the input of that network. For instance,
C\z creates a feedback loop around operand network C for
records for as long as their type matches type pattern z. This
allows a single operand network C to repeatedly process a
record until it is finally converted into something else, see
Figure 1(c).

There exist combinators for dynamic replication of a
SISO network. The expression A ∗ x will serially replicate
the operand network A an unspecified number of times
(Figure 1(d)). Only records whose type matches the given
type pattern x escape this network. Thus, the expression
is equivalent to an infinite serial expansion A..A..A.. for
records as long as they do not match exit pattern x. Typically,
at some point in time, due to processing by network A, they
do match the exit condition and will then appear on the
output stream of the expression.

Similarly, the expression B!<y> replicates the SISO
network B an unspecified number of times in parallel
(Figure 1(e)). For every unique tag value y one parallel
branch of B is created. This can be seen as an infinite
parallel expansion By0

|By1
|By2
| . . . The branches persist.

Namely, records with the same tag value y take the same

1: for k = 0, . . . , p− 1 do
2: InitialFactorization(Akk, Lkk)
3: for all j ∈ (k + 1, . . . , p− 1) do
4: TriangularSolve(Lkk, Ajk, Ljk)
5: end for
6: for all j ∈ (k + 1, . . . , p− 1) do
7: for all i ∈ (k + 1, . . . , i) do
8: SymmetricRankUpdate(Ljk, Lik, Aij)
9: end for

10: end for
11: end for

Figure 2. Tiled Cholesky decomposition algorithm.

branch. All records which encounter this expression are
required to have a type which contains tag <y>. This is
checked at compile time.

Stateful computations can be modelled in S-NET with an
expression like ([|{r}, {s}|]∗{r, s}..MyBox)\{s}, where a
single state {s} is first combined with an incoming record
{r}. Processing by component MyBox may generate any
number and type of output messages, but at least one evolved
state {s}. The feedback combinator “\” only redirects the
state back into the network where the process repeats itself
with the next incoming record {r}. For details regarding
stateful streaming networks in S-NET we refer the interested
reader to [14].

IV. CASE STUDY: CHOLESKY DECOMPOSITION

A. The Algorithm

Cholesky factorization computes a solution to the follow-
ing problem: given a symmetric positive definite matrix A,
find a lower-triangular matrix L, such that A = LLT . We use
the tiled version of the Cholesky decomposition algorithm
described by Buttari et al. [6].

Initially, the input matrix A is decomposed into p · p
blocks Aij of size b× b each. Then, we solve the Cholesky
decomposition problem for all blocks from submatrix Ai0

separately. Next, we recompute all element values in the
submatrix Aij (where i ∈ (1, p− 1), j ∈ (1, i)) and run the
algorithm recursively on the submatrix.

An overall algorithm is given in Figure 2. The computa-
tional process is divided into three steps:

Initial Factorization. A scalar Cholesky decomposition
algorithm is used to solve Akk = LkkL

T
kk equation on this

stage. The result of computation is a lower-triangular matrix
tile Lkk.

Triangular Solve. During this phase we apply the result
of the previous step’s computation to solve the equation
Ajk = LjkL

T
kk. The result is a matrix tile Ljk. This step can

be performed for all tiles in the same column concurrently.
Symmetric Rank Update. This step is used to update

values of tiles Aij , where j ranges from k+1 to p− 1 and
i from k+1 to j. This is done using the following formula:

InitialFactorization TriangularSolve SymmeticRankUpdate

Lkji b
kji tags

kji compute

kj tags

kj compute

k tags

k compute

singleton
p

Data collection

Tag collection

Step collection

Data dependency

Control dependency

Figure 3. A computational graph of the CnC implementation of the
Cholesky decomposition algorithm

A′ij = Aij − LikL
T
jk. Similar to the previous step, this can

be done concurrently for all i and j.
This numerical problem thus boils down to three building

blocks. Our task in coordination programming is to glue
them together into one coordination program.

B. Implementation with Intel Concurrent Collections

A detailed description of the CnC implementation of the
Cholesky decomposition algorithm is found in [15]. Here we
present only a brief description of the CnC concepts relevant
to our implementation.

The CnC model has the following important feature:
it decouples the specification of a computation from the
expression of its parallelism. Consequently a domain expert
determines the design of the algorithm, and a tuning expert
can be called upon to deal with parallelism, communication,
scheduling and distribution issues, not dissimilar from S-
NET.

The domain expert specifies the computation in graph
form as depicted in Figure 3. The graph contains the
following types of nodes.
• A computational step. It is a basic unit of execution

specified explicitly by the domain expert. In Figure 3
ellipses represent step collections, which are static

declarations of sets of dynamic instances.
• A data item. Item collections are used to represent data.

Items are elementary units of storage, communication,
and synchronization. In Figure 3 there are three item
collections shown as rectangles: Lkji stores both input
matrix A and output matrix L, b stores a block size and
p is used to calculate the total number of blocks in the
initial matrix (which equals p× p).

• A control tag. Each instance of a step or item has a
unique tag, which is a tuple of tag components. Tags
indicate whether a step will execute, but not when it
executes. A step may produce tags as well. A step
collection is associated with exactly one tag collection.

The relations between steps and items are shown by
directed solid edges in Figure 3. They have the following
meaning: The line “item → step” indicates that the step
consumes the item and the line “step → item” means that
the step produces the item.

The control relation between a tag collection and a
step collection is shown by directed dashed edges. A step
collection is associated with exactly one tag collection;
multiple step collections may be prescribed by the same
tag collection.

Figure 3 contains tags and items that do not have inbound
edges. This means that they are taken from the environment,
which is the external code that invokes the computation. For
our example the environment provides Lkji, b and p item
collections and the singleton tag collection.

There are three main algorithms given as separate
steps in the implementation: InitialFactorization,
TriangularSolve and SymmetricRankUpdate
written by the domain expert. Their behavior is defined
by data collections Lkji, b and p they receive as an input
data. Tag collections k_tags, kj_tags and kji_tags
control the behavior of each step collection. All of these
steps produce the result of the computation and put it back
into the data collection Lkji.

Semantics and execution of CnC are defined as follows.

• The item or tag is said to be available if it was produced
by a step.

• The step is said to be prescribed if it was prescribed by
a tag collection and a particular tag became available.

• The step becomes inputs-available if all items for this
step are available.

• The step is enabled and may execute if it is both inputs-
available and prescribed.

• The program terminates when no step is executing and
no unexecuted step is enabled. The termination is valid
if all prescribed steps have been executed.

Nevertheless, the relation between step, data and tag
collections is defined statically, there is no way to perform
scheduling and resource management dynamically. In order
to solve this shortcoming CnC offers a tuning mechanism

in the form of special annotations for compiler and runtime
system.

In order to evaluate the effect of tuning, we evaluate two
alternative CnC implementations of tiled Cholesky factoriza-
tion. The first one does not rely on the tuning, whereas the
second one uses dependency functions in order to improve
scheduling. Dependency functions map control tags into
data collection indices in order to improve scheduling and
eliminate stalls during run-time. Without this information it
is impossible to determine which elements are going to be
accessed by steps, therefore steps are forced to stall.

C. Implementation with S-NET

Separation of concerns is also a key feature in S-NET.
S-NET describes the coordination behavior of networks of
asynchronous components and their orderly interconnection
via typed streams. The component implementation is done
using an external box language and S-NET is not bound to
any specific one.

S-NET uses a message-driven communication model. The
domain expert only specifies the input and output types of
boxes. This is the type signature of a box. The type signature
is basically a declaration of how the type of the input
message is mapped onto the types of the output messages.
On each computational step a box receives only a single
message as input, yet the number of output messages is not
limited. A box is stateless and runs asynchronously with
other boxes. Boxes do not carry global state and the purity of
a function inside a box is a requirement. A box computation
may start as soon as a message from the input stream is
received.

We developed two different implementations for Cholesky
decomposition in S-NET. The first one strictly adheres to
the algorithm shown in Figure 2, and thus implements three
consecutive steps. The drawback of this approach is that in
each iteration two barrier synchronizations take place.

Our second implementation is free from barrier synchro-
nization and, hence, exposes a higher degree of concurrency.
Here, all computations are completely data-driven as in a
dataflow approach: any computational step in the program
is able to execute as soon as the required input data becomes
available. We now cover both implementations in more
detail.

1) Implementation with barrier synchronization: Com-
pared to CnC, a coordination network in S-NET does not
specify a control flow. Box computations depend only on
the availability of input data. Data relations are completely
defined statically by means of type specifications. In contrast
to the CnC graph, the S-NET network is hierarchically
structured. Any network can structurally play the role of
a box in a higher-level network.

In Figure 4 we illustrate the S-NET network for the first
Cholesky decomposition implementation. Each box shows
its type signature, with one input type and one or more

Figure 4. The S-NET network for tiled Cholesky decomposition with
barrier synchronization.

output types. Tags are distinguished from fields by angular
brackets. The coordination layer is able to access tags and
route messages based on (integer) tag values.

The decompose box receives a message with the input
matrix A, its size N and the block size B from the environ-
ment. It reallocates the array where the input matrix is stored
and permutes the matrix elements there in order to improve
spatial and time locality. As the result, box decompose
outputs the input matrix with permuted elements A, the
output matrix L filled with zeros (on each iteration of
feedback loop combinator we add new values to the matrix),
the block size B, the number of blocks P and an additional
iteration index k with initial value zero.

Next, we perform recursive computations (the outer loop
in Figure 2). The recursion is expressed using a feedback
loop combinator. The combinator redirects the output of
the SymmetricRankUpdate box to the input of the
InitialFactorization box as long as the message
containing a field of type A is produced. Execution termi-
nates once SymmetricRankUpdate stops producing new
messages. The result of computation is stored in a message
that is produced by finalize box and is sent to the output
stream.

We compare the loop index k with the number P in order
to determine whether all the blocks have been computed.
Depending on the result, messages of different types are sent.
If k is still less than P , we add computed elements to the ma-
trix L and supply the input record with the additional index
j. TriangularSolve and SymmetricRankUpdate
boxes perform the computations of the corresponding stages.
Lastly, the finalize box completes the computation by
converting the result matrix to a format suitable for output
and performing memory deallocation.

2) Data-driven implementation: In our second S-NET
implementation of Cholesky decomposition the three central
steps from the algorithm are all run in parallel, see Figure 5.

Box start receives the same input, consisting of ma-
trix A, matrix size N and the block size B. It produces
one record containing the matrix Result which is filled
with zeros, together with a tag X which denotes the

Figure 5. The S-NET network for tiled Cholesky decomposition following
a purely data-driven approach.

number of Out tiles which need to be merged with the
result matrix in order to construct the final output matrix.
This Result message is immediately forwarded to the
finalize box. In addition, the start box produces
initial messages containing separate tiles each of which
corresponds to some stage in the algorithm. That is, it
produces messages with diagonal tiles with type Fac_Akk
which are accepted by InitialFactorization; mes-
sages with type Tri_Ajk and tag j which are ac-
cepted by TriangularSolve; and messages with type
Sym_Aij and tags j and i which are accepted by
SymmetricRankUpdate. Tag j denotes a column index
and tag i a row index. In addition each message contains
a loop iteration tag k in order to distinguish different tiles
from different iterations. All individual box components are
replicated in parallel by the “!” combinator with index values
taken from the i, j and k tags. This ensures that no messages
are queued up in streams waiting for preceding messages to

 0

 100

 200

 300

 400

 500

 600

 700

Serial S-Net (1) S-Net (2) CnC
(untuned)

CnC
(tuned)

L
in

e
s
 o

f
c
o
d
e

Component code
Coordination code

Tuning code

Figure 6. Number of lines of code for each implementation.

be processed. Input dependencies can therefore quickly be
resolved and computations can start as soon the input data
becomes available.

Messages are transferred between the three central com-
ponents until result tiles with type Out are produced which
are accumulated by the finalize box. To this end the
finalize is paired with a repeated synchrocell and both
are enclosed in a dedicated feedback loop which is not
shown in figure 5. Components TriangularSolve and
SymmetricRankUpdate also contain a synchrocell in-
side. The synchrocell in the first component awaits for two
messages with Tri_Ajk and Tri_Lkk, representing tiles
Ajk and Lkk respectively. Similarly, synchrocells in the
second component awaits for three tiles Ljk, Lik and Aij

which are packed into Sym_Ljk, Sym_Lik and Sym_Aij
respectively. Once the dependencies are satisfied, a box
computation starts, which results in one or more output
messages.

From this description it becomes clear that synchroniza-
tion is only needed to satisfy specific input dependencies in
preparation for individual activations of box computations.
Collective thread synchronizations are completely avoided.
Messages are transferred independently and computations
are free to start as soon as all input dependencies are
satisfied.

3) Discussion: In terms of expressiveness, all CnC and
S-NET implementations are well-structured and there is a
reasonably low amount of extra code required to pay for
coordination. In most cases, the implementation consists of
two parts: the high-level structure of the program represented
as a graph and a set of functions defining box/step behavior
that use an API for interacting with S-NET/CnC respectively.
In addition, tuning code may be present in the CnC program.

We demonstrate the programmability of each approach by
showing the number of lines of code for each program in
Figure 6. It gives a rough idea of the amount of coordination

and tuning overhead. Overall, the amount of coordination
code is relatively small in either case. CnC components are
implemented in C++ and representing each component as a
separate class requires some additional overhead.

To summarize, CnC and S-NET are both systems for
coordination of components. Components in CnC are linked
by data and control relations. The execution strategy and
computation order are determined mainly dynamically. S-
NET uses a message-driven strategy. Here components are
linked by typed data relations only. Additionally S-NET
offers a hierarchical structuring mechanism and a compile
time analysis which supports this structure; most of that
analysis can be done statically.

V. PERFORMANCE MEASUREMENTS

Cholesky decomposition is a significant example of a
computational linear algebra problem. It is affected by both
locality (tile size) and parallelism (the number of cores
used). The amount of work and available parallelism varies
during the run time, which should reveal the differences
in both systems’ abilities to manage the resources of a
concurrent platform.

The CnC model permits many run-time system designs,
including those for distributed memory systems using MPI
as well as shared memory versions. We use Intel CnC
0.9, which uses Intel Thread Building Blocks (TBB) as a
threading layer. Step components are implemented in C++
and compiled into libraries using GNU GCC 4.6.3.

Boxes for S-NET were implemented in C and were com-
piled with GNU GCC 4.6.3. All measurements were done
with the FRONT runtime system [16]–[18]. This is a novel
runtime system, which combines a very low overhead of S-
NET box/network instantiation with efficient transportation
of records throughout the network and box replication.
Experiments show that this runtime system scales well to
very large S-NET networks with millions of concurrent
records.

All measurements are obtained on a machine with four
twelve-core AMD Opteron

TM
6174 Processors and 256 GB

RAM (see Table I for technical details). When measuring
speedup for increasing core counts, we first employ neigh-
boring cores in the same processor before going beyond
processor boundaries.

The serial implementation was used as a reference to
measure the speedup. This version implements the tiled
Cholesky decomposition algorithm for a single core without
use of optimized kernels. It is similar to the implementation
in CnC, but without any coordination overhead. The program
consists of three essential functions, each representing a
single step of the algorithm shown in Figure 2. As the
algorithm states, these functions are called in a loop with
different parameters. During each iteration a global array of
tiles is accessed to read or to write tiles. This is similar to
how the data collection is accessed in CnC.

Table I
EVALUATION PLATFORM FOR EXPERIMENTS

Vendor AMD
Processor Model Opteron 6174
Processor Name Magny-Cours

Clock (GHz) 2.2
Sockets 4

Cores(Threads)/Socket 12(12)
L1 Data Cache 64 KB/core

L2 (Data and Instruction) Cache 512 KB/core
Shared L3 Cache 12 MB
DRAM Capacity 256 GB

 0

 5

 10

 15

 20

 25

 30

 35

 32 64 128 256 512 1024 2048 4096 8192

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 t
h
e
 s

e
ri
a
l
im

p
le

m
e
n
ta

ti
o
n

Block size

Serial

S-Net (1)

S-Net (2)

CnC (untuned)

CnC (tuned)

Figure 7. The speedup relative to the serial implementation of Cholesky
decomposition CnC and S-NET applications on 48-core machine for an
input matrix of size N = 8192.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

of cores

S-Net (1) [BS=128]

S-Net (2) [BS=128]

CnC (untuned) [BS=256]

CnC (tuned) [BS=128]

Figure 8. The speedup of Cholesky decomposition CnC and S-NET
applications for different number of cores (for matrix of size 8192× 8192
and optimal block size).

We provide evaluation results for the two CnC and the two
S-NET implementations of tiled Cholesky factorization as
described in Section IV. Figure 7 shows the speedup relative
to the serial implementation executed with optimal block
size b = 128 as a parameter. We systematically vary block
sizes for both CnC and S-NET implementations. In this
figure the overhead can be observed for large blocks, where
the speedup of concurrent versions drops significantly. Four

peaks in the figure demonstrate optimal values for block size.
The maximum speedup is 32 that was achieved by S-NET
data-driven implementation.

The use of dependency functions in the tuned CnC imple-
mentation brings significant improvement compared to the
untuned version of the program, especially when there is a
high amount of concurrency (for Cholesky decomposition
it is the case where the size of subproblems is small). In
the best case it brings almost a factor of 8 improvement
for the current application. For the best performance range
of tile size improvement caused by dependency functions is
about 15%. On the other hand, an overhead introduced by
the dependency functions for cases with a small amount of
concurrency caused a 7% loss in performance.

Figure 8 shows speedups of S-NET and CnC for increas-
ing numbers of cores. As pointed out before, we first use
all cores of one processor before proceeding to the next
processor when increasing the effective core count to exploit
the memory hierarchy. All applications were executed with
optimal block sizes. Within the field of tested implemen-
tations the data-driven S-NET version of tiled Cholesky
factorization achieves the best performance and scales up to
the maximum of 48 cores. Both CnC implementations are
clearly behind, although they likewise demonstrate excellent
scalability. Making use of the tuning facilities of CnC results
in a rather marginal performance advantage in this exper-
iment. As expected, the S-NET implementation involving
barrier synchronization suffers from lesser scalability and
increasing overhead as the number of cores used grows. We
can, in particular, observe this effect when moving from
12 cores to 16 cores, i.e. beyond a single processor.

A thorough performance evaluation of the tiled Cholesky
decomposition in CnC can be found in [15]. The results
of the measurements illustrate that S-NET on this example
has a performance similar to CnC and that coordination pro-
gramming model is an effective instrument for implementing
applications for multi-core platforms.

The second S-NET implementation clearly benefits from
the dataflow model which S-NET provides. The execution
of a component is enabled by the arrival of input data. This
paradigm allows for the specification of highly-concurrent
applications. In contrast, execution of CnC component is
prescribed by tag without awareness of data availability. This
may introduce stalls during execution. A significant speedup
in CnC was achieved by introducing dependency functions,
which map tag indices to element indices in data collection.

VI. CONCLUSIONS

We presented a performance case study on a popular
linear algebra problem using coordination programming as
a method of code development. We compared two de-
sign styles of coordination programming and their runtime
performance on a large multicore server: our coordination

language S-NET vs Intel’s coordination library/specification
tool CnC (Concurrent Collections).

We observe that a static network topology and data rela-
tions facilitates S-NET compilation and run-time scheduling
and communication. S-NET does not use control flow, al-
lowing components to be triggered merely by the availability
of their input data. Despite the lack of tag collections
that determine the sequencing of processing steps, pure
dataflow works quite well, outperforming CnC in the best
performance range of problem sizes. S-NET supports a clean
separation of concerns between coordination and computa-
tion: only individual objects required by a computational
component are delivered to it by a coordinator. By contrast,
in CnC components must be aware of the whole data
collections they wish to access.

Tuning is a feature of CnC that is clearly separated
from application design. By introducing “depends” functions
to the application we demonstrated the improvement this
can bring. For the current application it delivers an 8 fold
improvement in the best case.

Both of CnC and S-NET are designed to maximize pro-
grammability and usability of various many-core platforms.
We compared the two coordination models with a serial im-
plementation. We managed to achieve optimal utilization of
the resources without platform-specific tuning and optimiza-
tion. The data-driven implementation is S-NET is based on
precisely the same sequence of algorithmic steps as the CnC
one (though implementation with a barrier synchronization
is different). In order to increase the performance for CnC,
one should consider other features of the tuning mechanism
(i.e. priorities) that may improve scheduling and memory
management at the run-time.

ACKNOWLEDGMENT

This work has made use of the University of Hert-
fordshire Science and Technology Research Institute high-
performance computing facility. The authors further wish
to thank the anonymous reviewers for their valuable com-
ments.

REFERENCES

[1] S. Andler, “Predicate path expressions,” in Proceedings of
the 6th ACM Symposium of Principles of Programming Lan-
guages (POPL 1979), 1979, pp. 216–236.

[2] C. Hoare, “Monitors: An operating system structuring con-
cept,” Communications of the ACM, vol. 17, no. 10, pp. 549–
557, 1974.

[3] C. Grelck, S.-B. Scholz, and A. Shafarenko, “A gentle in-
troduction to S-Net: Typed stream processing and declarative
coordination of asynchronous components,” Parallel Process-
ing Letters, vol. 18, no. 2, pp. 221–237, 2008.

[4] C. Grelck, S. Scholz, and A. Shafarenko, “Asynchronous
stream processing with S-Net,” International Journal of Par-
allel Programming, vol. 38, no. 1, pp. 38–67, 2010.

[5] D. Gelernter and N. Carriero, “Coordination languages and
their significance,” Communications of the ACM, vol. 35,
no. 2, pp. 96–107, Feb. 1992.

[6] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore archi-
tectures,” Parallel Computing, vol. 35, no. 1, pp. 38–53, Jan.
2009.

[7] Z. Budimlic, A. Chandramowlishwaran, K. Knobe,
G. Lowney, V. Sarkar, and L. Treggiari, “Multi-core
implementations of the concurrent collections programming
model,” in The 14th Workshop on Compilers for Parallel
Computing, 2009.

[8] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. Sha-
farenko, R. Barriére, and E. Lenormand, “Parallel signal
processing with S-Net,” Procedia Computer Science, vol. 1,
no. 1, pp. 2079–2088, 2010, iCCS 2010.

[9] C. Grelck, S.-B. Scholz, and A. Shafarenko, “Coordinating
data parallel SAC programs with S-Net,” in IEEE Trans.
Parallel Distrib. Syst. IEEE Computer Society Press, Los
Alamitos, California, USA, 2007.

[10] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,”
Computer, vol. 19, no. 8, pp. 26–34, 1986.

[11] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information Processing 74, Proc. IFIP
Congress 74. August 5-10, Stockholm, Sweden, L. Rosenfeld,
Ed. North-Holland, 1974, pp. 471–475.

[12] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “The
concurrent collections programming model,” Rice University,
Tech. Rep. TR 10-12, Dec. 2010.

[13] C. Grelck and S.-B. Scholz, “SAC: A functional array lan-
guage for efficient multithreaded execution,” International
Journal of Parallel Programming, vol. 34, no. 4, pp. 383–
427, 2006.

[14] C. Grelck, “The essence of synchronisation in asynchronous
data flow,” in 25th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’11), Anchorage,
USA, Workshop Proceedings. IEEE Computer Society Press,
2011, pp. 1159–1167.

[15] A. Chandramowlishwaran, K. Knobe, and R. Vuduc, “Per-
formance evaluation of concurrent collections on high-
performance multicore computing systems,” in 2010 IEEE
International Symposium on Parallel & Distributed Process-
ing (IPDPS). IEEE, Apr. 2010, pp. 1–12.

[16] B. Gijsbers, “An efficient scalable work-stealing runtime
system for the S-Net coordination language,” Master’s thesis,
University of Amsterdam, Amsterdam, Netherlands, 2013.

[17] B. Gijsbers and C. Grelck, “An efficient scalable runtime
system for macro data flow processing using S-Net,” in 6th In-
ternational Symposium of High-Level Parallel Programming
and Applications (HLPP’13), Paris, France, G. Hains and
Y. Khmelevsky, Eds. Université Paris-Est, 2013.

[18] B. Gijsbers and C. Grelck, “An efficient scalable runtime
system for macro data flow processing using S-Net,” in
International Journal of Parallel Programming, 2014.

	Introduction
	Related Work
	Overview of S-Net
	The Parallel Component Technology
	The S-Net Language

	Case Study: Cholesky Decomposition
	The Algorithm
	Implementation with Intel Concurrent Collections
	Implementation with S-Net
	Implementation with barrier synchronization
	Data-driven implementation
	Discussion

	Performance Measurements
	Conclusions
	References

